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Abstract— In this paper it is proposed a new approach to the
solution of the classical state estimation problem for a general
time-varying perspective system. The solution is achieved by
the definition of a virtual output which has the property to
convert the original nonlinear output measurement function
into a linear time-varying one. This allows the computation of
an efficient observer gain matrix by the real-time solution of
a suitable delay Riccati equation. Numerical results show high
performances of the observer.

I. INTRODUCTION

The estimation of the time-varying distance of an object
from a camera along its optical axis is a classical problem in
machine vision [9]. It has received a lot of attention because
of its importance in several practical applications, such as au-
tonomous vehicle navigation, aerial tracking, path planning,
surveillance, etc. All these applications usually require to
have at disposition the 3-D Euclidean coordinates of moving
features or the position of a static object to be recovered from
a 2-D image sequence provided by a charge-coupled device
(CCD) camera. The overall class of practical problems can
be generally represented by considering the relative motion
between a perspective camera and an observed object.

In literature, there are many range identification techniques
for perspective vision systems. Some of them utilize the ex-
tended Kalman filter (EKF) ([15], [19], [11], [4]). However,
EKF involves linearization of the nonlinear vision model
and requires a priori knowledge of the noise distribution.
In order to overcome the shortcomings of the linear model,
nonlinear system analysis and estimation tools are used to
develop nonlinear observers able to identify the range when
the motion parameters are known. Such an approach is
introduced in [10]. The basic idea is developed in [16] where
the perspective problem is treated as a particular case of
implicit output system. Following works [3]and [8] suggest
to build an observer by expressing the perspective system in
terms of the nonlinear feature dynamic. A different approach
is adopted in [1] and [6] where the estimation is carried
out using methods from linear control theory. A reduced-
order observer is suggested in [12] as an application of the
more general observer technique introduced in [13]. Finally,
interesting recent solutions are proposed in [14], [17] and
[7].
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In this paper a new approach for the estimation of the 3-D
position of a moving target is suggested. The main idea is the
use of the measurements process as time-varying parameters
affecting a suitable defined output matrix, derived by the
introduction of a virtual output. This simple manipulation
transforms the nonlinear stationary measurement map into a
linear time-varying one. This allows to solve the problem
avoiding any linearization procedure, via a linear time-
varying observer whose gain matrix is computed through a
delay Riccati equation (DRE).

The paper is organized as follows. In Section II the
perspective problem is formalized. Section III introduces the
new approach. Results are provided in Section IV. Finally,
conclusions are summarized in Section V.

II. PROBLEM FORMULATION

The motion of feature point on a rigid object relative to
a calibrated pinhole camera can be described by the affine
system [20], [3], [8], [12]

ẋ(t) = A(t)x(t) + b(t), (1)

where A(t) ∈ R3×3, b(t) ∈ R3, and

x(t) = [x1(t), x2(t), x3(t)]T ∈ R3

contains the unmeasurable coordinates of the feature point
in an inertial reference frame with x3 being perpendicular
with the camera image plane.

The dynamic matrix A(t) and the drift term b(t) are
composed by motion parameters ai,j(t) and bi(t) which
are possible time-varying and are assumed known. The
measurable image-space coordinates, denoted by y(t) ∈ R2,
are given as

y(t) =
[
y1(t) y2(t)

]T
= η

[
x1(t)
x3(t)

x2(t)
x3(t)

]T
, (2)

where η is the focal length of the camera. Without loss of
generality, it can be assumed that η = 1.

For the perspective system in (1) and (2), following
assumptions are made [8].

Assumption 1: The motion parameters ai,j(t) and bi(t),
i, j = 1, 2, 3 are bounded functions of time, i.e. ai,j , bi ∈
L∞.

Assumption 2: The image-space coordinates y1(t) and
y2(t) are bounded functions of time, i.e. y1, y2 ∈ L∞.

Assumption 3: The object feature motion avoids the de-
generate case where the point feature intersect the image
plane. That is x3(t) > ε0, where ε0 ∈ R is an arbitrarily
small positive constant. Moreover, x3 ∈ L∞.
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Remark 1: Assumptions 2 and 3 are standard hypothesis
(see also [20], [3], [8], [12] ) that are practically properties
of the physical system rather than assumptions.

The problem objective is the reconstruction of the coor-
dinates x1(t), x2(t), x3(t) from the measurements of the
image-space coordinates y1(t) and y2(t).

III. THE NEW OBSERVER

A. The Virtual Measurement Map

Taking into account the first definition in (2), it follows
that, for any t

x1(t)− y1(t)x3(t) = 0, (3)
x2(t)− y2(t)x3(t) = 0. (4)

It can be now defined the virtual output function which is
identically equal to a zero vector, i.e.

yv(t) :=
[

0 0
]T
, (5)

for which the following measurement map holds true:

yv(t) = C(t)x(t), (6)

with
C(t) =

[
I2 −y(t)

]
, (7)

where In denotes the identity matrix in Rn. The expression
of the time-varying output matrix C(t) in (7) directly follows
from (3) and (4).

It is remarkable that the above manipulation transforms
the nonlinear stationary measurement map (2) into a linear
time-varying one (6). It can be said that the definition of
a virtual output converts nonlinearity into non-stationarity.
This naturally leads to a simpler and efficient solution to the
proposed problem since no approximation (e.g. linearization)
has to be performed. A similar approach was suggested by
[5] for the planar tracking setting.

B. The Observer Equation

The reconstruction of coordinates x(t) from the measure-
ments of y(t) can be obtained by the design of a linear
time-varying observer for the affine system in (1) and (6).
The standard approach to linear state observation, motivated
partly on grounds of hindsight, is to generate an asymptotic
estimate of the state by using another linear state equation
that accepts as inputs the output y(t) and input b(t) signals.
For the special case of this paper such a system state equation
has the standard structure of a Luemberger time-varying
observer [18]:

˙̂x(t) =A(t)x̂(t) + b(t) +K∗(t) (yv(t)− C(t)x̂(t)) ,

x̂(t0) =x̂0,
(8)

where x̂(t) ∈ R3 is the estimated state, i.e. the estimated
coordinates of the feature point, x̂0 ∈ R3 is the initial
estimate, and K∗(t) ∈ R3×2 is the observer gain matrix.
This matrix has the standard form

K∗(t) = P (t)CT (t), (9)

Algorithm 1 DRE Observer

given: A|[t0−δ,T ], b|[t0,T ], y|[t0,T ], α, δ > 0;

initial conditions: x̂(t0) = x̂0, P (t0) > 0,

Ψ(t0) = Φ(t0 − δ, t0), y|[t0−δ,t0) = 0;

instant time t = t0, start integrating:

˙̂x(t) =
(
A(t)− P (t)CT (t)C(t)

)
x̂(t) + b(t);

Ṗ (t) = A(t)P (t) + P (t)AT (t) + 4α2P (t)

− 2P (t)CT (t)C(t)P (t)

+ 2e−4α
2δP (t)ΨT (t)CT (t− δ)C(t− δ)Ψ(t)P (t);

Ψ̇(t) = A(t− δ)Ψ(t)−Ψ(t)A(t);

C(t) =
[
I2 −y(t)

]
.

where P (t) ∈ R3×3 is a symmetric matrix that has been
chosen to satisfy the following matrix dynamical delay
system which has a form that resembles the classical Riccati
equation:

Ṗ (t) = A(t)P (t) + P (t)AT (t) + 4α2P (t)

− 2P (t)CT (t)C(t)P (t)

+ 2e−4α
2δP (t)ΨT (t)CT (t− δ)C(t− δ)Ψ(t)P (t)

(10)

with P (t0) > 0 and where α, δ ∈ R, δ > 0, and Ψ(t) ∈
R3×3 is the solution of

Ψ̇(t) = A(t− δ)Ψ(t)−Ψ(t)A(t),

Ψ(t0) = Φ(t0 − δ, t0),
(11)

Φ(t, τ) denoting the state-transition matrix associated to
A(t). The role of parameters α and δ will be clarified in
the sequel.

Taking into account (5) and (9), (8) can be rewritten as
follows:

˙̂x(t) =
(
A(t)− P (t)CT (t)C(t)

)
x̂(t) + b(t). (12)

Note that the delay Riccati equation (DRE) (10) is forced
though the output matrix C(·) both by the actual value of
measurements y(t) and their delayed values y(t − δ). It is
now known that using past values of the output signal helps
observability [2].

In order to clarify the way the observer works, the pro-
posed solution is summarized in Algorithm 1. Note that the
values of measurements y(t) before the initial time t0 are
zero valued. This is obviously one of the possible choices
for real frameworks. A second possibility is to start the
estimation at the delayed time t0 + δ and use the output
signal y(t) which is actually available within the interval
[t0, t0 + δ].
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C. Proof of Convergence

Once introduced the observer equation, the relevant con-
vergence is now proved. In order to quantify the performance
of any observer, an estimation error, denoted by e(t) ∈ R3,
is usually defined as

e(t) := x(t)− x̂(t).

For observer forms such as (8) with a generic gain K(t), the
error time derivative is given by

ė(t) = (A(t)−K(t)C(t)) e(t), (13)

where K(t) is the observer gain matrix.
The goal of any observer design is to make the observer-

error system (13) asymptotically stable. In the sequel a
sufficient condition for the uniform exponential stability of
such a system is given in the particular case of observer (12).

In order to analyze the asymptotic behaviour of the
observer-error system, a key result form [18] is recalled.

Let the reconstructibility Gramian for the plant in (1) and
(6) be

N(t0, t) =

∫ t

t0

ΦT (τ, t)CT (τ)C(τ)Φ(τ, t)dτ.

Note that N(t0, t) is a symmetric and positive semi-definite
matrix. Furthermore, let

M(t0, t) =

∫ t

t0

2e−4α
2(τ−t)ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0)dτ.

Theorem 1: Suppose for the linear state equations (1) and
(6) there exist positive constants δ, ε1, and ε2 such that

ε1I3 ≤ N(t− δ, t) ≤ ε2I3 (14)

for all t. Then, given a constant α ∈ R, the observer gain
matrix

K(t) =
[
ΦT (t− δ, t)M(t− δ, t)Φ(t− δ, t)

]−1
CT (t)

(15)
is such that the resulting observer-error state equation (13)
is uniformly exponentially stable with rate α2.
For the proof the reader is referred to [18].

Now, the main result of the paper is summarized in the
following theorem.

Theorem 2: Suppose for the linear state equations (1) and
(6) there exist positive constants δ and ε1 such that

N(t− δ, t) ≥ ε1I3 (16)

for all t. Then, given a constant α ∈ R, the observer gain
matrix K∗(t) defined in (9), and satisfying (10) and (11), is
such that the resulting observer-error state equation (13) is
uniformly exponentially stable with rate α2.

Proof: This proof consists of two parts. In the first part
it will be proved that condition (16) implies condition (14)
of Theorem 1. Then it will be demonstrate that the special
form of the observer gain K∗(t) (9) is identically equal to
the generic form given by Theorem 1 in (15).

Condition (16) corresponds to the left-side inequality of
condition (14). Since N(t − δ, t) is a symmetric matrix the
following inequality holds true (Rayleigh-Ritz inequality):

N(t− δ, t) ≤ λmax(N(t− δ, t))I3,

for every t and δ, and where λmax(M) is the maximum
eigenvalue of a given symmetric matrix M. As a conse-
quence, the right-hand inequality of condition (14) is sat-
isfied if there exists a positive finite constant ε2 such that
λmax(N(t−δ, t)) ≤ ε2. Recall that for a symmetric positive
semi-definite matrix Q ∈ Rn×n the following norm can be
defined:

‖ Q ‖= λmax(Q).

Therefore, (14) is proved if ε2 is such that

‖ N(t− δ, t) ‖≤ ε2. (17)

In order to demonstrate condition (17), note that from
Assumptions 1 and 2 it follows that there exist two finite
positive constants γ and σ such that, for any t:

‖ A(t) ‖≤ γ ‖ CT (t)C(t) ‖≤ σ. (18)

Taking into account (18) and Lemma 3 it can be said that
there exist a positive constant β such that, for every t and
δ > 0:

‖N(t− δ, t) ‖≤
∫ t

t−δ
‖ ΦT (τ, t)CT (τ)C(τ)Φ(τ, t) ‖ dτ

≤
∫ t

t−δ
‖ ΦT (τ, t) ‖‖ CT (τ)C(τ) ‖‖ Φ(τ, t) ‖ dτ

≤ β2σδ < +∞,

which proves condition (17) with ε2 = β2σδ.
Since (14) is satisfied, from Theorem 1 follows that the

observer gain matrix in (15) guarantees the uniform expo-
nential stability of the observer-error system (13). Therefore,
it remains to prove that the solution of the DRE (10) satisfies,
for any t,

P−1(t) = ΦT (t− δ, t)M(t− δ, t)Φ(t− δ, t), (19)

so that K∗(t) = K(t), for every t.
In order to prove (19) the time derivative of M(t− δ, t) is

needed. This can be computed utilizing properties in Lemma
4:

Ṁ(t− δ, t) =− 4α2M(t− δ, t)
+ 2ΦT (t, t− δ)CT (t)C(t)Φ(t, t− δ)
− 2e−4α

2δCT (t− δ)C(t− δ)
−AT (t− δ)M(t− δ, t)
−M(t− δ, t)A(t− δ).

(20)
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Fig. 1. Time history of the observation error for different values of α.
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Fig. 2. State estimate error in x3-coordinate. Solid curve is the new
observer instead the dashed curve is the observer presented in [12].

The time derivative of both sides of (19) can be now
obtained taking into account (20) and Lemma 4:

Ṗ−1(t) = Φ̇T (t− δ, t)M(t− δ, t)Φ(t− δ, t)
+ ΦT (t− δ, t)Ṁ(t− δ, t)Φ(t− δ, t)
+ ΦT (t− δ, t)M(t− δ, t)Φ̇(t− δ, t)

=−A(t)TP−1(t)− P−1(t)A(t)

− 4α2P−1(t) + 2CT (t)C(t)

− 2e−4α
2δΦT (t− δ, t)CT (t− δ)C(t− δ)Φ(t− δ, t).

(21)

By defining
Ψ(t) := Φ(t− δ, t),

which satisfies (11), as proved in Lemma 4, and using
Lemma 1, the DRE (10) readily follows from (21).

IV. SIMULATION RESULTS

In this section, a detailed simulation study is presented
to evaluate the performance of the proposed estimation
technique. Since the estimation is carried out through the
the delayed measurement y(t− δ), these are set to zero for
t < δ.

Consider the example given in [3] and [7] of the perspec-
tive system: ẋ1
ẋ2
ẋ3

 =

 −0.2 0.4 −0.6
0.1 −0.2 0.3
0.3 −0.4 0.4

 x1
x2
x3

+

 0.5
0.25
0.3
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Fig. 3. Norm of the state estimate error.

with initial conditions

x(0) = [1 1.5 2.5]T ,

x̂0 = [0.4 0.6 1]T .

The observer performance for different values of the rating
parameter α, namely α = 4.5, 6, 8, 15, is shown in Fig.
1, with δ = 0.01. Note that the convergence rate can be
arbitrarily chosen simply by setting parameter α.

In order to compare this observer with an existing ap-
proach, the observer in [12] is considered and the results
are shown in Fig. 2 with α = 5 and the constant design
parameter of [12] λ = 30.

To demonstrate the robustness of the suggested tool, the
system in [7] is taken into account: ẋ1

ẋ2
ẋ3

 =

 0 −1 1
1 0 1
−1 −1 0

 x1
x2
x3

+

 1
2
1

 .
Three set of initial condition (ICs) have been considered in
the format [xT (0) x̂T0 ]T , with δ = 0.1:

IC1 : [−1, 2, 2, 1/6, 1/3, 1/3]T ,
IC2 : [−1, 2, 1,−0.03, 0.12, 0.30]T ,
IC3 : [−2, 3, 4,−0.4, 2.4, 0.4]T .

(22)

In Fig. 3 the norm of error ‖ x(t)− x̂(t) ‖ is graphically
represented for the different ICs in (22).

V. CONCLUSIONS

As a concluding remark, it deserves to point out the
novelty of the concept denoted as “virtual output measure-
ment process”, that in the opinion of the authors could be
very promising for the treatment of important classes of
output measurement functions. Moreover the gain matrix of
the proposed observer, computed trough a special kind of
Riccati equation, guarantees global convergence and high
performances of this method.

APPENDIX

Lemma 1: Let M : R→ Rn×n be a continuous function.
Suppose M(t) to be invertible for all t, then

Ṁ−1(t) = −M−1(t)Ṁ(t)M−1(t), (23)

for every t.
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Proof: Since M(t) is invertible for all t, then

M(t)M−1(t) = In ∀t.

From the time derivative of both sides of last equation, it
follows that

Ṁ(t)M−1(t) +M(t)Ṁ−1(t) = 0

from which (23) can be trivially obtained.
Let Φ(t, τ) ∈ Rn×n be the state-transition matrix associ-

ated with the linear system

ζ̇(t) = A(t)ζ(t)

where ζ(t) ∈ Rn and A(t) ∈ Rn×n. Following Lemmas give
a few key properties of this matrix.

Lemma 2: The transition matrix for A(t) is invertible for
any t, τ ∈ R and

Φ−1(t, τ) = Φ(τ, t).
Lemma 3: If there exists a finite positive constant γ such

that ‖ A(t) ‖≤ γ, for all t, then given a finite δ > 0 there
exists a finite β > 0 such that ‖ Φ(t, τ) ‖≤ β for all t, τ ∈ R
such that |t− τ | < δ.
For the proof of Lemma 2 and 3 the reader is referred to
[18].

Lemma 4: For every t, τ, δ ∈ R, δ > 0 it is:

Φ̇(t, τ) = A(t)Φ(t, τ); (24)

∂Φ(t, τ)

∂τ
= −Φ(t, τ)A(τ); (25)

Φ̇(t− δ, t) = A(t− δ)Φ(t− δ, t)− Φ(t− δ, t)A(t). (26)
Proof: Equation (24) is a general property of the state-

transition matrix.
From Lemma 1 and 2, and (24) the partial derivative of

the Φ(t, τ) with respect to the second argument τ can be
computed as follows:

∂Φ(t, τ)

∂τ
=
∂Φ−1(τ, t)

∂τ

= − Φ−1(τ, t)
∂Φ(τ, t)

∂τ
Φ−1(τ, t)

= − Φ−1(τ, t)A(τ)Φ(τ, t)Φ−1(τ, t)

= − Φ−1(τ, t)A(τ) = −Φ(t, τ)A(τ),

which proves (25).
Finally, (26) is trivially derived by applying properties (24)

and (25).
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