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Abstract— In this paper, a continuous robust feedback con-
trol is designed for a class of high-order multi-input multi-
output (MIMO) nonlinear systems with two degrees of freedom
containing unstructured nonlinear uncertainties in the drift
vector and parametric uncertainties in the high frequency gain
matrix, which is allowed to be non-symmetric in general. Given
some mild assumptions on the system model, a singularity-
free continuous robust tracking control law is designed that is
shown to be semi-globally asymptotically stable under full-state
feedback through a Lyapunov stability analysis.

Index Terms— Lyapunov-based Control, Nonlinear Control,
Robust Control

I. INTRODUCTION

Over the years, numerous progress has been reported
on the control design problem for multi-input and multi-
output (MIMO) systems with uncertainty based on a variety
of techniques. While great strides have been made in the
adaptive control design problem for LTI single-input single-
output (SISO) systems with uncertainty (see [1]), however,
the problem gets much more complex when dealing with
the corresponding MIMO system. Some early results on this
topic can be found in [1], [2], and [3]. In [1], the High
Frequency Gain (HFG) matrix G was assumed to be known
for the control design. In [2], a control law was proposed
which required the existence of a matrix S such that GS is
positive definite and symmetric. Similarly, de Mathelin et.
al. in [4] assumed that the upper bound for ‖G‖ was known.
In [5], Weller and Goodwin utilized a matrix decomposition
approach based on a priori knowledge of the system, i.e.,
given the decomposition G = LU , knowledge of the lower
bounds of the diagonal entries of the upper triangular matrix
U was required to be known. Under the mild assumption that
the signs of the leading principal minors of the HFG matrix
were known, a MIMO adaptive control law for minimum-
phase systems with relative degree one has been proposed
by Costa et. al. in [6].

When nonlinear MIMO systems with uncertainty are con-
sidered, only some special classes of MIMO control design
problems can be solved. Based on the assumption that the
HFG matrix was known, an adaptive backstepping technique
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was proposed for parametric strict feedback systems in [7].
Other adaptive control approaches were presented for a class
of feedback linearizable systems in [8], [9], [10]. In [11], a
robust adaptive control was designed with guaranteed per-
formance, where an output error transformation and a neural
approximator were utilized in the control design. A general
procedure for designing switching adaptive controllers for
multi-input nonlinear systems was proposed in [12]. In [13],
Xu et. al. formulated a Neural Network (NN) based adaptive
controller for a class of MIMO nonlinear systems, which
demonstrated the local convergence of the tracking error to a
residual set. Some other examples relating to NN applications
in MIMO control can be found in [14] and [15]. For a class
of MIMO aeroelastic system with a constant HFG matrix, an
adaptive output feedback control law was designed in [16] by
utilizing the backstepping technique. For a broad class of flat
MIMO systems, the output tracking problem was addressed
in [17] via full-state feedback adaptive control where a global
asymptotic convergence result was obtained. By extending
the work in [17], an adaptive output feedback control was
designed in [18] but the proposed control law was susceptible
to singularities owing to the existence of an algebraic loop
in the controller. Later in [19], a singularity free output
feedback controller was proposed based on the work in [18],
which exploited the triangular structure of U obtained from
the SDU decomposition. In [20], a modular output feedback
controller was proposed to suppress aeroelastic vibrations
on unmodeled nonlinear wing section subject to a variety
of external disturbances. In [21] and [22], continuous robust
control laws have been designed to stabilize the nonlinear
MIMO system with unstructured nonlinearity in both the drift
vector and high frequency gain matrix, which yielded semi
global Uniformly Ultimately Boundedness (UUB) results.

In this paper, our goal is to design a novel continu-
ous (C0) robust feedback controller for a general class of
high-order MIMO nonlinear systems with two degrees-of-
freedom1 (DOFs) containing unstructured nonlinear uncer-
tainty in the drift vector and parametric uncertainty in the
non-symmetric HFG matrix. An important example of a 2-
DOF problem with a non-symmetric HFG matrix is the 2D
monocular visual servoing control system [23] where the
HFG matrix originates from a non-symmetric transformation
matrix between the task space coordinate system and the
camera space coordinate system. The approach in this paper
is motivated by the method for SISO systems presented in

1We note here that we have not been able to extend the result to greater
than 2 degrees of freedom at the present time.
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[24], but the challenge here is to extend it to the MIMO
system presented in this paper where the coupling of the
control inputs causes the second control input to appear as
a disturbance term in the closed-loop dynamics of the first
degree of freedom, thereby, requiring modification to the
structure of the first control input. Specifically, the coupling
problem is addressed in this paper via a novel adaptive
term that is designed and applied to tackle only the control
coupling-related disturbance terms for which the structure
is known (i.e., there exists only parametric uncertainty).
Assuming that the unknown state-dependent HFG matrix G
is real, affine in the unknown parameters, and with nonzero
leading principal minors, a matrix decomposition approach
introduced and applied in [25] can be utilized to design
a singularity free control design that can be shown via
Lyapunov analysis to yield a semi-global asymptotic stability
result for the tracking error under the proposed full state
feedback robust control law.

The paper is organized in the following manner. In Sec-
tion II, we introduce the class of MIMO systems under
consideration and the SDU decomposition for the input
gain matrix. In Section III, error systems are developed to
facilitate the subsequent control design. In Section IV, a full-
state feedback continuous robust controller for the MIMO
system is proposed and its stability is analyzed. Appropriate
conclusions are drawn in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, the following class of MIMO nonlinear
systems with two DOFs is considered

x(n) = h
(
x, x(n−1)

)
+G (x, θ)u (1)

where x(i) (t) ∈ R2, i = 0, 1, ..., n − 1 denote the system

states while x ,
[
xT ẋT ...

(
x(n−2)

)T ]T
∈ R2n−4,

x(t) ∈ R2 is the system output and u (t) ∈ R2 is defined
to be the control input. The drift vector h

(
x,x(n−1)

)
∈ R2

is assumed to be a C2 nonlinear function with unstructured
uncertainty. The high frequency gain matrix G (x,θ) ∈ R2×2

is also a C2 nonlinear function and affine in the unknown
constant parameter vector θ ∈ Rp. For the purpose of robust
control design, we assume that G (x,θ) is a real matrix with
nonzero leading principal minors whose signs are assumed
to be known. In order to facilitate the continuous robust
control design, we begin by differentiating (1) which yields
the following expression

x(n+1) = f
(
x,x(n−1), x(n)

)
+G (x,θ) u̇ (2)

where f
(
x,x(n−1), x(n)

)
is defined as

f (·) = ḣ
(
x,x(n−1)

)
+Ġ (x,θ)G−1 (x,θ)

(
x(n) − h

(
x,x(n−1)

))
.
(3)

Lemma 1: Any real matrix G (x,θ) ∈ R2×2 with nonzero
leading principal minors can be decomposed as [6]

G (x,θ) = S (x,θ)DU (x,θ) (4)

where S (x,θ) ∈ R2×2 is a symmetric positive definite
matrix, D ∈ R2×2 is a diagonal matrix with diagonal entries
+1 or −1, U (x,θ) ∈ R2×2 is a unity upper triangular matrix.

The proof for Lemma 1 can be found in [18] and [25].
Note that D needs to be known for the purposes of control
design and it can be obtained from the signs of leading
principal minors of G (x,θ). Also note that if G (x,θ) is a
positive definite matrix, the factorization of G (x,θ) can be
simplified in the form of G (x,θ) = S (x,θ)U (x,θ). After
taking (4) into (2) and premultiplying M (x,θ) on both sides
of the equation, one can get the following result

M (x,θ)x(n+1) = ϕ
(
x,x(n−1), x(n),θ

)
+DU (x,θ) u̇ (5)

where S,U, and D have been previously defined in Lemma
1, M (x,θ) , S−1 (x,θ) ∈ R2×2 is a symmetric and positive
definite matrix while ϕ

(
x,x(n−1), x(n),θ

)
, M (x,θ) ·

f
(
x,x(n−1), x(n)

)
∈ R2 is an unknown auxiliary vector with

unstructured uncertainty.

III. OPEN-LOOP ERROR SYSTEM DEVELOPMENT

In this paper, the objective of the control design is to
guarantee the asymptotic convergence of the tracking error as
well as to ensure boundedness for all signals during closed-
loop operation. To facilitate the following control design, one
can first design the bounded desired trajectory xd(t) ∈ R2

to be smooth enough such that

x
(i)
d (t) ∈ L∞, ∀ i = 1, ..., n+ 2 (6)

and xd ,

[
xTd ẋTd ...

(
x

(n−1)
d

)T ]T
∈ R2n−2. Then,

the tracking error e1 ∈ R2 can be defined as follows

e1 = xd − x. (7)

Furthermore, the following auxiliary error signals ei ∈ R2 ∀
i = 2, ...n are utilized

e2 = ė1 + e1,
e3 = ė2 + e2 + e1,

...
en = ėn−1 + en−1 + en−2.

(8)

The result in [24] shows that ei can be expressed as

ei (t) =

i−1∑
j=0

cije
(j)
1 (t) ∀ i = 2, 3, ..., n (9)

where the known constant coefficients cij are generated via
a Fibonacci number series [24]. Based on above definitions,
the filtered error signal r (t) ∈ R2 and z (t) ∈ R2n+2 can be
defined as follows

r = ėn + αen,

z , [ eT1 eT2 ... eTn rT ]T
(10)

where α is a positive gain constant. After taking the time
derivative of r in (10) and utilizing (5), (7), (8), and (9), one
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can obtain the open-loop dynamics as follows

Mṙ = M

(
x

(n+1)
d +

n−2∑
j=0

cije
(j+2)
1 + αėn

)
−ϕ

(
x,x(n−1), x(n),θ

)
+ en + Π

−Du̇− en

(11)

where Ū (x,θ) ∈ R2×2 is a strictly upper triangular matrix
while Π ∈ R2 is an auxiliary vector with the following
definitions

Ū (x,θ) , D −DU (x,θ) ,

Π , Ū (x,θ) u̇=
[
Ū12 (x,θ) u̇2 0

]T
.

(12)

In order to facilitate the full state control design for above
open-loop dynamics, (11) can be rewritten in a compact form
as

Mṙ = −1

2
Ṁr +N + Π−Du̇− en (13)

where N (·) ∈ R2 in (13) is defined as

N= M

(
x

(n+1)
d +

n−2∑
j=0

cije
(j+2)
1 + αėn

)
−ϕ

(
x,x(n−1), x(n),θ

)
+ en + 1

2Ṁr

= Nd + Ñ0

(14)

where Nd = N
(
xd, x

(n)
d , x

(n+1)
d

)
∈ R2 and Ñ0 =

N − Nd ∈ R2. Then, it can be easily verified that ‖Nd‖,∥∥∥Ṅd∥∥∥ ∈ L∞ given the smoothness of the desired trajectory

as given by (6) and the fact that ϕ
(
x,x(n−1), x(n),θ

)
is

a C1 function. Furthermore, by using the fact that N is
continuously differentiable,

∥∥∥Ñ0

∥∥∥ can be upperbounded as∥∥∥Ñ0

∥∥∥≤ρ0 (‖z‖) ‖z‖ (15)

where ρ0 (·) is a global invertible nondecreasing function and
will be used in the ensuing stability analysis.

IV. CONTROL DEVELOPMENT

A. Controller Design and Closed-Loop Error System

By assuming that all the state variables x are measurable,
we can design a continuous robust feedback control law as
follows

u (t) = D−1 {(K + I2) en (t)− (K + I2) en (0)

+
∫ t

0

[
Φ̂ + (K + I2)αen (τ) + Γsign (en (τ))

]
dτ
}

(16)
where K = Kp + diag {Kd,1, 0} ∈ R2×2 and Γ ∈ R2×2

are both diagonal gain matrices, I2 ∈ R2×2 is an identity
matrix, Φ̂ (t) ,

[
Y θ̂ 0

]T ∈ R2, while Y (·) and θ̂ (t)
will be defined later. In view of (16), the time derivative of
u (t) yields

u̇1 = D−1
1,1

[
Y θ̂ + (K1,1 + 1) r1 + Γ1,1sign (en,1)

]
,

u̇2 = D−1
2,2 [(K2,2 + 1) r2 + Γ2,2sign (en,2)]

(17)
where u̇i (t) denotes the ith element in u̇ (t), Di,i, Ki,i,
and Γi,i denote the ith diagonal element in the matrices D,

K, and Γ, respectively, while en,i (t) and ri (t) represent
the ith element in auxiliary error signal en (t) and filtered
error signal r (t), respectively. Note that u2 (t) is readily
implementable since en,2 (t) is measurable. Y θ̂ in u1 (t)
is designed to tackle the coupling-related disturbance terms
Ū12 (x,θ) u̇2, which we write explicitly as follows

Π =

[
Ū12 (x,θ)D−1

2,2 [(K2,2 + 1) r2 + Γ2,2sign (en,2)]
0

]
= Λ + Φ

(18)
where we have obtained the expression in (18) by substituting
for u̇2 (t) from (17) into (12). Furthermore, Φ ∈ R2 is a
discontinuous auxiliary vector defined as follows

Φ =
[
Y θ 0

]T
(19)

while Λ ∈ R2 is an auxiliary vector defined as follows

Λ =
[
Λ1 0

]T
(20)

where Y , D−1
2,2Γ2,2sign(en,2)Y12 ∈ R1×p is a regression

vector, while θ is an unknown parameter vector and we
have utilized the fact that Ū12 (x,θ) can be parameterized
as Ū12 (x,θ) = Y12 (x) θ. We note here that the portion
of the disturbance represented by (19) cannot be handled
via a robustifying term because of its discontinuous na-
ture; however, since Φ is affine in the uncertainty, it can
be handled via adaptation as will be shown subsequently.
Also note that Λ1 , ∆ (x) r2 ∈ R where ∆ (x) ,
D−1

2,2Ū1,2 (x,θ) (K2,2 + 1). After adding and subtracting the
term ∆d , ∆ (xd) ∈ R to ∆, one can obtain

∆ = ∆̃ + ∆d (21)

where ∆̃ = ∆ (x) − ∆d (xd) ∈ R and ‖∆d‖ ∈ L∞ based
on the boundedness of xd. By using the fact that U (x,θ) is
continuously differentiable,

∥∥∥∆̃
∥∥∥ can be further bounded as∥∥∥∆̃

∥∥∥≤ρ∆ (‖z‖) ‖z‖ (22)

where ρ∆ (·) is a global invertible nondecreasing function.
Thus, Λ1 =

[
∆̃ + ∆d (xd)

]
r2 can be upperbounded as

‖Λ1‖ ≤
∥∥∥∆̃ + ∆d (xd)

∥∥∥ ‖r2‖
≤ [ρ∆ (‖z‖) ‖z‖+ ‖∆d‖] ‖z‖
≤ρ1 (‖z‖) ‖z‖

(23)

where ρ1 (·) is a global invertible nondecreasing function
which depends on the gain K2,2 – this fact would be utilized
in the ensuing stability analysis. We note that the coupling-
related disturbance term Ū12 (x,θ) u̇2 has been separated
into two parts Φ and Λ. While the latter term (which is
continuously differentiable) will be compensated by nonlin-
ear damping and the sign function based robustifying term,
the former term (which is discontinuous) needs to be dealt
with adaptively. Thus, one can define the parameter dynamic
estimate as θ̂ ∈ Rp and the corresponding mismatch as
θ̃ = θ − θ̂ ∈ Rp. Motivated by structure of Y and the
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following stability analysis, the adaptation law for θ̂ can be
designed as follows

θ̂ (t) =
∫ t
t0

ΓY Y r1dτ

=
∫ t
t0

ΓY Y ėn,1dτ +
∫ t
t0

ΓY Y αen,1dτ
(24)

where ΓY , γY I and I ∈ Rp×p is a identity matrix while
γY is a positive constant. It is important to note that r1 is
unmeasurable since it depends on ėn,1 which in turn depends
on x(n) which is not a state variable for the original system
model given by (1) and is therefore considered unmeasurable.
Therefore, the adaptation law cannot be implemented directly
in the form shown in (24). Based on the known value of
sign(en,2) and using additivity of integration on intervals,
the integral term associated with unknown value ėn,1 in (24)
can be rewritten as∫ t

t0
ΓY Y ėn,1dτ = k

n∑
j=1

∫ t+j,f
t+j,0

Y12ėn,1dτ

−k
m∑
k=1

∫ t−k,f

t−k,0

Y12ėn,1dτ
(25)

where k = ΓYD
−1
2,2Γ2,2 and

sign (en,2) =


1, ∀ t ∈

(
t+j,0, t+j,f

)
, j = 1, ..., n

−1, ∀ t ∈
(
t−k,0, t−k,f

)
, k = 1, ...,m

0, otherwise.
(26)

Also note that (0, t] = T+∪T− where T+ =
n⋃
j=1

(
t+j,0, t+j,f

]
and T− =

m⋃
k=1

(
t−k,0, t−k,f

]
. Then, integration by parts can be

utilized in each interval in T+ and T− as

θ̂ (t) = k
n∑
j=1

[
Y12en,1|

t+j,f

t+j,0
−
∫ t+j,f
t+j,0

Ẏ12en,1 (τ) dτ

]
−k

m∑
k=1

[
Y12en,1|

t−k,f

t−k,0

−
∫ t−k,f

t−k,0

Ẏ12en,1 (τ) dτ

]
+
∫ t

0
ΓY Y αen,1dτ.

(27)
Since en,1, Y12 (x) , Ẏ12

(
x,x(n−1)

)
are measurable, thus

θ̂ (t) is implementable in the form shown above. Finally,
after substituting (17) into (13), one can obtain the following
closed loop error dynamics

Mṙ = − 1
2Ṁr +Nd + Ñ0 + Λ + Φ̃
− (K + I) r − Γsign (en)− en

(28)

where Nd and Ñ0 have been defined previously and Φ̃ ,[
Y θ̃ 0

]T
.

B. Stability Analysis

Before we proceed to analyze the stability of the closed-
loop system under the control design proposed in the previ-
ous section, we state the following two lemmas

Lemma 2: For the following auxiliary function L (t) ∈ R

L = rT (Nd − Γsign (en)) , (29)

if the control gain matrix Γ is chosen as

Γi,i > ‖Nd,i‖L∞ +
1

α

∥∥∥Ṅd,i∥∥∥
L∞

∀ i = 1, 2 (30)

where Nd,i is the ith element in the vector Nd, then we can
obtain ∫ t

0

L (τ) dτ ≤ ςL (31)

where ςL =

2∑
i=1

Γi,i |en,i (0)| − en,i (0)Nd,i (0).

Proof: The proof for this lemma can be adapted readily
from [24].

Lemma 3: Consider a system η̇ = h (η, t) where h : Rm×
R≥0 → Rm and the solution exists. Defining the region D ⊂
Rm and D := {η ∈ Rm| ‖η‖ < ε} where ε is some positive
constant, if there exists a continuously differentiable function
V : D × R≥0 → R≥0 such that

W1 (η) ≤ V (η, t) ≤W2 (η) and V̇ (η, t) ≤ −W (η)
(32)

where W1 (·) and W2 (·) are continuous positive-definite
functions while W (·) is a uniformly continuous positive
semidefinite function, and if η (0) ∈ S where the region
of attraction is defined as

S :=

{
η ∈ D|W2 (η) < min

‖η‖=ε
W1 (η)

}
,

then, it can be shown that

W (η)→ 0 as t→∞. (33)
Proof: The proof for this lemma can be found in

Theorem 8.4 of [26].
Theorem 1: Provided the control gain matrix K defined in

(16) is chosen to be large enough, α > 1/2, and Γ is selected
according to (30), the proposed robust control design ensures
that all the error signals e(i)

1 → 0 as t→∞ ∀ i = 1, ..., n.
Proof: First, a non-negative Lyapunov function candi-

date V0 is defined as

V0 (y, t) =
1

2

n∑
i=1

eTi ei +
1

2
rTMr +

1

2
θ̃
T

Γ−1
Y θ̃ + P (34)

where the non-negative auxiliary function P can be defined
as follows

P = ςL −
∫ t

0

L (τ) dτ (35)

and y=
[
z θ̃

√
P
]T ∈ R2n+4. Based on the fact

that M (x,θ) is positive definite, one can prove that M ≤
M (x,θ) ≤ M̄ (‖y‖) where M is a positive constant and
M̄ (·) is a nondecreasing function. Thus, V0 in (34) can be
bounded as follows

λ1 ‖y‖2 ≤ V0 (y, t) ≤ λ2 (‖y‖) ‖y‖2

W1 (y) = λ1 ‖y‖2 and W2 (y) = λ2 (‖y‖) ‖y‖2

where λ1 = 1
2 min

{
1, M, Γ−1

Y

}
, and λ2 =

1
2 max

{
2, M̄ (‖y‖) , Γ−1

Y

}
. Upon taking the time derivative
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of (34) and utilizing (35), we obtain

V̇0 =

n∑
i=1

eTi ėi + rTMṙ +
1

2
rT Ṁr + θ̃

T
Γ−1
Y

.

θ̃
T

− L. (36)

By substituting from (7), (8), (10), (24), (28), (29), and
utilizing the fact that ab ≤ 1

2a
Ta + 1

2b
T b, an upper bound

for (36) can be obtained as

V̇0 ≤ −
n−2∑
i=1

eTi ei − 1
2e
T
n−1en−1 −

(
α− 1

2

)
eTnen − ‖r‖

2

+ ‖r‖
∥∥∥Ñ0

∥∥∥+ ‖r‖ ‖Λ‖ − λK ‖r‖2 −Kd,1r
2
1

(37)
where α > 1/2 and λK is the maximum eigenvalue for the
gain matrix Kp. Thus, V̇0 can be further upperbounded as

V̇0 ≤ −λ3 ‖z‖2 + ρ0 (‖z‖) ‖r‖ ‖z‖
−λK ‖r‖2 −Kd,1r

2
1 + r1ρ1 (‖z‖) ‖z‖

(38)

where λ1 = min {1/2, (α− 1/2)}. Then, by adding and

subtracting term
ρ2

0 (‖z‖)
4λK

‖z‖2 and
ρ2

1 (‖z‖)
4Kd,1

‖z‖2 to the

right hand side of the above inequality and utilizing a
nonlinear damping argument, one can further upperbound
V̇0 as follows

V̇0 ≤ −λ4 ‖z‖2 −
(
λ3 − λ4

2
− ρ2

0 (‖z‖)
4λK

)
‖z‖2

−
(
λ3 − λ4

2
− ρ2

1 (‖z‖)
4Kd,1

)
‖z‖2 .

(39)

Given a positive constant λ4 < λ3, one can first choose Kp

such that λK >
ρ2

0 (||z||)
2 (λ3 − λ4)

or equivalently z (t)∈D1 where

D1 ,
{
z | ‖z‖ < ρ−1

0

(√
2λK (λ3 − λ4)

)}
.

This ensures that the first parenthesized term in (39) is non-
negative. Since K ∆

= Kp + diag {Kd,1, 0}, it is clear to see
that K2,2 is determined only by Kp and is independent of
Kd,1. Then, based on the fact that ρ1 depends on K2,2, one

can select Kd,1 large enough such that Kd,1 >
ρ2

1 (‖z‖)
2 (λ3 − λ4)

or z (t)∈D2 where

D2 ,

{
z | ‖z‖ < ρ−1

1

(√
2Kd,1 (λ3 − λ4)

)}
,

and D1 ∩ D2 is non-empty. Motivated by Lemma 3 and the
definition of y, D1, and D2, a region D can be defined as

D ,
{
y | ‖y‖ < ρ−1

0

(√
2λK (λ3 − λ4)

)}
∩

{
y | ‖y‖ < ρ−1

1

(√
2Kd,1 (λ3 − λ4)

)}
.

Thus, it is straightforward to prove that

V̇0 ≤ −λ4 ‖z‖2 = −W (y) , ∀ y∈D. (40)

From (34) and (40), it is known that V0 ∈ L∞, and it is also
straightforward to see that ei, r, θ̃, θ̂ ∈ L∞ ∀ i = 1, ..., n.
Then, by using (9), one can easily see that e(i)

1 ∈ L∞ ∀
i = 1, ..., n− 1. Then, by using (8) and (10), one can easily

see that ėi ∈ L∞ ∀ i = 1, ..., n which further implies that
e

(n)
1 ∈ L∞ Next, given the fact that xd is Cn+2 smooth and
e

(i)
1 ∈ L∞ ∀ i = 1, ..., n, it is possible to show that x(i) ∈
L∞ ∀ i = 1, ..., n and f

(
x,x(n−1), x(n)

)
, G (x,θ) ∈ L∞

by using the definition in (7). Now, by utilizing (1), one can
show that u ∈ L∞. Based on the fact that r ∈ L∞, we can
see that u̇2 ∈ L∞ according to (17). Y ∈ L∞ based on
the boundedness on xd and ei. Then, according to previous
boundedness result on θ̂, one can also prove that u̇1 ∈ L∞
given the definition in (17), which further implies ṙ ∈ L∞ by
using the definition in (11). Thus, given the facts that ei, ėi,
r, ṙ ∈ L∞ ∀ i = 1, ..., n, one can draw the conclusion that
Ẇ = −λ4z

T ż ∈ L∞ which implies that W (y) is uniformly
continuous.

Based on the definition of D, one can also define a region
S as

S ,

{
y∈D |W2 (y) < λ1

(
ρ−1

0

(√
2λK (λ3 − λ4)

))2
}

∩
{
y∈D |W2 (y) < λ1

(
ρ−1

1

(√
2Kd,1 (λ3 − λ4)

))2
}
.

Now, one can use Lemma 3 to prove ‖z‖ → 0 as t → ∞
∀ y (0) ∈ S. From (10), one can see that ei (t), r (t) → 0
as t → ∞ ∀ i = 1, ..., n. By using (9), one can recursively
prove that that e(i)

1 → 0 ∀ i = 1, ..., n, as t → ∞. Also
note that region of attraction S in this problem can be made
arbitrarily large to include any initial condition by choosing
a large enough control gain. The above facts imply that our
stability result is semi-global.

V. CONCLUSION

In this paper, the tracking control design problem for a
class of uncertain MIMO nonlinear systems with two degrees
of freedom has been considered. Based on mild assumptions
about the smoothness of the unknown drift vector and the
high frequency gain matrix (which is allowed to be non-
symmetric in general), a continuous robust state feedback
control strategy was proposed. A Lyapunov based stability
analysis was pursued to ensure a semi-global asymptotic
stability result for the tracking error under this control.
Simulation results in [32] have demonstrated the tracking
performance of the proposed control algorithm. Our future
work will focus on extending this work to higher degrees of
freedom.
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