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Abstract— The gradient projection anti-windup (GPAW)
scheme was recently proposed for saturated multi-input-multi-
output (MIMO) nonlinear systems driven by MIMO nonlinear
controllers, a topic recognized as an open problem in a recent
survey paper. Thus far, stability results for GPAW compensated
systems are restricted to the simple case of a saturated first
order linear time invariant (LTI) plant driven by a first order
LTI controller. Here, we present a region of attraction (ROA)
comparison result for general GPAW compensated regulatory
systems. The ROA comparison result is demonstrated on a
simple planar nonlinear system, which also highlights the
limitations of existing state-of-the-art anti-windup results.

I. INTRODUCTION

The gradient projection anti-windup (GPAW) scheme
was proposed in [1] for saturated multi-input-multi-output
(MIMO) nonlinear systems driven by MIMO nonlinear con-
trollers, a topic recognized as an open problem in the recent
survey paper [2]. The GPAW scheme is a generalization of
the well-known conditional integration method [3, p. 38], [4]
to the case of MIMO nonlinear controllers [5, p. 52]. The
construction of the GPAW compensated controller is detailed
in [5, Chapter 2, pp. 33 – 70] along with some of its fun-
damental properties. It was shown in [6], [5, Theorem 2.5.3,
p. 50] that the GPAW scheme achieves controller state-output
consistency, a property unique to the GPAW scheme while
being an implicit objective for the majority of anti-windup
schemes [5, Remark 2.21, pp. 51 – 52].

The general anti-windup problem for nonlinear systems
is presented in [5, Section 1.3, pp. 23 – 26]. Briefly, it
states that given some nominal controller designed for the
unconstrained system, nominal performance is recovered
when no controls saturate, and that stability and performance
of the anti-windup compensated system must be no worse
than those of the saturated uncompensated system.1 One cru-
cial difference with the problem considered in current anti-
windup literature is that results relative to the uncompensated
system are sought. More specifically, results which show
that the stability and performance of the uncompensated
system can only be maintained/improved with anti-windup
compensation. While such requirements appear fundamental,
it has not been specified in present anti-windup literature to
the best of our knowledge. These requirements are further
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motivated in [5, Section 3.7, pp. 94 – 96], where the
superiority of such relative results are made apparent.

In this new framework, strong stability results have been
obtained when restricted to the case of a saturated first order
linear time invariant (LTI) plant driven by a first order LTI
controller. In particular, the region of attraction (ROA) of
the uncompensated system can only be maintained/enlarged
by GPAW compensation [5, Proposition 3.5.13, p. 90], [7],
[8]. In this paper, we present an ROA comparison result for
MIMO nonlinear systems/controllers, which states conditions
to ensure that the ROA (or ROA estimate) of the uncompen-
sated system is never reduced by GPAW compensation. We
construct a simple nonlinear planar system to demonstrate
the application of this ROA comparison result. This same
system is shown to elude current state-of-the-art anti-windup
methods for LTI systems [2], [9], [10]; feedback linearizable
nonlinear systems2 [11]; and Euler-Lagrange systems [12].

The rest of the paper is organized as follows. A general
ROA comparison result is presented in Section II, followed
by the main result in Section III. The example presented
in Section IV is significant as it highlights the limitations
of current state-of-the-art anti-windup results. The Appendix
which follows the Conclusions summarizes the construction
of the GPAW compensated controller.

We will adopt the following conventions. For any integer
i > 0, we define Ii := {1, 2, . . . , i}. Inequalities involving
vectors are to be interpreted element-wise. The symbol ∧
denotes logical conjunction.

II. A GENERAL ROA COMPARISON RESULT

Here, we present a general result that allows the size of
the ROA of an autonomous system to be inferred from that
of a related autonomous system. First, we recall some basic
definitions. Consider the n-th order autonomous system

ẋ = f(x), (1)

where for some domain D ⊂ Rn, we assume the function
f : D → Rn satisfies some regularity conditions to ensure
existence and uniqueness of solutions for all forward times.
When f is continuous, classical results based on Lipschitz
continuity of f , e.g. [13, Section 3.1, pp. 88 – 95], are
available to ensure existence and uniqueness of solutions
for all (forward and reverse) times. If f is discontinuous,3

2The majority of anti-windup schemes for nonlinear systems are con-
structed for feedback linearizable systems. See [5, Section 1.4.2, p. 27] for
a more comprehensive list of references.

3The vector field of GPAW compensated systems will be discontinuous
in general (see the switching conditions in (19) and [5, p. 76]).
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regularity conditions are available to ensure existence and
uniqueness of solutions for all forward times [14, §2.7, pp. 75
– 86, and §2.10, pp. 106 – 117]. Let φ(t, x0) be the unique
solution of system (1) starting from x0 at time t = 0. A
set M is a positively invariant set for system (1) if the
solution starting within M stays in M for all forward times,
i.e. x0 ∈M ⇒ (φ(t, x0) ∈M,∀t ≥ 0) [13, p. 127].

We assume that xeq ∈ D is an asymptotically stable
equilibrium point for system (1). The ROA of the equilibrium
xeq for system (1) is defined by [13, p. 314]

RA(xeq) := {x̄ ∈ Rn | φ(t, x̄)→ xeq as t→∞}.

In other words, the ROA is the set of all points such that the
solution starting from any point within it converges to the
equilibrium. Clearly, RA(xeq) must contain the equilibrium
xeq . A set Ω ⊂ RA(xeq) is said to be an estimate of RA(xeq)
if every solution starting in Ω approaches xeq as t→∞ [13,
p. 316], i.e. x0 ∈ Ω ⇒ limt→∞ φ(t, x0) = xeq . Clearly, a
set is an estimate of RA(xeq) if and only if it is a subset of
RA(xeq) (including the subset RA(xeq)). Numerous methods
are available to estimate ROAs, e.g. [15], [16]. Our purpose
is not to estimate ROAs, but, given an ROA estimate for a
system, to find conditions for which the same ROA estimate
is valid for a related system. Recall that a continuous function
α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0 [13, Definition 4.2, p. 144].

An ROA estimate Ω ⊂ RA(xeq) is said to be associated
with a Lyapunov function V : Ω→ R for system (1) if

V (xeq) = 0, V (x̄) > 0, ∀x̄ ∈ Ω \ {xeq},

V̇ (x̄) =
∂V (x̄)

∂x
f(x̄) ≤ −α(‖x̄− xeq‖), ∀x̄ ∈ Ω,

(2)

for some class K function α : [0, a) → [0,∞), where a :=
supx̄∈Ω‖x̄ − xeq‖. In this case, we indicate the association
by denoting such an estimate by ΩV . Note that numerous
ROA estimation methods yield estimates that are associated
with Lyapunov functions.

The next result gives sufficient conditions for an ROA
estimate of a system associated with some Lyapunov function
to be a valid ROA estimate for a related system, i.e. the
estimate is contained within the ROA of this related system.

Lemma 1 ( [5, Lemma 4.3.1, p. 122]): Consider two n-
th order autonomous systems

ẋ = f1(x), (3)
ẋ = f2(x). (4)

For some D ⊂ Rn, assume f1 : D → Rn and f2 : D → Rn
are such that solutions φ1(t, x0) and φ2(t, x0) to systems (3)
and (4) respectively exist and are unique for all x0 ∈ D
and all t ≥ 0. Assume xeq ∈ D is an asymptotically
stable equilibrium point for both systems, and let RA1(xeq),
RA2(xeq) be the ROAs of systems (3) and (4) respectively.
Let ΩV ⊂ RA1(xeq) be an estimate of RA1(xeq) associated
with a Lyapunov function V : ΩV → R satisfying (2) (with
f1, ΩV in place of f , Ω). If Ω2 is a subset of ΩV (possibly

Ω2 = ΩV ) and also a positively invariant set for system (4),
and in addition,

∂V (x̄)

∂x
f2(x̄) ≤ ∂V (x̄)

∂x
f1(x̄), ∀x̄ ∈ Ω2, (5)

then Ω2 is an estimate of RA2(xeq), i.e. Ω2 ⊂ RA2(xeq).
Proof: The proof has some similarities with the proof

of [17, Lemma 1]. We need to show that limt→∞ φ2(t, x0) =
xeq for all x0 ∈ Ω2. Since xeq is an asymptotically stable
equilibrium for system (4), RA2(xeq) is non-empty and
necessarily contains xeq , i.e. xeq ∈ RA2(xeq) 6= ∅. Since
RA2(xeq) is open [13, Lemma 8.1, p. 314], it contains some
sufficiently small neighborhood of xeq . Hence there exists a
sufficiently small ε > 0 such that Bε := {x̄ ∈ Rn | V (x̄) ≤
ε} ⊂ RA2(xeq). Fix any such ε > 0.

From Ω2 ⊂ ΩV , (5), and (2), we have for all x̄ ∈ Ω2,

∂V (x̄)

∂x
f2(x̄) ≤ ∂V (x̄)

∂x
f1(x̄) ≤ −α(‖x̄− xeq‖).

Let ∂Bε be the boundary of Bε, i.e. ∂Bε = {x̄ ∈ Rn |
V (x̄) = ε}, β := minx̄∈∂Bε‖x̄ − xeq‖, and δ := α(β).
Clearly, we have β > 0 and δ > 0 due to ε > 0 and (2). Then
for all x̄ ∈ Ω2 \Bε, we have ‖x̄−xeq‖ ≥ β, α(‖x̄−xeq‖) ≥
α(β) = δ, and

∂V (x̄)

∂x
f2(x̄) ≤ −α(‖x̄− xeq‖) ≤ −δ. (6)

Let x0 ∈ Ω2. Since Ω2 is a positively invariant set for
system (4), we have φ2(t, x0) ∈ Ω2 for all t ≥ 0. The
Lyapunov function V evaluated along φ2(t, x0) is given by

V (φ2(t, x0)) = V (x0)+

∫ t

0

∂V (φ2(τ, x0))

∂x
f2(φ2(τ, x0)) dτ,

for all t ≥ 0. Clearly, φ2(t, x0) can remain in Ω2 \Bε only
for a finite amount of time. Otherwise, φ2(t, x0) ∈ Ω2 \ Bε
for all t ≥ 0 and (6) imply

V (φ2(t, x0)) ≤ V (x0)−δ
∫ t

0

dτ = V (x0)−δt, ∀t ≥ 0,

which shows that V (φ2(t, x0)) < 0 for sufficiently large t,
a contradiction to V being positive definite. Hence φ2(t, x0)
must enter Bε at some finite time, and must approach xeq
since Bε ⊂ RA2(xeq), i.e. limt→∞ φ2(t, x0) = xeq .

Remark 1: Note that the ROA estimate ΩV in Lemma 1
need not be compact. Moreover, the conclusion Ω2 ⊂
RA2(xeq) shows that the (possibly unknown) ROA RA2(xeq)
is at least as large as Ω2. �

Lemma 1 will be specialized in the next section to GPAW
compensated systems.

III. ROA COMPARISON FOR GPAW COMPENSATED
SYSTEMS

For any well-posed anti-windup problem, the input-
constrained nominal system must be stable in some sense at
least locally, e.g. locally asymptotically stable with respect
to some equilibrium. When it is indeed locally asymptot-
ically stable with respect to some equilibrium, the fun-
damental question is whether an anti-windup scheme can
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maintain/enlarge the ROA while achieving performance en-
hancements in the presence of control saturation.

Here, we present the main result which provides conditions
under which the ROA of the regulatory GPAW compensated
system is “lower bounded” by some ROA estimate of the
uncompensated system. First, we describe the closed-loop
systems. The open-loop plant is described by

ẋ = f(x, sat(u)), x(0) = x0,

y = g(x, sat(u)),
(7)

where x, x0 ∈ Rn are its state and initial state, y ∈ Rp is the
measurement, u = [u1, u2, . . . , um] ∈ Rm is the plant input,
and the saturation function sat : Rm → Rm is defined by

sat(u) = [ρ1(u1), ρ2(u2), . . . , ρm(um)]T,

ρi(ui) = max{min{ui, umax,i}, umin,i}, ∀i ∈ Im,

for some umax,i, umin,i ∈ R satisfying umin,i < umax,i for
all i ∈ Im. The nominal controller is

ẋc = fc(xc, y, r), xc(0) = xc0,

uc = gc(xc),
(8)

where xc, xc0 ∈ Rq are its state and initial state, uc ∈ Rm
is the controller output, and r := r(t) ∈ Rnr is the
instantaneous value of some exogenous input.

Making appropriate substitutions in (7) and (8), the nom-
inal uncompensated system with u = uc can be written as

Σn :

{
ẋ = f(x, sat(gc(xc))),

ẋc = fc(xc, g(x, sat(gc(xc))), r),
(9)

or Σn : żn = fn(zn). The GPAW compensated system
comprising the plant (7) and GPAW compensated controller
(see (21) in Appendix) with u = ug is described by

Σg :

{
ẋ = f(x, sat(gc(xg))),

ẋg = RI∗fc(xg, g(x, sat(gc(xg))), r),
(10)

where RI∗fc(xg, y, r) := RI∗(xg, y, r)fc(xg, y, r). Sim-
ilarly, this can be written as Σg : żg = fg(zg). In (9),
fn : Rn+q → Rn+q is the vector field of the nominal system
with state zn := (x, xc), while in (10), fg : Rn+q → Rn+q

is the vector field of the GPAW compensated system with
state zg := (x, xg).

Controller state-output consistency is a fundamental prop-
erty of GPAW compensated controllers, stated as Theorem 3
in the Appendix. It implies that the unsaturated region

Rn ×K, K := {x̄ ∈ Rq | sat(gc(x̄)) = gc(x̄)}, (11)

is a positively invariant set for the GPAW compensated
system Σg [5, Remark 2.18, p. 51]. When the controller state
is initialized such that xg(0) ∈ K, Theorem 3 shows that the
GPAW compensated system (10) can be written as

Σgu :

{
ẋ = f(x, gc(xg)),

ẋg = RI∗fc(xg, g(x, gc(xg)), r),
(12)

or Σgu : żg = fgu(zg), where the saturation function sat(·)
has been eliminated. For this system, comparison would be
made against the unconstrained system

Σu :

{
ẋ = f(x, gc(xc)),

ẋc = fc(xc, g(x, gc(xc)), r),
(13)

or Σu : żu = fu(zu) with state zu := (x, xc).
We assume that solutions of the nominal system Σn

and unconstrained system Σu exist and are unique for all
initial conditions and all times. This is a mild assumption
as existence and uniqueness of solutions to the nominal and
unconstrained systems are usually guaranteed in the design of
the nominal controller even when not explicitly sought. For
the GPAW compensated systems Σg and Σgu, we assume
that their solutions exist and are unique for all forward
times when started within the unsaturated region4 Rn ×K.
We restrict its existence to forward times since in general,
the vector field of the GPAW compensated system will be
discontinuous at least on the saturation constraint boundary
Rn×∂K (see the switching conditions in (19) and [5, p. 76]).
For brevity, this assumption on existence and uniqueness of
solutions will not be repeated in the sequel.

The preceding systems (9), (10), (12), and (13), are reg-
ulatory (in contrast to tracking systems) when the controller
reference r is constant.5 We are interested in asymptotic
stability, for which it is meaningful only if the constant r
induces some isolated equilibria. Which of the (possibly
multiple) isolated equilibria is to be taken as reference should
be apparent for the particular application. We assume that r
induces an isolated equilibrium point zeq := (x̃, x̃c) ∈ Rn+q

for the nominal system (9) satisfying

f(x̃, gc(x̃c)) = 0,

fc(x̃c, g(x̃, gc(x̃c)), r) = 0,

umin < gc(x̃c) < umax,

(14)

where umax := [umax,1, . . . , umax,m]T and umin :=
[umin,1, . . . , umin,m]T are the vectors of saturation limits.
Notice that the last condition of (14) implies that the equilib-
rium zeq lies in the interior of the unsaturated region Rn×K.
It is clear that any isolated equilibrium within the interior
of the unsaturated region for system (9) must also be an
isolated equilibrium for systems (10), (12), and (13), since
their vector fields coincide in Rn × (K \ ∂K), i.e.

fn(z̄) = fg(z̄) = fgu(z̄) = fu(z̄), ∀z̄ ∈ Rn×(K\∂K).

For this r, we assume that zeq is a locally asymptotically
stable equilibrium for the nominal system (9), which is a
standard assumption in the anti-windup setting. The preced-
ing relation and (14) implies that it is also a locally asymp-
totically stable equilibrium for systems (10), (12), and (13).

4The restriction to initial conditions within the unsaturated region Rn×K
is for simplicity, since this can usually be enforced.

5When r is a constant, it can be taken as part of the description of the
function fc in (9), (10), (12), and (13). Then we can write fn, fg , fgu, and
fu, in (9), (10), (12), and (13) respectively, not as a function of r. These
result in autonomous system descriptions.
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Let the ROAs of zeq for systems (9), (10), (12), and (13)
be Rn(zeq), Rg(zeq), Rgu(zeq), and Ru(zeq), respectively.
We are interested in establishing ROA containment results
like [5, Proposition 3.5.13, p. 90], [8, Proposition 4], where
the size of Rg(zeq) and Rgu(zeq) is to be inferred from
that of Rn(zeq) and Ru(zeq) respectively. However, rec-
ognizing that the controller state can usually be initialized
arbitrarily, and hence it is possible to ensure xg(0) ∈ K,
we are interested only in the size of Rg(zeq) and Rgu(zeq)
within the unsaturated region, i.e. Rg(zeq) ∩ (Rn ×K) and
Rgu(zeq) ∩ (Rn × K). From the definitions of fg (10),
fgu (12), and K (11), we have

fg(z̄) = fgu(z̄), ∀z̄ ∈ Rn ×K,

while Theorem 3 shows that Rn×K is a positively invariant
set for systems Σg and Σgu. This implies

Rg(zeq) ∩ (Rn ×K) = Rgu(zeq) ∩ (Rn ×K).

Then, with the initial controller state xg(0) ∈ K and
the initial plant state x(0), the solutions of the GPAW
compensated systems Σg and Σgu will converge to zeq if
(x(0), xg(0)) ∈ Rg(zeq) ∩ (Rn ×K).

The following is the main ROA comparison result that
provides sufficient conditions to assert that some ROA esti-
mate ΩV of the nominal system Σn (or unconstrained system
Σu) is also an ROA estimate of the GPAW compensated
system Σg (or Σgu). An additional restriction (in contrast to
Lemma 1) has been placed on the description of the ROA
estimate ΩV , namely that it is a sublevel set of the associated
Lyapunov function,6 i.e. ΩV = {z̄ ∈ Rn+q | V (z̄) ≤ c}
for some c > 0. Numerous ROA estimation methods yield
estimates of this form, e.g. [15], [16], so that this restriction
is well justified.

Theorem 2 (ROA Containment): Consider the nominal
system Σn (9) and GPAW compensated system Σg (10).
Assume that zeq = (x̃, x̃c) is an asymptotically stable
equilibrium for systems Σn and Σg that satisfies (14), and
let Rn(zeq), Rg(zeq) be the respective ROAs for Σn and
Σg . Let ΩV = {z̄ ∈ Rn+q | V (z̄) ≤ c} ⊂ Rn(zeq) for some
c > 0 be an estimate of Rn(zeq) associated with a Lyapunov
function V : Rn+q → R, z = (x, xc) 7→ V (x, xc) = V (z),
satisfying

V (zeq) = 0, V (z̄) > 0, ∀z̄ ∈ ΩV \ {zeq},

V̇ (z̄) =
∂V (z̄)

∂z
fn(z̄) ≤ −α(‖z̄ − zeq‖), ∀z̄ ∈ ΩV ,

(15)

for some class K function α, where fn is the vector field of
the nominal system Σn (9). If there exists7 a Γ = ΓT > 0 ∈
Rq×q such that for all (x̄, x̄c) ∈ ΩV ∩ (Rn × ∂K),

∂V (x̄, x̄c)

∂xc
(I −RI∗)fc(x̄c, g(x̄, gc(x̄c)), r) ≥ 0, (16)

holds, then GPAW compensation with parameter Γ yields
system Σg (10) whose ROA contains ΩV K := ΩV ∩ (Rn ×
K), i.e. ΩV K ⊂ Rg(zeq).

6Observe that ΩV having this form implies that it contains the equilibrium
zeq in its interior.

7Recall that RI∗ is defined with parameter Γ (see (22) in Appendix).

Remark 2: Observe that fc in (16) is independent of the
saturation function sat(·), and it needs to hold only on the
boundary Rn × ∂K of the unsaturated region Rn ×K. �

Proof: We will be applying Lemma 1 with (3) and (4)
representing Σn (9) and Σg (10) respectively. First, we
establish the analogue of (5) with respect to the subset
ΩV K := (ΩV ∩ (Rn × K)) ⊂ ΩV . Define f(z̄) :=
f(x̄, sat(gc(x̄c))), fc(z̄) := fc(x̄c, g(x̄, sat(gc(x̄c))), r), and
observe that sat(gc(x̄c)) = gc(x̄c) for all x̄c ∈ K. Then
using (9), (10), and (16), we have

∂V (z̄)

∂z
fg(z̄) =

∂V (x̄, x̄c)

∂x
f(z̄) +

∂V (x̄, x̄c)

∂xc
RI∗fc(z̄),

≤ ∂V (x̄, x̄c)

∂x
f(z̄) +

∂V (x̄, x̄c)

∂xc
fc(z̄),

=
∂V (z̄)

∂z
fn(z̄),

for all z̄ ∈ ΩV ∩ (Rn × ∂K). For all z̄ in the interior of the
unsaturated region, i.e. z̄ ∈ Rn × (K \ ∂K), no saturation
constraints are active, so that RI∗ = I (see (22)) and hence
fg(z̄) = fn(z̄). Together, these yield

∂V (z̄)

∂z
fg(z̄) ≤

∂V (z̄)

∂z
fn(z̄), ∀z̄ ∈ ΩV K , (17)

which is analogous to (5).
Next, we show that ΩV K is a positively invariant set for

Σg . Since ΩV = {z̄ ∈ Rn+q | V (z̄) ≤ c}, we can express
ΩV K = ΩV ∩ (Rn × K) as ΩV K = {z̄ ∈ Rn × K |
V (z̄) ≤ c}. Theorem 3 shows Rn × K to be a positively
invariant set for Σg , so that for any z0 ∈ ΩV K , the solution
φg(t, z0) of Σg satisfy φg(t, z0) ∈ Rn × K for all t ≥ 0.
Conditions (17) and (15) show that ∂V (z̄)

∂z fg(z̄) ≤ 0 for all
z̄ ∈ ΩV K . Together, these show ΩV K to be a positively
invariant set for Σg .

By making the following identifications with quantities in
Lemma 1,

f1 ∼ fn, RA1(xeq) ∼ Rn(zeq), xeq ∼ zeq,
f2 ∼ fg, RA2(xeq) ∼ Rg(zeq), Ω2 ∼ ΩV K ,

it can be verified that all its hypotheses are satisfied. Appli-
cation of Lemma 1 then yields ΩV K ⊂ Rg(zeq).

Remark 3: From [13, Lemma 4.3, p. 145], we see that
a class K function α exists to satisfy the second condition
of (15) when V̇ is continuous and negative definite with re-
spect to the equilibrium zeq in ΩV , i.e. when V̇ is continuous
and

V̇ (zeq) = 0, V̇ (z̄) < 0, ∀z̄ ∈ ΩV \ {zeq}.

Clearly, V̇ is continuous when V is continuously differen-
tiable and fn is continuous. �

Remark 4: The main condition in Theorem 2 is (16),
which as mentioned, has fc independent of the saturation
function. It can be verified that the proof is valid with minor
modifications8 when Σn, Σg , fn, fg , Rn(zeq), Rg(zeq),

8The only modifications needed are that the condition sat(gc(x̄c)) =
gc(x̄c) for all x̄c ∈ K is not needed, and define f(z̄) := f(x̄, gc(x̄c)),
fc(z̄) := fc(x̄c, g(x̄, gc(x̄c)), r) without the saturation function.
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are replaced by Σu, Σgu, fu, fgu, Ru(zeq), Rgu(zeq),
respectively. �

The observation of Remark 4 means that the ROA of
the GPAW compensated system can be lower bounded in
size by two ways: comparing against an ROA estimate of
the nominal (saturated) system, or an ROA estimate of the
unconstrained system. When comparing against an ROA
estimate of the nominal system, condition (16) is a sufficient
condition for GPAW compensation to yield ROA improve-
ments over the nominal system with respect to the estimate.9

Usually, the ROA of the unconstrained system will be at least
as large as the ROA of the constrained nominal system. There
may exist a Γ satisfying (16), yet no Γ such that the analogue
of (16) can hold with respect to a larger ROA estimate
for the unconstrained system. ROA comparison against the
nominal system is a relative result, while comparisons against
the ROA of the unconstrained system is in some sense an
“absolute” result, prevalent in current anti-windup literature.
As shown in [5, Section 3.7, pp. 94 – 96], such “absolute”
results may give some confidence in the application of the
anti-windup scheme, but may not reveal any advantages
gained by its adoption.

Theorem 2 gives sufficient conditions for GPAW compen-
sation to yield ROA improvements, without any indication
as to the existence of Γ satisfying (16), nor its choice.
Moreover, the definition of RI∗ requires the solution of an
optimization problem in general (see Appendix), on every
point in ΩV ∩ (Rn × ∂K). In general, it would not be easy
to find a Γ satisfying (16). Next, we show that Theorem 2
can be applied at least to a simple nonlinear system.

IV. AN ILLUSTRATIVE NONLINEAR EXAMPLE

Here, we apply Theorem 2 on a simple second order non-
linear system. This example also highlights the limitations of
three classes of current state-of-the-art anti-windup results,
in the sense that they cannot be applied to this system.

The following nonlinear system with a first order saturated
linear plant and a first order nonlinear nominal controller is
adapted from [13, Example 8.9, pp. 318 – 320]

Σn :

{
ẋ = − sat(u),

u̇ = x+ (x2 − 1)u,

which corresponds to the constrained nominal system (9).
The objective is to regulate the system state about the
origin zeq = (0, 0). We take umax = 1 and umin = −1.
Using closed-form expressions for the GPAW compensated
controller (see [5, equation (A.5), p. 187]), we obtain the
GPAW compensated system as

Σg :


ẋ = − sat(u),

u̇ =


0, if Amax,

0, if Amin,

x+ (x2 − 1)u, otherwise,

9If the estimate is exact within the unsaturated region, then we have
ΩV K = (Rn(zeq) ∩ (Rn ×K)) ⊂ Rg(zeq).

where the controller switching conditions are

Amax ⇔ u ≥ umax ∧ x+ (x2 − 1)u > 0,

Amin ⇔ u ≤ umin ∧ x+ (x2 − 1)u < 0.

Observe that the preceding has similarities with the well-
known conditional integration method [3, p. 38], [4]. This is
expected because the GPAW scheme is an extension of the
conditional integration method.

Since an ROA estimate for the associated unconstrained
system (13) Σu : ż = fu(z) or

Σu :

{
ẋ = −u,
u̇ = x+ (x2 − 1)u,

(18)

is readily available in [13, Example 8.9, pp. 318 – 320], we
will use it to demonstrate the application of Theorem 2 (see
Remark 4). The conclusion yields a containment result for
the ROA of the alternate form of the GPAW compensated
system

Σgu :


ẋ = −u,

u̇ =


0, if Amax,

0, if Amin,

x+ (x2 − 1)u, otherwise.

(19)

Remark 5: The majority of anti-windup literature is fo-
cused on saturated LTI plants driven by LTI controllers [2],
[9], [10]. Since the nominal controller (described by u̇ =
x + (x2 − 1)u) is nonlinear, this class of methods do not
apply. For nonlinear systems, the literature is dominated by
methods for feedback linearizable plants driven by a feed-
back linearizing controller, e.g. [11]. While the unconstrained
plant (described by ẋ = −u) is indeed feedback linearizable
(in fact, it is linear), the nominal controller is not a feedback
linearizing controller, which renders this class of methods
inapplicable. As for the method of [12] for Euler-Lagrange
systems, a fundamental requirement is that the unconstrained
system must be globally asymptotically stable. As shown
in [13, Example 8.9, pp. 318 – 320], the unconstrained
system (18) is only locally asymptotically stable, so that the
method of [12] also cannot be applied. In summary, this
simple second order system eludes all these state-of-the-art
anti-windup schemes. We will show however, that Theorem 2
applies, suggesting its generality. �

As shown in [13, Example 8.9, pp. 318 – 320], a Lyapunov
function for system Σu (18) is

V (z̄) = z̄TP z̄, P =

[
1.5 −0.5
−0.5 1

]
,

and an ROA estimate associated with V is the sublevel
set ΩV = {z̄ ∈ R2 | V (z̄) ≤ c} with c = 2.25. This
choice of c = 2.25 ensures V̇ (z̄) = ∂V (z̄)

∂z fu(z̄) is negative
definite in ΩV . Since V is continuously differentiable and
fu is continuous, (15) holds (see Remark 3). The ROA
estimate ΩV is illustrated in Fig. 1 together with Ru(zeq)
and Rgu(zeq), the true ROAs of the unconstrained system Σu
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and GPAW compensated system Σgu respectively.10 While
not proven, Fig. 1 suggests that GPAW compensation may
enlarge the ROA of the unconstrained system.

To apply Theorem 2, we need to verify (16). Note that
because the controller is first order, it is independent of
any GPAW parameter Γ (see [5, Remark B.1, pp. 201 –
202]). From (18) and (19), we see that fc(x̄c, g(x̄, gc(x̄c)), r)
in (16) translates to x̄ + (x̄2 − 1)x̄c. Defining γ(x̄, x̄c) :=
∂V (x̄,x̄c)
∂xc

(I − RI∗)fc(x̄c, g(x̄, gc(x̄c)), r), we have that for
all (x̄, x̄c) ∈ R2,

γ(x̄, x̄c) = (2x̄c − x̄)(I −RI∗)fc(x̄c, g(x̄, gc(x̄c)), r),

=


(2x̄c − x̄)(x̄+ (x̄2 − 1)x̄c), if Amax1,

(2x̄c − x̄)(x̄+ (x̄2 − 1)x̄c), if Amin1,

0, otherwise,

where Amax1 ⇔ x̄c ≥ umax ∧ x̄+ (x̄2 − 1)x̄c > 0,

Amin1 ⇔ x̄c ≤ umin ∧ x̄+ (x̄2 − 1)x̄c < 0.

For any (x̄, x̄c) ∈ R × ∂K = R × {umin, umax}, we have
from the preceding,

γ(x̄, x̄c) =


(2umax − x̄)(x̄+ (x̄2 − 1)umax), if Amax2,

(2umin − x̄)(x̄+ (x̄2 − 1)umin), if Amin2,

0, otherwise,

where Amax2 ⇔ x̄c = umax ∧ x̄+ (x̄2 − 1)umax > 0,

Amin2 ⇔ x̄c = umin ∧ x̄+ (x̄2 − 1)umin < 0.

By inspection of the preceding, we see that γ(x̄, x̄c) ≥ 0
for all (x̄, x̄c) = (x̄, umax) when x̄ ≤ 2umax = 2, and all
(x̄, x̄c) = (x̄, umin) when x̄ ≥ 2umin = −2. In other words,
we have

γ(x̄, x̄c) ≥ 0, ∀(x̄, x̄c) ∈ Xγ ⊂ R× ∂K,
Xγ = ((−∞, 2]× {umax}) ∪ ([−2,∞)× {umin}).

(20)

Condition (16) requires γ(x̄, x̄c) ≥ 0 for all (x̄, x̄c) ∈
ΩV ∩ (R × ∂K). Using the definition of ΩV (ΩV = {z̄ ∈
R2 | V (z̄) ≤ c} for c = 2.25), it can be verified that

ΩV ∩ (R× ∂K) = (β+ × {umax}) ∪ (β− × {umin}),

where β+ := [ 1
3−
√

17
18 ,

1
3 +
√

17
18 ] = [−0.638, 1.305] and

β− := [− 1
3−
√

17
18 ,−

1
3 +
√

17
18 ] = [−1.305, 0.638]. Since β+ ⊂

(−∞, 2] and β− ⊂ [−2,∞), we see from (20) that
γ(x̄, x̄c) ≥ 0 for all (x̄, x̄c) ∈ (β+ × {umax}) ∪ (β− ×
{umin}) = ΩV ∩ (R× ∂K), which shows that (16) holds.

All hypotheses of Theorem 2 are satisfied, and we con-
clude from its application that the ROA of system Σgu
contains ΩV ∩ (R×K). Two sets of solutions, one starting
from z0 = (−1.2,−0.7) ∈ (ΩV ∩ (R × K)) ⊂ Ru(zeq) ⊂
Rgu(zeq) and another starting from z0 = (2.8, 0) ∈
Rgu(zeq) \Ru(zeq) are shown in Figs. 1 and 2.

10The ROAs Ru(zeq) and Rgu(zeq) are found numerically by a trial
and error process together with backward-in-time simulations.
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Fig. 1. ROA estimate ΩV of a planar nonlinear system together with
Ru(zeq) and Rgu(zeq), the true ROAs of the unconstrained system Σu

and GPAW compensated system Σgu respectively.

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

x

 

 

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

u

time (s)

φu(t, z0)

φgu(t, z0)

Fig. 2. Solutions of unconstrained and GPAW compensated systems.

V. CONCLUSIONS

In this paper, we extended stability results for gradient
projection anti-windup (GPAW) compensated systems to
saturated multi-input-multi-output (MIMO) nonlinear plants
driven by MIMO nonlinear controllers. The fundamental
question for anti-windup schemes is whether their application
can improve performance without sacrificing stability. To
the best of our knowledge, this question has not been
explicitly addressed in the literature. For regulatory systems,
this requires the region of attraction (ROA) of the uncom-
pensated system to be contained within that of the anti-
windup compensated system. The main result is a first step in
this direction, which gives sufficient conditions for an ROA
estimate of the uncompensated system to be a valid ROA
estimate for the corresponding GPAW compensated system.
A second order nonlinear example not only demonstrates the
application of the main result, but highlights the limitations
of existing state-of-the-art anti-windup results. Future work
includes the search for qualitatively similar but less conser-
vative ROA containment results.

APPENDIX
CONSTRUCTION OF GPAW COMPENSATED CONTROLLER

The construction of the GPAW compensated controller is
detailed in [5, Chapter 2, pp. 33 – 70] (and also in [1], [6]–
[8], [18]), which we summarize here. Due to lack of space,
we direct the interested reader to these sources for details.
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Consider a nominal controller (8) that has been designed
to achieve some nominal stability and performance.11 Appli-
cation of GPAW compensation on the nominal controller (8)
yields the GPAW compensated controller

ẋg = RI∗(xg, y, r)fc(xg, y, r), xg(0) = xc0,

ug = gc(xg),
(21)

where xg ∈ Rq is the state, ug ∈ Rm is the output,
(y, r, fc, gc) remains unaltered as in (8), and the state-and-
input dependent q × q matrix RI∗(xg, y, r) remains to be
defined.

Define the 2m saturation constraint functions hi by

hi(xg) = gci(xg)− umax,i,

hi+m(xg) = −gci(xg) + umin,i,
∀i ∈ Im,

where gci for i ∈ Im are the elements of the controller output
function gc = [gc1, gc2, . . . , gcm]T in (21). Assuming differ-
entiability of gc, these constraint functions have gradients

∇hi(xg) = −∇hi+m(xg) = ∇gci(xg), ∀i ∈ Im.

For any index set I ⊂ I2m, define the q×max{|I|, 1} matrix

NI(xg) =

{
[∇hσI(1)(xg), . . . ,∇hσI(|I|)(xg)], if I 6= ∅,
0, otherwise,

where σI : {1, 2, . . . , |I|} → I is a chosen (non-unique)
bijection that assigns an integer in I to each integer in
{1, 2, . . . , |I|}. See [5, Remark 2.5, p. 39] for a more detailed
description of the bijection σI and an example.

For any index set I ⊂ I2m such that rank(NI(xg)) = |I|,
define the projection matrix RI : Rq → Rq×q

RI(xg) = I − S̃I(xg),

S̃I(xg) =

{
ΓNI(NT

I ΓNI)−1NT
I (xg), if I 6= ∅,

0, otherwise,

(22)

where Γ ∈ Rq×q is the single GPAW parameter, chosen to
be symmetric positive definite. As shown in [5, Remark B.1,
pp. 201 – 202], first order GPAW compensated controllers
are fully defined independent of any parameters.

Define the index set of active saturation constraints Isat,
and the candidate solution set J

Isat := Isat(xg) = {i ∈ I2m | hi(xg) ≥ 0},
J := J (xg) = {I ⊂ Isat | |I| ≤ q}.

For any fixed (xg, y, r), let I∗ be a solution to the following
combinatorial optimization subproblem12

max
I∈J

fT
c (xg, y, r)Γ

−1RI(xg)fc(xg, y, r),

subject to rank(NI(xg)) = |I|,
NT
Isat(xg)RI(xg)fc(xg, y, r) ≤ 0.

(23)

Then the GPAW compensated controller is defined by (21)
with RI∗(xg, y, r) defined by (22) and I∗. As shown in [5,

11As shown in [5, Section 2.6, pp. 53 – 55], more general controllers can
be approximated arbitrarily well to have the form of (8).

12The existence of an optimal solution I∗ to subproblem (23) is assured
by [5, Proposition 2.5.1, p. 49].

Remark 2.17, p. 50], GPAW compensation is active only
when some controls saturate. Controller state-output con-
sistency is a fundamental property of GPAW compensated
controllers, stated below.

Theorem 3 ( [5, Theorem 2.5.3, p. 50]): Consider the
GPAW compensated controller defined by (21), (22), and
a solution I∗ to subproblem (23). If there exists a T ∈ R
such that sat(ug(T )) = ug(T ), then sat(ug(t)) = ug(t)
holds for all t ≥ T .

Proof: See [5, pp. 50 – 51].
The preceding is the basic construction of the GPAW com-
pensated controller. See [5, pp. 111 – 115, pp. 185 – 204]
for alternate equivalent realizations.
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