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Abstract— We consider a dynamic routing problem where the
objective of each user is to obtain flow policy that minimizes its
long term cost. The framework differs from other related works
which consider collection of static one shot games with dynamic
cost function. Instead, we motivate our problem from the two
basic facts: i) the path cost may not be exactly known in advance
in dynamic environment unlike static; ii) long term solution is
important aspect to evaluate rather than obtaining one slot
solution. Moreover, this constraint inhibits to apply traditional
game theoretic approach to obtain equilibria, rather we discuss
that it is not required to obtain equilibria at every slot to
“cover” the dynamic environment. In this work we propose an
evolutionary game theoretic approach, we intend to learn the
optimal strategy exploiting the past experiences (information)
instead of cost function. Further, we characterize the dynamic
equilibria of the long-term game using evolutionary variational
inequalities. The dynamic equilibria so obtained, optimizes the
long term cost, however it need not to be an equilibrium for
intermediate epochs (games). As a byproduct, this reduces dras-
tically the computation complexity. Under strictly monotone
cost function, we prove that the dynamic equilibria are also
dynamic evolutionarily stable strategies.

I. INTRODUCTION

One of the motivations to consider dynamic scenarios in
evolving networks is that they seem to show up in reality
more often. Routing games is widely studied in last few years
for ”selfish-users” in a network of limited resources. These
models are thoroughly explored in existing literature ( [1],
[2]). They apply to networks that involve large number of
selfish users such as Internet routing, peer-to-peer file sharing
systems, etc. However, in most of the studies a static network
model is considered which includes a game which is framed
over static network cost and static user demand. As the
complexity of the existing system are growing up, we need
to study and explore the dynamic behaviour of such systems
which involve not only the time dependent network cost but
also the demand varies over time. In recent past some studies
are seen to be attracted with dynamic behavior, but most of
them consider time dependent cost for a game framework
and study the behavior over a period of time. However
in reality when the system cost varies, it gives birth of
another game than the prior one and hence the resulting game
solutions may not depict the actual behavior the system. This
complicates the modeling problem prohibitively difficult to
use the static game approach.

Thus we seek a new approach to study these problems. In
this paper we propose an evolutionary game theory approach
(see [3] and the references therein) which not only allows us
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study the behavior of the system, rather we discover that our
approach turns out to be less complex to study. In dynamic
networks, where the traffic and topology changes over time,
it may be difficult to compute the equilibria for each time
epoch. Infact this is not only impossible to obtain, rather less
important because continuum. However, the important thing
is to compute here is the optimal strategy to be evolved over
time, which leads to an optimal cost over a long time.

This also address the major challenge in the design of
wireless networks, the need for distributed routing schemes
that consume a minimal amount of information and a
minimal amount resources. This is important in dynamic
networks, where the traffic and topology can change over
time, and therefore the strategies of players must be updated
frequently. It is natural to ask whether there exist less-
information, less memory schemes for dynamic wireless
networks that could produce and maintain efficient and fair
allocation. In this paper we consider dynamically chang-
ing traffic with fixed sources and destinations. Routing in
wireless networks has been a rich area of enquiry over the
last decade. The two main paradigms for routing have been
geographic routing and topology based routing. We formulate
the problem as dynamic routing game and examine both
equilibria and optimality of network.

A. Related work

One of the most prominent learning algorithm in the
general setting of dynamic games is fictitious play. Fictitious
play have been studied by Brown (1951). The fictitious play
procedure assumes that at each time slot, players choose
a best reply to the observed empirical distribution of past
actions of the others players. One of the obvious problem
with this algorithm is the non transparency of the other
player’s actions. These algorithm requires significant amount
of information about others players. The assumption that
players can observe the past actions of the others players
is too strong in the context of routing games which involves
many players with bounded rationality and limited observa-
tion opportunities. An alternative learning scheme has been
proposed in [4]–[6] which is based on non-regret choices
of players with partial information but the algorithm uses
rationality assumption which is too restrictive in networking
scenarios. It requires to keep track of previous history which
is resource consuming as well. We will discuss on section
III-A how these conditions can be weaken.

One of the motivations to consider dynamic scenarios in
evolving networks is that they seem to show up in reality
more often. The motivation of dynamic routing games comes
from several remarks:
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• A time-dependent traffic model with variable costs is
needed to capture more the variability of network traffic.
The demand for resource allocation evolves in time
and hence, the proposed framework should take into
consideration the time-dependent constraints.

• The traffic in the network can change quickly, therefore
the assumption of static model studied in [2], [7], [8]
is not adapted in evolving traffic networks.

The paper is structured as follows: We start with generic
system model for routing games. We first discuss in routing
for finite number of player in Section III and discuss about
learning dynamics in dynamic environment setting. We show
that players can learn the strategy to reach equilibrium and
even without having similar learning scheme. We then extend
the study to mean field limits and show various important
properties there in. Further, we extend to non-atomic type
and multi class users in sec. IV. Finally, we conclude with
remarks in sec. V. We omit some proof in the paper due to
space limitation (refer to detailed report at arxiv.org).

B. Our Contribution
In this paper we emphasize the following contributions
• We develop a stochastic learning procedure for dynamic

atomic routing games in absence of payoff function
knowledge. Based on Boltzmann-Gibbs dynamics [6],
[9], [10] and some basic properties of the entropy
penalty function, we show that the learning mechanism
converges almost surely to equilibria for parallel links.
Further more, learning need not to be restricted to
Boltzman-Gibbs dynamics procedure. Based on com-
bined fully distributed payoff and strategy reinforcement
learning (CODIPAS-RL, [6], [10]), we show that even
all the players need not to have same learning mecha-
nism which is more realistic in large network scenarios.

• We then focus on the transition from microscopic to
macroscopic routing game via mean field interaction.
We derive non-atomic dynamic routing games, their
evolutionary dynamics [3] and mean field limit dynam-
ics.

• For non-atomic users, we analyze the dynamic routing
game using evolutionary variational inequalities intro-
duced in [11]. This the first attempt to time-dependent
strategies in dynamic routing games using evolutionary
variational inequalities. Moreover our model does not
need any information about the others players and have
less memory requirement. Note that, we do not use
punishment-reputation based mechanism because the
punishment mechanism is not justified in particular in
the context of large networks (detection of deviants ,
detection of the identity of players may fail, anonymity
per class etc).

II. SYSTEM MODEL

Consider a network (V,L), where V is a finite set of
nodes and L ⊆ V × V is a set of directed links. A set
I = {1, 2, ..., I} of users1 share the network (V,L). Let

1A node can also act as one or more users.

R be the set of possible routes in the network. We shall
assume that all users ship flow from source node “s” to a
common destination “d”. User i has a throughput demand
that is some process with average rate di. For simplicity of
notation and without loss of generality, we assume that at
most one link exists between each pair of nodes (in each
direction). For any link l = (u, v) ∈ L. Considering a node
v ∈ V , let In(v) = {l : D(l) = v} denote the set of its
in-going links, and Out(v) = {l : S(l) = v} the set of its
out-going links. A job with a given source-destination pair
arrives in the system at s and leaves it at d after visiting a
series of nodes and links, which we refer to as a route or
path, then it leaves the system.

III. DISCRETE TIME ROUTING GAMES WITH FINITE
NUMBER OF PLAYERS

Routing in discrete time with finite number of player is
originally discussed in transportation problems [12]. Such
settings also show up in context of networks where flow
of a user is un-splittable [13]. In this section we start
our discussion from learning algorithm for discrete time
routing with finite number of player, latter we show that
it can be studied using continuous time dynamics of eq.
(2). Borrowing simple tools from [14] we show that such
dynamics converges to equilibria almost surely. In other
words we propose simple (Boltzmann-gibbs based) learning
algorithm which converges to equilibria in dynamic environ-
ment setting. Further, we carrying over the discussion for
large population where using mean field limits we show the
convergence to equilibrium even when player do not have
same learning algorithms. In large population scenario it is
more practical to consider that player may not have same
learning algorithm.

Policies in the dynamic routing game: We introduce a
few notations here in particular related to dynamic environ-
ment setting. Denote X i be the set of mixed strategies of
player i of the one-shot game. In a dynamic environment,
where long time system observation is required, we seek
notion of time dependent flow which include the history of
policies and payoff. Therefore, we define history-dependent
policies in which we will built our learning algorithm based
on own-experience and own-payoff observations. A private
history of length t of player i is a collection {(rit′ , Ciri

t′
), t′ ≤

t}. Denote Hit, the set of histories of length t of player
i and, Hi =

⋃
t≥1Hit. A behavioral strategy of player i

is a collection of maps (σit)t≥1, where σit : Hit −→ X i.
A strategy σi is said pure if for any time t, σit ∈ R. A
mixed strategy of player i in the dynamic routing game is a
probability distribution over the pure strategies. A stationary
strategy is a time-independent behavioral strategy ∀t, σit =
σi ∈ X i. A general strategy is a distribution over behavioral
strategies. Using Aumann’s generalization of Kuhn theorem
[15], we restrict our attention to behavioral strategies. We
believe that this class of strategies is large enough (time and
experiences dependent can be explored using this class). Note
that our framework of dynamic routing game differs from a
standard repeated game with complete information where it
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is assumed that players observe the other’s payoffs or the
actions of the others players after each time slot. We believe
that such an assumption is too strong in network routing
context and may need a feedback or a central coordinator.
We do not assume any information about other player’s
strategy. However, one’s strategy in dynamic game induces a
probability measure over the set of histories of infinite length.
For any expectation on the time average payoff (Cesaro mean
payoff), we will refer to this induced probability on the
product topology.

A. Learning in dynamic routing games

As pointed out earlier, we assume that payoff function
is not known to players. Moreover, the variation in payoff
reflects the changes in the dynamic environment. Therefore,
this justifies that it is difficult to know the payoff in advance
rather the players need to learn the payoff during the game,
thence their strategy. In this section, we discuss a suitable
payoff learning mechanism for dynamic environment.

We assume that players can have : i) an estimate of the
average cost; and, ii) delay time of the alternative routes.
Players make a decision based on this rough information
by using a randomized decision rule to revise his strategy.
The costs and time delays of the chosen alternative are
then observed and is used to update the strategy for that
particular route. Each player experiments only the costs and
time delays of the selected route on that time slot, and uses
this information to adjust his strategy for that particular route.
This scheme is repeated every slot, generating a discrete
time stochastic learning process. Basically we have three
parameters: i) the state; ii) the rule for revision of strategies
from the state to randomized actions; and, iii) a rule to update
the new state. Although players observe only the costs of the
specific route chosen on the given time slot, the observed
values depend on the congestion levels determined by the
others players choices revealing implicit information on the
entire system. The natural question is whether such a learning
algorithm based on a minimal piece of information may
be sufficient to induce coordination 2 and make the system
stabilize to an equilibrium. We show that the answer to this
question is positive for dynamic routing games on:
• parallel links and a Boltzmann-Gibbs dynamics for route

selection.
• general topology with monotone cost functions (in

vectorial sense).
1) Finite number of players: We consider a finite set of

players and finite set of routes. Denote by Cwr (k, t) the
average w−weighted cost for the path r when k players
chose this path at time t. The weight w simply depicts
that the effective cost is the weighted sum of several cost
depending on certain objective. For example, there can be
a delay cost, memory cost,.., can be combined together
with weight w. Again, weight w could also be different for
different players due their objective. Henceforth, we omit

2Note that we do not assume coordination between players, there is not
central authority and there is no signaling scheme to the players.

Ci
r(k, t)

Boltzman dynamics� pir(t+ 1)
realization � rit+1

Ci
rit+1

(kr,t+1, t+ 1)

one− step
 

! computation

estimation
kr,t+1

random number

 

Fig. 1. One-step of the learning algorithm.

w and work with generic cost Cr(k, t) for simplicity of
notation. An estimation of player i is a vector Ci = (Cir)r
where Cir represents player i’s estimate of the average cost
of route r (the weighted cost composition). Player i update
its strategy using the Boltzmann-Gibbs scheme: use route r

with probability pir(C) := e
− 1
εi
Cir∑

r′ e
− 1
εi
Ci
r′
, εi > 0.

Congestion is captured by the inequality ∀t, Cr(k, t) ≤
Cr(k+1, t), k ≤ N, where N is the total # of players. This
implies, more the route is congested higher the weighted cost.
Let νt be the step size satisfying

∑
t νt = +∞, ∑t ν

2
t <∞.

Learning Algorithm :

forall the Players do
Initialize to some estimations Cir(k0, 0);
Initial Boltzmann distribution pi(0);

end
for t=1 to max do do;
foreach Player i do

Observe its costs;
Update via Boltzmann-Gibbs dynamics pi(t+ 1);
Compute the distribution over rit+1 and krit+1

from
p(t+ 1);
Update its estimation via
Cir,t+1 = Cir,t + νt+1

pir,t
1l{rit+1=r}

(
W i
r,t+1 − Cir,t

)
;

Estimate the random costs Ci
rit+1

(krit+1
, t+ 1);

end
Algorithm 1: Stochastic Learning Algorithm based on
Boltzmann-Gibbs dynamics

Description of the learning process: At stage t+1 the past
estimation Cir(kr,t, t) determines the transition probabilities
pir(t) = pir(C

i
r(kr,t, t)) which are used by player i to

experiment a random route rit+1. The action profile of all the
players determines a total random number kr,t+1 of players
i such that at route rit+1 = r. The weighted costs of r is
then Cit+1(krit+1,t+1) = Cir(k, t+1) if rit+1 = r, kr,t+1 = k.
Finally, each player i observes only the cost of the chosen
alternative rit+1 and updates his/her estimations by averaging

Cir,t+1 = (1− νt+1

pir,t
1l{rit+1=r})C

i
r,t

+
νt+1

pir,t
1l{rit+1=r}C

i
r,t+1, (1)

if rit+1 = r. Otherwise the estimation is unchanged: Cir,t+1 =
Cir,t The diagram 1 illustrates one-step of the algorithm.

The learning algorithm can be rewritten as Ct+1 −
Ct = νt+1

pr,t
1l{rt+1=r} (Wt+1 − Ct) where W i

r,t+1 ={
Cr,t+1 if rit+1 = r
Cir,t otherwise
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This process has the form of a stochastic learning al-
gorithm [4], [5] with the distribution of the random vec-
tor Wt being determined by the individual updating rules
which depend upon the estimations. Assuming that the cost
functions are bounded, the sequences generated the learning
algorithm is also bounded. Hence the asymptotic behavior
of our learning algorithm can be studied by analyzing the
continuous adaptive dynamics of the drift E(Wt+1|Ct). The
following holds:

Lemma III-A.2: The stochastic learning algorithm gener-
ates the continuous time dynamics given by

d

dt
Cir(t) = C̄ir(t)− Cir(t) (2)

where Berir,t denotes a Bernoulli random variable with
the parameter P(Berir,t = 1) = pir, C̄ir(t) =

E
(
Cir(
∑
i′ Ber

i′

r,t, t) | Berir,t = 1
)

represents the average
cost observed by player i when he chooses route r and the
others players choose it with probabilities pi

′

r .
It is easy to see that the expectation of W given C is

E(W i
r |C) = pir(C)C̄ir + (1− pir)Cir.

Denote by a1 = max{Cr(k + 1) − Cr(k), 1 ≤ k ≤ N},
ε = maxi εi > 0, a2 = 1

2εa1. We choose the coefficients εi
such that a2 <

1
N−1 .

Proposition III-A.3: The Boltzmann-Gibbs-based stochas-
tic learning algorithm converges almost surely to equilibria.

So far, we considered finite number of players in discrete
setting and showed that the proposed learning algorithm
converges to equilibrium in dynamic environment setting. In
the next subsection we go ahead with large number of player.
We apply mean field analysis and show that players can learn
based on related ODE. Further more, in the next subsection,
we show that players need not have same learning algorithms
to reach equilibrium.

B. From micro to macro: Scaling and Mean Field Limits

Define the scaled cost functions as CNr (krN , t) and the
mean profile XN = 1

N

∑
i′ δ{ri′t =r}. Assuming that the

second moment of the number of players that use the same
route is finite3, the mean process converges weakly to a
mean field limit, solution of system ordinary differential
equation given by the drift 1

∆N
fN (x(t)) where fN (x(t)) =

E
(
XN (t+ ∆N )−XN (t)|XN (t) = x(t)

)
is the expected

change in the system in one-time slot with duration ∆N .
This can be directly inferred from [16].

For example the Boltzmann-Gibbs dynamics (also called
logit dynamics or smooth best response dynamics) is given
by

d

dt
xir(t) =

∑
r′

xir′(t)p
i
r′r(x(t), t)− xir(t)

Where pir′r(x(t)) = e
−Cir(x(t),t)

εi∑
r̄ e

−Cir̄(x(t),t)

εi

. Players from class i can

learn x(t) via the ordinary differential equation (ODE) and

3Notice that the number of players that can interact can be very large

can use a route r with probability pir. Note that our study
can be extended to the case where one has both atomic and
non-atomic players by considering the weighted population
profile: X̃N (t)(i,r) = 1∑

j γ
N
j

∑
j γ

N
j δRNj (t)=(i,r) where γNj

is the weight (”power”) of j in the population of size N.

C. Players need not to use the same learning scheme

We now study how to combine various learning schemes
based on mean field limit dynamics. In the previous studies
the players have to follow the same rule of learning, they
have to learn in the same way. We ask the following question:
what happens if players have different learning schemes? The
motivation to study different learning scheme comes from
the fact that in real scenario it is not practical to enforce
a learning scheme to player, rather players learning may
depend on various factors e.g. their capability. On the other
hand we are interested in a class of learning scheme in
which player use less information on the others players, less
memory on the history and need not to use the same learning
scheme [10]. Thus, in this section we study and characterize
the system behavior when different learning schemes work
together.

Consider a population in which the players can adopt
different learning schemes in {η1, η2, η3, . . . , ηκ}, κ < ∞.
Then, based on the composition of population and the use
of each learning scheme we build a spatial hybrid game
dynamics. The intra-incoming and the intra-outgoing flow
as well as the inter-neighborhood flow are expressed in term
of the weighted combination of different learning schemes
picked from the set {η1, η2, η3, . . .}.

Definition 3.1 (Property): WES: Every rest point of the
mean field limit routing game dynamics generated by the
weighted cost is a weighted equilibrium and every con-
strained weighted equilibrium is a rest point of the dynamics.
Note that this property is not satisfied by the well-known
replicator dynamics as it is known that the replicator dy-
namics may not lead to equilibria. We have the following
results:

Proposition III-C.1: If all the learning schemes contained
in the support of λ = (λ1, . . . , λκ) ∈ Rκ+ satisfy the
property (WES) then, the hybrid mean field limit routing
game dynamics generated by these learning schemes satisfies
also the weighted equilibrium stationarity property.

Example: The family of learning scheme generated by
ηθr′,r = max(0,−Cr(x(t)) + Cr′(x(t)))θ, θ ≥ 1 satisfies
(WES). Note that θ = 1 is well known smith dynamics. For
θ ≥ 1, one can refer [17].

IV. NON-ATOMIC MULTI-CLASS DYNAMIC ROUTING

In this section we move on to non-atomic class of routing
games which simply means that change of strategy of a single
player has negligible impact on the system behavior. We ex-
tend the traditional variational calculus approach to dynamic
routing setting and define notion of dynamic equilibrium. We
establish conditions under which uniqueness of equilibrium
is sustained. We further discuss the learning schemes which
appeared correlated with evolutionary dynamics.
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The network is crossed through by infinitely many jobs
that have to choose their routes (collection of consecutive
edges, no cycle). Jobs are classified into different types or
classes. Denote by E the set of classes. For example, in the
context of road traffic, a type may represent the set of a
given type of vehicles, such as busses, car or bicycle. In
the context of telecommunications a type may represent the
jobs or packets sent by all the players of a given operator.
We consider that the packets of a given type e may arrive
in the system at some different possible points, and leave
the system at some different possible points. Each individual
packet of type e with source-destination pair, chooses its
route trough the system, by means of the choice of a path.
Denote by SD the set of source-destination pairs,Rsd the set
of routes from s to d. The current traffic generated between
s and d by class e is me

sd(t), also represent the rate at
which the jobs of type e with source-destination (s, d) ∈ N 2

arrives in the network. msd(t) is the total arrival rate of data
with source-destination sd at time t. This can be viewed as
concentrated mass on sd.

Unlike previous section the flow is splittable. A flow on
route r at time t of class e is assumed non-negative and is
denoted by xer(t). A flow configuration which corresponds
to the population profile of the network X follows from the
choices of each of the infinitely many packets. We have the
conservation flow equation

∀(s, d) ∈ SD, ∀e,
∑
r∈Rsd

xer(t) = me
sd(t)

that is, the demand associated with (s, d) pair and class e
must be equal to the sum of the flows of that class on the
routes that connect s to d. There is a capacity constraint per
class ∀e, ∀r, 0 ≤ xer(t) ≤ βer(t), βer(t) is the capacity on
route r at time t.

The link flow is denoted by f(t) and satisfies the following
relation: fel (t) =

∑
r∈R x

e
r(t)δl∈r δa∈r is equal to one if

the link l is contained in the route r and zero otherwise.
Then the costs on route r can be written as Cer (x(t), t) =∑
l∈L C

e
l (x(t), t)δl∈r. Note that, we focus on continuous

cost functions.
An important generalization of variational inequalities

are quasi-variational inequalities and evolutionary variational
inequalities. We model and study a dynamic traffic net-
work problem with multi-class of traffic and with feasible
path flows which have to satisfy time-dependent capacity
constraints and demands. We construct a unified definition
of equilibrium and the constraint set that arises in the
applications of time-dependent traffic network, and in non-
atomic games. We formulate a dynamic equilibrium which
can be expressed as an evolutionary variational inequality.
A dynamic equilibrium in the evolving network is a time-
dependent trajectory equilibrium that satisfies an evolution-
ary (time-dependent) variational inequalities.

A. Dynamic Equilibria : Evolutionary Variational Solutions

Consider traffic networks in which the demand varies over
the time horizon as well as the capacities on the flows

on the paths connecting the origins to the destinations. We
are interested how traffic network equilibria evolve in the
presence of such variations.

Consider the Hilbert space H := L2([0, T ],R(]E×]R)),
(the set Lebesgue-measurable function m(.) such that∫ T

0
m2(t) dt < +∞).

M = {x ∈ H, Φx(t) = m(t) a.e, 0 ≤ x(t) ≤ β(t) a.e}

where a.e stands for ”almost everywhere” for the Lebesgue
measure restricted to the interval [0, T ] and Φ denotes the
traffic matrix.

The set M is closed, convex and bounded in H. Define
the incidence matrix χ with χr,sd = 1 if r ∈ Rsd and zero
otherwise. We assume that 0 ≤ m(t) ≤ χβ(t). Then, the
feasible set M is non-empty. Denote by H∗ be the dual
of H. Define the cost function as a mapping from M to
H∗. The bilinear form on H × H∗ is given by 〈C, x〉 :=∫ T

0
〈C(t), x(t)〉 dt. where 〈f, g〉 =

∫ T
0
f(t)g(t)dt.

Dynamic equilibrium: We say x ∈ M is a dynamic
equilibrium if ∀y ∈M,

∫ T
0
〈y(t)−x(t), C(x(t), t)〉 dt ≥ 0.

This concept generalizes the standard Wardrop first principle
developed in static traffic scenarios.

Proposition IV-A.1: x ∈ M is a dynamic equilibrium if
and only if for every pair (s, d) ∈ N 2 ∩ SD, every route
r ∈ Rsd, every class e ∈ E , the following holds on [0, T ]
almost everywhere (a.e)

(a) xer(t) = βer(t) =⇒ Cer (x(t)) ≤ minr′∈Rsd C
e
r′(x(t)),

(b) 0 < xer(t) < βer(t) =⇒ Cer (x(t)) =
minr′∈Rsd C

e
r′(x(t)),

(c) xer(t) = 0 =⇒ Cer (x(t)) ≥ minr′∈Rsd C
e
r′(x(t)).

For infinite horizon we consider the following definition:
lim supT

1
T

∫ T
0
〈x(t) − y(t), C(x(t), t)〉 dt ≤ 0. If x is

a static, (Cournot/Nash/Wardrop) equilibrium for network
traffic with parameters α, β then the constant trajectory
z : t −→ z(t) = x is a dynamic equilibrium. That is
if ∀y(t), 〈z(t) − y(t), C(x(t), t)〉 ≤ 0 then,

∫ T
0
〈x(t) −

y(t), C(x(t), t)〉 dt ≤ 0. This says that the ”standard”
Wardrop first principle (user equilibrium) is a particular case
of dynamic equilibrium.
Stable game: We say that the game is a stable game if the
(weighted) cost function satisfies

∀y, y′ ∈ H,
∫ T

0

〈C(y(t), t)−C(y′(t), t), y(t)−y′(t)〉 dt ≥ 0

The game is said strictly stable if this inequality is strict.
If the game is stable then the set of dynamic equilibria is
a convex set. If the game is strictly stable and the payoff
continuous then, there is at most one dynamic equilibrium
(for Lebesgue mesaure).

Proposition IV-A.2: Under the feasibility condition on the
flow and continuity of the cost function, the routing game has
a least one dynamic equilibrium. Moreover if the costs define
a constrained strictly stable population game. Then, the
game has a unique dynamic equilibrium (for the Lebesgue
measure).
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B. Sensitivity and Stability of Dynamic Equilibria

We study the sensitivity of equilibria in the routing game.
We study how the equilibrium responds to ε−perturbation
of the flow profile. We say that the ”static” equilibrium is
a global evolutionarily stable strategy (GESS) if for all flow
configuration y 6= x, there exists a threshold εy > 0 such that
〈x−y, C(εy+(1− ε)x)〉 < 0 for all ε ∈ (0, εy). We say that
a trajectory x ∈M is a time-dependent global evolutionarily
stable strategy if for all trajectory y ∈ M such that the set
EE := {t, x(t) 6= y(t)} is of non-zero Lebesgue measure:∫

[0,T ]
1lEE(t) dt > 0, there is εy > 0 such that∫ T

0

〈x(t)− y(t), C(εy(t) + (1− ε)x(t), t)〉 dt < 0,

for all ε ∈ (0, εy).
Proposition IV-B.1: If the game is a strict stable game

then, the unique dynamic equilibrium is a time-dependent
GESS.

Proposition IV-B.2: Assume that the cost function are
autonomous and stable, and consider different learning
schemes η1, η2, . . . , ηκ are adopted by the players where
ηθr,r′(x(t)) = (max[0,−Cr′(x(t)) + Cr(x(t))])θ with the
fractions λ = (λθ)θ. Then, these revision of strategies lead
to an evolutionary game dynamics which converges to the
set of equilibria.

3) Control of demand : Given a total demand m̄ the
operator wishes to split over [0, T ] such that

∫ T
0
m(t) =

m̄. The operator problem then to minimize to social cost∫ T
0
〈x(m(t)), C(x(m(t))〉 dt over m(.). In the Braess graph

this minimization problem can be written as:

 infm(.)
11
2

∫ T
0
m2(t) dt+ 50

∫ T
0
m(t)dt such that∫ T

0
m(t) = m̄,

m(t) ≥ 0, ∀t ∈ [0, T ]

It is easy to see that this problem can be reduced to the
constrained minimization of the L2-norm in H. infm(.)

∫ T
0
m2(t) dt such that∫ T

0
m(t) = m̄,

m(t) ≥ 0, ∀t ∈ [0, T ]

The set of constraints is convex and the objective function
f −→

∫ T
0
f2(t) dt is also convex. The solution is given by

m(t) = m̄
T .

V. DISCUSSION AND CONCLUDING REMARKS

We give existence and uniqueness conditions for dynamic
equilibria as well as sufficiency condition for evolutionary
stability. We have shown that the set of dynamic equilibria
is not only from the collection of equilibria of stage-games.
We have proposed a learning algorithm based on Boltzmann-
Gibbs dynamics and proved its almost sure convergence for
the games in parallel link networks with monotone cost
functions, our result is also true for any congestion-dependent
resource selection problems with finite number of choices
with imperfect observation but the qualitative properties for

general network topology remains open. When the mean field
limit is non-deterministic, the resulting dynamics leads to
stochastic mean field limit dynamics

dxr(t) = V rη (x(t))dt+ σ(t)dWt, supp η ⊆ L
where Vη is the drift generated by the learning scheme η
and W is a noise. The stochastic learning scenario where
players have a noise in their stage-cost and dynamic routing
in random networks are interesting directions of future inves-
tigation. Since equilibrium costs in selfish routing games can
be inefficient, we plan to examine alternative solutions such
as Stackelberg-based solution and team solution in future.
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