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Abstract— This paper presents a derivative-free decentralized
adaptive control architecture for large-scale interconnected sys-
tems with matched and unmatched time-varying uncertainties
and interconnections. The assumption of unknown constant
ideal weights is generalized to the existence of time-varying
weights without assuming the existence of their derivatives in a
time interval. As a result, the proposed approach is particularly
well suited for disturbance rejection, and for adaptation in
the presence of sudden change in each subsystem’s uncertain
dynamics, such as might be due to damage.

I. INTRODUCTION

A fundamental assumption in most decentralized adaptive
approaches is that an uncertainty is parameterized by un-
known constants [1]–[7]. As a result, the class of uncertain
systems that can be handled by adaptive control has been
limited to that of systems with time-invariant uncertainties.
In this paper, we show that the derivative-free approach
developed in Refs. 8 and 9 can be extended to adaptive
control of large-scale interconnected systems, and therefore
both matched and unmatched time-varying uncertainties and
interconnections can be handled in a decentralized adaptive
control setting. A key element in this pursuit is that the
assumption of unknown constants is generalized to the exis-
tence of time-varying variables, such that fast and possibly
discontinuous variation in unknown parameters are allowed.
This generalization adds a dimension in the tuning process
such that the adaptive law uses the delayed weight estimates
and the information contained in current known system states
and errors.

Compared to the approach in Ref. 8, this paper shows how
the state predictor developed in Ref. 11 can be employed in
conjunction with the derivative-free adaptive law. In Ref. 11,
it is shown that the state predictor adds a low-pass filtering
effect to the weight update law and improves transient
responses of adaptive systems. The state predictor resembles
a reference model modified by an observer-like tracking error
mismatch term such that the original reference model is
recovered when the gain of the mismatch term is selected
to be zero. When communication between subsystems is
allowed, which renders the state of the state predictor avail-
able throughout all subsystems, it is shown that unknown
matched, time-varying interconnections can seamlessly be
handled by the proposed method. The proposed approach
is particularly well suited for adaptation in the presence of
sudden change in each subsystem’s uncertain dynamics, such
as might be due to damage. Boundedness of the error signals
is shown by using a Lyapunov-Krasovskii functional without
the need for modification terms in the adaptive law.
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The notation used in this paper is fairly standard. We
write R

n for n × 1 real column vectors, R̄+ for the set
of nonnegative real numbers, R

n×m for the set of n × m
real matrices, (·)T for transpose, (·)−1 for inverse, λmin(A)
(resp., λmax(A)) for the minimum (resp., maximum) eigen-
value of A, | · | for the Euclidian vector norm, ‖ · ‖ for
the Frobenius matrix norm, vec(·) for the column stacking
operator, and diag[A, B] for a block diagonal matrix formed
with matrices A and B on the diagonal.

II. PROBLEM FORMULATION

We consider an uncertain system G consisting of N
interconnected subsystems Gi, i = 1, 2, . . . , N . A subsystem
Gi is described by

ẋi(t) = Aixi(t) + Bi

[
ui(t) + ∆i(t, xi)

]
+δi(t, x(t)), (1)

where xi(t) ∈ R
ni is the state of Gi, ui(t) ∈ R

mi is
the control input applied to Gi, and Ai ∈ R

ni×ni and
Bi ∈ R

ni×mi are known matrices. In addition, ∆i : R̄+ ×
R

ni → R
mi represents matched uncertainty and δi : R̄+ ×

R
n1+n2+···+nN → R

ni represents the possibly nonlinear and
time-varying interactions with the other subsystems where

x(t) ,
[
xT

1 (t), xT
2 (t), . . . , xT

N (t)
]T

. Notice that δi(t, x(t)) is
allowed to be unmatched. We assume that the pair (Ai, Bi)
is controllable and Gi only has access to xi(t) and ui(t),
where ui(t) is restricted to the class of admissible controls
consisting of measurable functions. Hence, we consider the
strictly decentralized control problem.

Assumption 1. The matched uncertainty in (1) can be
linearly parameterized as

∆i(t, xi) = WT
i (t)βi(xi), xi ∈ Dxi, (2)

where Wi(t) ∈ R
si×mi is an unknown time-varying ideal

weight matrix that satisfies ‖Wi(t)‖ ≤ w∗
i , βi : R

ni →
R

si is a vector of known functions of the form βi(xi) =
[
bi, β1i(xi), β2i(xi), . . . , β(si−1)i(xi)

]T
∈ R

si with a bias
component bi > 0, and Dxi is a sufficiently large compact
set Dxi ∈ R

ni .

Remark 1. Assumption 1 expands the class of uncertain-
ties that can be represented by a given set of basis functions.
That is, Assumption 1 encompasses broader classes of un-
certainties than those parameterized by

∆i(xi) = WT
i βi(xi) + ε(xi), xi ∈ Dxi, (3)

where Wi is an unknown constant ideal weight matrix and
ε(xi) is the residual error, due to the fact that time-variation
is allowed in the unknown ideal weight matrix. It also permits
an explicit dependence of the uncertainty on time.

Remark 2. Assumption 1 does not place any restriction
on the time derivative of the ideal weight matrix. However,
the degree of time dependence will depend on how βi(xi)
is chosen.

Remark 3. In Assumption 1, we introduced a bias com-
ponent bi > 0 in βi(xi). This captures the effect of external
matched disturbances acting on subsystem Gi.
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Assumption 2. The function δi(t, x(t)) in (1) satisfies

|δi(t, x(t))| ≤ αi

N∑

j=1

|xj(t)|, αi > 0. (4)

Remark 4. Assumption 2 is standard in the decentralized
adaptive control literature (see, for example, [6], [7], [10])
which implies that the system interconnections satisfy a
linear growth inequality.

III. ADAPTIVE CONTROL ARCHITECTURE

Let the feedback control law for subsystem Gi be

ui(t) = uni(t) − uadi(t), (5)

where uni(t) is a nominal feedback control given by

uni(t) = −K1ixi(t) + K2iri(t), (6)

where K1i ∈ R
mi×ni and K2i ∈ R

mi×ri are nominal
control gains such that Ami , Ai − BiK1i is Hurwitz,
Bmi , BiK2i, and uadi(t) is the adaptive feedback control
given by

uadi(t) = ŴT
i (t)βi(xi(t)), (7)

where Ŵi(t) ∈ R
si×mi is an estimate of Wi(t).

Consider the reference model for subsystem Gi, character-
izing the desired closed-loop behavior when ∆i(t, xi(t)) = 0
and δi(t, x(t)) = 0, given by

ẋmi(t) = Amixmi(t) + Bmiri(t), |ri(t)| ≤ r̄i, (8)

where xmi(t) ∈ R
ni , ri(t) ∈ R

ri , ri ≤ mi, is a bounded
piecewise continuous reference input. Since ri(t) is bounded,
it follows that xmi(t) is upper bounded by x̄mi(r̄i, εi) for all

xmi(0) ∈ Bε , {xi(t) ∈ R
ni : ||x(t)|| ≤ εi}.

Define the state predictor [11], as

˙̂xi(t) = Amix̂i(t) + Bmiri(t) + Li

[
xi(t) − x̂i(t)

]
, (9)

where Li ∈ R
ni×ni is chosen such that Aei , Ami − Li is

Hurwitz. Note that the state predictor serves as a reference
model. Its dynamics are approximately same as the reference
model in (8) when x̃i(t) , xi(t)− x̂i(t) is sufficiently small.

Next, consider the derivative-free weight update law for a
subsystem Gi given by

Ŵi(t) = Ω1iŴi(t − τi) + Ω̂2i(t), (10)

where τi > 0, and Ω1i ∈ R
si×si and Ω̂2i : R

si × R
ni →

R
si×mi satisfy

0 ≤ ΩT
1iΩ1i < κ1iI, 0 ≤ κ1i < 1, (11)

Ω̂2i(t) = κ2iβi(xi(t))x̃
T
i PiBi, κ2i > 0, (12)

with x̃i(t) , xi(t) − x̂i(t), and Pi ∈ R
ni×ni satisfying the

algebraic Riccati equation given by

0 = AT
eiPi + PiAei − b2

i κ2iPiBiB
T
i Pi + Qi, (13)

for any symmetric matrix Qi > 0.

Remark 5. We use x̃i(t) in (12) instead of using ei(t) ,
xi(t) − xmi(t) to estimate Wi(t). Note that for Li = 0,
(9) reduces to (8), hence, x̃i(t) becomes ei(t), if desired.
However, using x̃i(t) in (12) instead of ei(t) adds a low-pass
filtering effect to the weight update law. Choosing the state
predictor dynamics faster than the reference model dynamics
(choosing the eigenvalues of Aei larger than the eigenvalues
of Ami) aids in suppressing undesired transient behavior
[11].

IV. STABILITY ANALYSIS

This section presents a stability analysis for the derivative-
free decentralized adaptive control architecture in Section III.
Consider a parameter dependent Riccati equation [12], [13],
given by

0 = AT
miPoi + PoiAmi + Q̄oi, (14)

Q̄oi = Qoi + µiPoiLiL
T
i Poi, (15)

in which Qoi > 0 and µi > 0.

Remark 6. Let 0 < µi < µ̄i define the largest set within
which there is a positive-definite solution for Poi. Since
Poi > 0 for µi = 0 and Poi depends continuously on µi,
the existence of Poi(µi) > 0 for 0 < µi < µ̄i is assured.

The next lemma shows that for µi < µ̄i, (14)–(15) can
reliably be solved for Poi > 0 using the Potter approach
given in Ref. 14. This also implies that µ̄i can be determined
by searching for the boundary value that results in a failure
of the algorithm to converge. We employ the notation ric(·)
and dom(ric) as defined in Ref. 15.

Lemma 1. Let Poi satisfy the parameter dependent Riccati
equation given by (14)–(15) and let the modified Hamiltonian
be given by

Hi ≡

[
Ami µiLiL

T
i

−Qoi −AT
mi

]

. (16)

Then, for all 0 < µi < µ̄i, Hi ∈ dom(ric) and Poi = ric(H).

Proof. The proof follows from Lemma 1 and Lemma 2 of
Ref. 15.

Assumption 3. d1i , λmin(Qi) − (3 + N)αiλmax(Pi) −
1/µi and d2i , λmin(Qoi) − αiNλmax(Pi) are positive by
suitable selection of the design parameters.

Theorem 1. Consider the uncertain system G consisting of
N interconnected subsystems Gi described by (1) subject to
Assumptions 1, 2, and 3. Consider, in addition, the subsystem
control laws given by (5), with the nominal controllers given
by (6), and with the adaptive controllers given by (7) along
with (9), (10) subject to the conditions in (11), (12). Then,

x̃i(t), êi(t) , x̂i(t)−xmi(t), and W̃i(t) , Wi(t)−Ŵi(t) are
uniformly ultimately bounded (UUB) for all i = 1, 2, . . . , N .

Proof. We can write dynamics of êi using (8) and (9) as

˙̂ei(t) = Amiêi(t) + Lix̃i(t). (17)

Consider
V1i(êi(t)) = êT

i (t)Poiêi(t), (18)

where Poi > 0 satisfies the parameter dependent Riccati
equation (14)–(15) with µi < µ̄i. The time derivative of
(18) along dynamics of êi (17) is given by

V̇1i(·) = −êT
i (t)Q̄oiêi(t) + 2êT

i (t)PoiLix̃i(t). (19)

Consider |aTb| ≤ γaTa + bTb/4γ, γ > 0, that follows
from Young’s inequality [16] extended to the vector case
for any vectors a and b. Applying this to the last term in
(19) produces

2|êT
i PoiLix̃i| ≤ µiê

T
i PoiLiL

T
i Poiêi + x̃T

i x̃i/µi. (20)

Using (15) and (20) in (19) results in

V̇1i(·) = −êT
i (t)Qoiêi(t) + x̃T

i (t)x̃i(t)/µi. (21)

Next, we can write dynamics of x̃i using (1) and (9) as

˙̃xi(t) = Aeix̃i(t) + BiW̃
T
i (t)βi(xi(t)) + δi(t, x(t)). (22)

Using (10) and defining
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Ω2i(t) , Wi(t) − Ω1iWi(t − τi), (23)

where ‖Ω2i(t)‖ ≤ Ω∗
i , Ω∗

i = w∗
i (1+‖Ω1i(t)‖), the dynamics

of W̃i can be written as

W̃i(t) = Ω1iW̃i(t − τi) + Ω2i(t) − Ω̂2i(t). (24)

Using (24) in (22) under Assumption 1 we obtain

˙̃xi(t) = Aeix̃i(t) + Bi

[
Ω1iW̃i(t − τi) + Ω2i(t)

−Ω̂2i(t)
]T

βi(xi(t)) + δi(t, x(t)). (25)

Consider

V2i(x̃i(t), W̃ti) = x̃T
i (t)Pix̃i(t)

+ρi tr
[
∫ t

t−τi

W̃T
i (s)W̃i(s)ds

]
, (26)

where ρi > 0, and W̃ti represents W̃i(t) over the time
interval t − τi to t. The time derivative of (26) along the
trajectories of (25) and (24) is given by

V̇2i(·) = −x̃T
i (t)Q̄ix̃i(t) + 2x̃i(t)PiBi[Ω1iW̃i(t − τi)]

T

×βi(xi(t)) − 2x̃T
i (t)PiBiΩ̂

T
2i(t)βi(xi(t))

+2x̃T
i (t)PiBiΩ

T
2i(t)βi(xi(t)) + ρi tr

[
−ξiW̃

T
i (t)

×W̃i(t) + ηiW̃
T
i (t)W̃i(t) − W̃T

i (t − τi)

×W̃i(t − τi)
]
+2x̃T

i Piδi(t, x(t)), (27)

where ηi = 1 + ξi, ξi > 0, and

Q̄i , Qi − b2
i κ2iPiBiB

T
i Pi. (28)

Using (24) to expand tr
[
ηiW̃

T
i (t)W̃i(t)

]
in (27) produces

V̇2i(·) = −x̃T
i (t)Q̄ix̃i(t) + 2x̃i(t)PiBi[Ω1iW̃i(t − τi)]

T

×βi(xi(t)) − 2x̃T
i (t)PiBiΩ̂

T
2i(t)βi(xi(t))

+2x̃T
i (t)PiBiΩ

T
2i(t)βi(xi(t)) + ρi tr

[
−ξiW̃

T
i (t)

×W̃i(t) − W̃T
i (t − τi)W̃i(t − τi)

+ηiW̃
T
i (t − τi)Ω

T
1iΩ1iW̃i(t − τi) + ηiΩ̂

T
2i(t)

×Ω̂2i(t) + ηiΩ
T
2i(t)Ω2i(t) − 2ηiΩ̂

T
2i(t)Ω1i

×W̃i(t − τi) + 2ηiW̃
T
i (t − τi)Ω

T
1iΩ2i(t)

−2ηiΩ̂
T
2i(t)Ω2i(t)

]
+2x̃T

i Piδi(t, x(t)). (29)

Young’s inequality can be generalized to matrices as
tr

[
ATB

]
= vec(A)Tvec(B) ≤ γvec(A)Tvec(A) +

vec(B)Tvec(B)/4γ = γtr
[
ATA

]
+tr

[
BTB

]
/4γ, γ > 0, for

any matrices A and B having appropriate dimensions. Using
this, we can write

tr
[
2ηiW̃

T
i (t − τi)Ω

T
1iΩ2i(t)

]

≤ tr
[
γiW̃

T
i (t − τi)Ω

T
1iΩ1iW̃i(t − τi)

]

+tr
[
η2

i ΩT
2i(t)Ω2i(t)/γi

]
, γi > 0. (30)

Using (12) with κ2i , 1/ρiηi > 0 for Ω̂2i(t), and substitut-
ing (30) in (29), it follows that

V̇2i(·) ≤ −x̃T
i (t)Q̄ix̃i(t) − κ2ix̃

T
i (t)PiBiB

T
i Pix̃i(t)

×βT
i (xi(t))βi(xi(t)) − ρiξitr

[
W̃T

i (t)W̃i(t)
]

−ρitr
[

W̃T
i (t − τi)

[
I − (ηi + γi)Ω

T
1iΩ1i

]

×W̃i(t − τi)
]

+ρi(ηi + η2
i /γi)tr

[
ΩT

2i(t)Ω2i(t)
]

+2x̃T
i Piδi(t, x(t)). (31)

Since βT
i (xi(t))βi(xi(t)) ≥ b2

i , using (28) in (31) results in

V̇2i(·) ≤ −x̃T
i (t)Qix̃i(t) − ρiξitr

[
W̃T

i (t)W̃i(t)
]

−ρitr
[

W̃T
i (t − τi)

[
I − (ηi + γi)Ω

T
1iΩ1i

]

×W̃i(t − τi)
]

+ρi(ηi + η2
i /γi)tr

[
ΩT

2i(t)Ω2i(t)
]

+2x̃T
i Piδi(t, x(t)). (32)

Using (11) with κ1i , 1/(ηi + γi) < 1 for Ω1i yields

V̇2i(·) ≤ −c1i|x̃i|
2 − c2i‖W̃i(t)‖

2 − c3i‖W̃i(t − τi)‖
2

+c4i + 2x̃T
i Piδi(t, x(t)), (33)

where c1i , λmin(Qi), c2i , ρiξi, c3i , ρiλmin(I −
κ−1

1i ΩT
1iΩ1i), and c4i , ρi(ηi + η2

i /γi)Ω
∗
i . Since xj(t) =

x̃j(t) + x̂j(t) = x̃j(t) + êj(t) + xmj(t), it follows from
Assumption 2 that

|δi(t, x(t))| ≤
N∑

j=1

αi

[
|x̃j(t)| + |êj(t)| + x̄mj

]
. (34)

Furthermore, using (34) in the last term of (23) and applying
Young’s inequality results in

|2x̃T
i Piδi(t, x(t))| ≤ αiλmax(Pi)

N∑

j=1

[
3|x̃i(t)|

2 + |x̃j(t)|
2

+|êj(t)|
2 + x̄2

mj

]
. (35)

Hence, (33) becomes

V̇2i(·) ≤ −
[
c1i − 3αiλmax(Pi)

]
|x̃i|

2 − c2i‖W̃i(t)‖
2

−c3i‖W̃i(t − τi)‖
2 + αiλmax(Pi)

N∑

j=1

|x̃j |
2

+αiλmax(Pi)

N∑

j=1

|êj |
2 + ϕi, (36)

where ϕi , c4i + αiλmax(Pi)
∑N

j=1 x̄2
mj .

Next, define the candidate Lyapunov-Krasovskii functional
for the i-th subsystem

Vi(êi(t), x̃i(t), W̃ti) , V1i(êi(t)) + V2i(x̃i(t), W̃ti). (37)

The time derivative of (37) is written directly from (21) and
(36) as

V̇i(·) ≤ −
[
c1i − 3αiλmax(Pi) − 1/µi

]
|x̃i|

2

−λmin(Qoi)|êi(t)|
2 − c2i‖W̃i(t)‖

2

−c3i‖W̃i(t − τi)‖
2 + αiλmax(Pi)

N∑

j=1

|x̃j |
2

+αiλmax(Pi)

N∑

j=1

|êj|
2 + ϕi. (38)

Now introducing

V(·) =

N∑

i=1

Vi(êi(t), x̃i(t), W̃ti), (39)

for the whole system G results in

V̇(·) ≤

N∑

i=1

[

−d1i|x̃(t)|2 − d2i|êi(t)|
2 − c2i‖W̃i(t)‖

2
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−c3i‖W̃i(t − τi)‖
2 + ϕi

]

, (40)

where d1i > 0 and d2i > 0 are given in Assumption 3
(see Remark 9). Either |x̃i(t)| > Ψ1i or |êi(t)| > Ψ2i or

‖W̃i(t)‖ > Ψ3i or ‖W̃i(t − τi)‖ > Ψ4i renders V̇(·) < 0,

where Ψ1i ,
√

ϕi/d1i, Ψ2i ,
√

ϕi/d2i, Ψ3i ,
√

ϕi/c2i,

and Ψ4i ,
√

ϕi/c3i. Hence, x̃i(t), êi(t), and W̃i(t) are UUB
for all i = 1, 2, . . . , N .

Corollary 1. Under the conditions of Theorem 1, ei(t) is
bounded for all i = 1, 2, . . . , N .

Proof. It follows from

|ei(t)| = |xi(t) − xmi(t)|

≤ |xi(t) − x̂i(t)| + |x̂i(t) − xmi(t)|

= |x̃i(t)| + |êi(t)|, (41)

and the boundedness of x̃i(t) and êi(t) i = 1, 2, . . . , N by
Theorem 1 that ei(t) is bounded for all i = 1, 2, . . . , N .

Remark 7. The derivative-free weight update law given
by (10) does not require a modification term to prove the
error dynamics, including the weight errors, are UUB.

Remark 8. Derivative-free adaptive control in (10) is
not simply the equivalent of an Euler integration of a
conventional adaptive control law. This point is discussed
in Remark 3.1 of Ref. 8.

Remark 9. In the proof of Theorem 1, we require that
Assumption 3 holds by suitable selections of the design
parameters. This can be achieved by ensuring that λmax(Pi)
is sufficiently small. One way this can be done is to make the
state predictor dynamics in (9) fast by choosing Li to place
eigenvalues of Aei sufficiently far from the origin in the left
half of the complex plane. Similar conditions are required to
be satisfied in the decentralized adaptive control literature.
See, for example, Assumption 6.1 of [6], (26) of [3], (19) of
[4], and (17) of [5].

Remark 10. Derivative-free adaptive control does not
employ an integrator in its weight update law. This is
advantageous from the perspective of augmenting a nominal
controller that employs integral action to ensure that the reg-
ulated output variables track ri(t) for constant disturbances,
regardless of how these disturbances may enter the system.
An example illustrating this advantage is provided in Section
V of Ref. 8.

Define
qi(t) , [êT

i (t), x̃T
i (t), ṽi(t, τi)]

T, (42)

where ṽ2
i (t, τi) , tr

[∫ t

t−τi

W̃T
i (s)W̃i(s)ds

]
, and let Bri =

{qi(t) : |qi(t)| < ri}, such that Bri ⊂ Dqi for a sufficiently
large compact set Dqi. Then, we have the following corollary.

Corollary 2. Under the conditions of Theorem 1, an
estimate for the ultimate bound for qi is given by

ri =

√

λmax(Pi)Ψ2
1i + λmax(Poi)Ψ2

2i + ρiτiΨ2
3i

λmin(P̃i)
, (43)

for each subsystem Gi, i = 1, 2, . . . , N , where P̃i =
diag[Pi, Poi, ρi].

Proof. Denote Ωαi = {qi(t) ∈ Bri : qT
i (t)P̃iqi(t) ≤ α̂i},

α̂i = min
||qi(t)||=ri

qT
i (t)P̃iqi(t) = r2

i λ(P̃i). Since

Vi(êi(t), x̃i(t), W̃ti) = qT
i (t)P̃iqi(t), (44)

it follows that Ωαi is an invariant set if and only if

α̂i ≥ λmax(Pi)Ψ
2
1i + λmax(Poi)Ψ

2
2i + ρiτiΨ

2
3i. (45)

Thus, the minimum size of Bri that ensures this condition
has radius given by (43).

Remark 11. The proofs of Theorem 1 and Corollary
2 assume that the sets Dxi and Dqi for each subsystem
are sufficiently large. If we define B̄ri as the largest ball
contained in Dqi, and assume that the initial conditions are
such that qi(0) ⊂ B̄ri, then we have added the condition
that ri < r̄i, which implies a lower bound on ρi. It can be
shown that in this case the lower bound must be such that
λmin(P̃i) = ρi. With ri defined by (43) and λmin(P̃i) = ρi,
the condition ri < r̄i implies

ρi >
λmax(Pi)Ψ

2
1i + λmax(Poi)Ψ

2
2i

r̄2 − τiΨ2
3i

. (46)

Since κ2i = 1/ρiηi, ηi > 1, it follows from (46) that r̄i

should ensure that

κ2i <
r̄2 − τiΨ

2
3i

λmax(Pi)Ψ2
1i + λmax(Poi)Ψ2

2i

. (47)

Therefore, the meaning of Dqi sufficiently large in Corollary

2 is that r̄i >
√

κ2

(
λmax(Pi)Ψ2

1i + λmax(Poi)Ψ2
2i

)
+τiΨ2

3i

and qi(0) ⊂ Dr̄i
. The meaning of Dxi sufficiently large is

difficult to characterize precisely since xi(t) depends on both
ri(t) and xi(0). Nevertheless it can be seen that increasing
κ2i implies increasing the require size of the set Dxi.

V. A SPECIAL CASE

This section considers a special case in which the sys-
tem interconnections are matched and the predictor states
of each subsystems can be communicated across all other
subsystems, so that

δi(t, x(t)) = Bifi(t, θ(t)), (48)

where fi : R̄+ × R
n1+···+ni−1+ni+1+···+nN → R

ni ,

θ(t) ,
[
xT

1 (t), . . . , xT
i−1(t), x

T
i+1(t), . . . , x

T
N (t)

]T
, (49)

and Assumption 2 is replaced by the following assumption.

Assumption 4. The matched interconnections in (48) can
be linearly parameterized as

fi(t, θ(t)) = V T
i (t)σi(θ(t)), θ ∈ Dθ, (50)

where Vi(t) ∈ R
hi×mi is an unknown time-varying

ideal weight matrix that satisfies ‖Vi(t)‖ ≤ v∗i , σi :
R

n1+···+ni−1+ni+1+···+nN → R
hi is a vector of known

Lipschitz continuous functions of the form σi(θ) =
[
ςi, σ1i(θ), σ2i(θ), . . . , σ(hi−1)i(θ)

]T
∈ R

hi with a bias
component ςi ≥ 0, and Dθ is a sufficiently large compact
set Dθ ∈ R

n1+···+ni−1+ni+1+···+nN .

We modify the adaptive feedback control given by (7) by
using the predictor states of the other subsystems

uadi(t) = ŴT
i (t)βi(xi(t)) + V̂i(t)σi(θ̂(t)), (51)

where

θ̂(t) ,
[
x̂T

1 (t), . . . , x̂T
i−1(t), x̂

T
i+1(t), . . . , x̂

T
N (t)

]T
(52)

V̂i(t) ∈ R
hi×mi is an estimate of Vi(t) obtained from the

derivative-free weight update law given by

V̂i(t) = Ω3iV̂i(t − τ̄i) + Ω̂4i(t), (53)

where τ̄i > 0, and Ω3i ∈ R
hi×hi and Ω̂4i : R

hi ×
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R
n1+···+ni−1+ni+1+···+nN → R

hi×mi satisfy

0 ≤ ΩT
3iΩ3i < κ3iI, 0 ≤ κ3i < 1, (54)

Ω̂4i(t) = κ4iσi(θ̂)x̃
T
i PiBi, κ4i > 0. (55)

Assumption 5. d̄1i , λmin(Qi)−Nv∗i Lσi‖PiBi‖ > 0 by
suitable selection of the design parameters, where Lσi is the
Lipschitz constant corresponding to σi(θ(t))

Theorem 2. Consider the uncertain system G consisting of
N interconnected subsystems Gi described by (1) subject to
Assumptions 1, 4, and 5. Consider, in addition, the subsystem
control laws given by (5), with the nominal controllers given
by (6), and with the adaptive controllers given by (51) along
with (9), (10), (53) subject to the conditions in (11), (12),

(54), (55). Then, x̃i(t), êi(t), W̃i(t), and Ṽi(t) , Vi(t) −
V̂i(t) are uniformly ultimately bounded (UUB) for all i =
1, 2, . . . , N .

Proof. We can write dynamics of x̃i using (1) and (9) as

˙̃xi(t) = Aeix̃i(t) + BiW̃
T
i (t)βi(xi(t))

+BiṼ
T
i (t)σi(θ̂(t)) + Bigi(θ(t), θ̂(t)), (56)

where gi(θ(t), θ̂(t)) = V T
i (t)

[
σi(θ(t)) − σi(θ̂(t))

]
with

|gi(θ(t), θ̂(t))| ≤ v∗i Lσi|θ̃(t)|

≤ v∗i Lσi

N∑

j=1, j 6=i

|x̃j(t)|, (57)

where θ̃(t) , θ(t) − θ̂(t). Using (52) and defining

Ω4i(t) , Vi(t) − Ω3iVi(t − τ̄i), (58)

where ‖Ω4i(t)‖ ≤ Ω̄∗
i , Ω̄∗

i = v∗i (1+‖Ω3i(t)‖), the dynamics

of Ṽi can be written as

Ṽi(t) = Ω3iṼi(t − τ̄i) + Ω4i(t) − Ω̂4i(t). (59)

Using (24) and (59), dynamics of x̃i in (56) under Assump-
tions 1 and 4 becomes

˙̃xi(t) = Aeix̃i(t) + Bi

[
Ω1iW̃i(t − τi) + Ω2i(t)

−Ω̂2i(t)
]T

βi(xi(t)) + Bi

[
Ω3iṼi(t − τ̄i)

+Ω4i(t) − Ω̂4i(t)
]T

σi(θ̂(t))

+Bigi(θ(t), θ̂(t)). (60)

Consider the Lyapunov-Krasovskii functional given by

Vi(x̃i(t), W̃ti, Ṽti) = x̃T
i (t)Pix̃i(t)

+ρi tr
[
∫ t

t−τi

W̃T
i (s)W̃i(s)ds

]

+ρ̄i tr
[
∫ t

t−τ̄i

Ṽ T
i (s)Ṽi(s)ds

]
, (61)

where ρi > 0, ρ̄i > 0, W̃ti represents W̃i(t) over the time

interval t − τi to t, and Ṽti represents Ṽi(t) over the time
interval t − τ̄i to t. The time derivative of (61) along the
trajectories of (60), (24), and (59), using similar arguments
as in the proof of Theorem 1, is given by

V̇i(·) ≤ −c1i|x̃i(t)|
2 − c2i‖W̃i(t)‖

2 − c3i‖W̃i(t − τi)‖
2

−c̄2i‖Ṽi(t)‖
2 − c̄3i‖Ṽi(t − τ̄i)‖

2 + c̄4i

+2x̃T
i (t)PiBigi(θ(t), θ̂(t)), (62)

where c1i , λmin(Qi), c2i , ρiξi, c̄2i , ρ̄iξ̄i, c̄3i ,

ρ̄iλmin(I − κ̄−1
3i ΩT

3iΩ3i), c̄4i , ρi(ηi + η2
i /γi)Ω

∗
i + ρ̄i(η̄i +

η̄2
i /γ̄i)Ω̄

∗
i , ηi = 1 + ξi, ξi > 0, η̄i = 1 + ξ̄i, ξ̄i > 0, κ1i ,

1/(ηi + γi) < 1, κ2i , 1/ρiηi > 0, κ3i , 1/(η̄i + γ̄i) < 1,

and κ4i , 1/ρ̄iη̄i > 0. Using (57) in the last term of (62)
yields

2|x̃T
i PiBigi(θ(t), θ̂(t))|

≤ 2|x̃i(t)|

N∑

j=1, j 6=i

|x̃j(t)|

≤ v∗i Lσi‖PiBi‖

N∑

j=1, j 6=i

[
|x̃i(t)|

2 + |x̃j(t)|
2
]
, (63)

where we again used Young’s inequality for the term
2|x̃i(t)||x̃j(t)| in the second line of (63). Hence, (61) be-
comes

V̇i(·) ≤ −
[
c1i − v∗i Lσi‖PiBi‖

]
|x̃i(t)|

2 − c2i‖W̃i(t)‖
2

−c3i‖W̃i(t − τi)‖
2 − c̄2i‖Ṽi(t)‖

2

−c̄3i‖Ṽi(t − τ̄i)‖
2 + c̄4i + v∗i Lσi‖PiBi‖

×
N∑

j=1, j 6=i

|x̃j(t)|
2. (64)

Now introducing

V(·) =

N∑

i=1

V4i(x̃i(t), W̃ti, Ṽti), (65)

for the whole system G results in

V̇(·) ≤

N∑

i=1

[

−d̄1i|x̃i(t)|
2 − c2i‖W̃i(t)‖

2

−c3i‖W̃i(t − τi)‖
2 − c̄2i‖Ṽi(t)‖

2

−c̄3i‖Ṽi(t − τ̄i)‖
2 + c̄4i

]

, (66)

where d̄1i > 0 is given in Assumption 5 (see Remark 13).
Either |x̃i(t)| > Ψ̄1i or |W̃i(t)| > Ψ̄2i or ‖W̃i(t−τi)‖ > Ψ̄3i

or |Ṽi(t)| > Ψ̄4i or ‖Ṽi(t − τ̄i)‖ > Ψ̄5i renders V̇(·) < 0,

where Ψ̄1i ,
√

c̄4i/d̄1i, Ψ̄2i ,
√

c̄4i/c2i, Ψ̄3i ,
√

c̄4i/c3i,

Ψ̄4i ,
√

c̄4i/c̄2i, and Ψ̄5i ,
√

c̄4i/c̄3i. Hence, x̃i(t), W̃i(t),
and Ṽi(t) are UUB for all i = 1, 2, . . . , N . The boundedness
of êi(t) for all i = 1, 2, . . . , N follows directly from the
boundedness of x̃i(t) for all i = 1, 2, . . . , N .

Corollary 3. Under the conditions of Theorem 2, ei(t) is
bounded for all i = 1, 2, . . . , N .

Proof. The proof is a direct consequence of the proof of
Corollary 1.

Remark 12. For the case when the system uncertainties
and interconnections are matched, the parameter dependent
Riccati equation given by (14) and (15) reduces to a Lya-
punov equation given by

0 = AT
miPoi + PoiAmi + Qoi, Qoi > 0. (67)

Remark 13. In the special case addressed by Theorem 2,
we still require via Assumption 5 that d̄1i > 0, and therefore
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Fig. 1. Responses of reference input, state vector, reference model state
vector, and control input of subsystems 1 and 2 with nominal controller.

Remark 9 is still relevant.

Remark 14. Under the conditions of Theorem 2, an
estimate for the ultimate bound can be expressed in a form
similar to Corollary 2.

VI. ILLUSTRATIVE EXAMPLE

In this section, we apply the derivative-free decentralized
adaptive control architecture of Theorem 1 to an uncertain
system consisting of 2 interconnected subsystems with time
varying uncertainties, interconnections, and disturbances [10]
given by

ẋ1(t) =

[
0 1
1 −2

]

︸ ︷︷ ︸

A1

x1(t) +

[
0
1

]

︸︷︷︸

B1

u1(t) +

[
ϑ1

0

]

x2(t)

+

[
0
ϑ2

]

x2(t)sin(x2
11(t)) +

[
0
1

]

υ1(t), (68)

ẋ2(t) = − [1]
︸︷︷︸

A2

x2(t) + [1]
︸︷︷︸

B2

u2(t) + ϑ3x12cos(x2
2)

+ϑ4x2(t)cos(2t) + υ2(t), (69)

where ϑ1 = ϑ2 = 0.2, ϑ3 = 0.02, ϑ4 = 1.1, υ1(t) = sin(t),
υ2(t) = 0.5sin(2.5t), and x1(t) = [x11(t), x12(t)]

T. It is
assumed that the nominal part of each subsystem represented
by A1, B1, A2, and B2 are known. The control objective
of each subsystem is to track a given filtered square wave
reference input. The nominal controller gains are K11 =
[3, 1], K21 = 2, K12 = 4, and K22 = 5, which correspond
to the reference systems in (6.3) of Ref. 10. Responses using
the nominal controller for these subsystems are shown in Fig.
1.

We set L1 =

[
0 0
2 3

]

, L2 = 2, Q1 = 2I2, Q2 =

2, κ11 = κ12 = 0.9, κ21 = κ22 = 100, and τ1 =
τ2 = 0.05 seconds. Furthermore, we chose β1(x1) =
[1, sigm(x11), sigm(x12)]

T and β2(x2) = [1, sigm(x2)]
T,

where sigm(x) , (1 − e−x)/(1 + e−x) represents a sig-
moidal function. Fig. 2 shows that we were able to obtain
a satisfactory system performance in terms of tracking the
filtered square wave reference input.

VII. CONCLUSION

This paper extends a previously developed derivative-free
adaptive control law to a decentralized form for control-
ling large-scale interconnected systems with matched and
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Fig. 2. Responses of reference input, state vector, reference model state
vector, and control input of subsystems 1 and 2 with adaptive controller.

unmatched nonlinear time-varying system uncertainties and
interconnections. The proposed controller is particularly use-
ful for those applications in which uncertain parameters are
time-varying, or for situations in which external disturbances
are difficult to characterize.
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