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Abstract— This paper considers a method for optimal input
design in system identification for model predictive control. The
objective is to provide the user with a model that guarantees,
with high probability, that a specified control performance is
achieved. We see that, even though the system is nonlinear, using
linear theory in the input design can reduce the experimental
effort. The method is illustrated in a minimum power input
signal design in identification of a water tank system.

I. INTRODUCTION

Model predictive control (MPC) is a widely used model
based control strategy in industry [1]. As its name entails,
MPC predicts future states of the controlled process based
on a model of the system. Given these predictions, MPC
constructs the optimal control strategy. The control input at
the first time step of the strategy is applied to the process.
The procedure is then iterated at each time instant.

The performance of the controller is highly dependent on
the quality of the model it is based on. Due to process–
model mismatch, the control performance may not be up
to standard. Thus, it is desirable to have an efficient and
accurate method of identifying models in an MPC context.
Reducing the cost of the experiment is also often of im-
portance and optimal input design has been shown to give
significant reduction of the experimental effort [2].

In this contribution we build on the optimal input design
for models used in MPC developed in [3] and [4]. We
present a method of performing optimal input design on
a process controlled by MPC. The approach is illustrated
on a water tank system. Given a model structure and a
measurement of the control performance degradation, the
method provides the user with the optimal input signal to be
used in the identification experiment. There are other ideas
for identification for MPC available, see e.g. [5], [6].

In Section II we outline the ideas of optimal input design
for control presented in [12]. The specifics for MPC are
outlined in Section III. Section III-C presents the design
procedure for MPC which is illustrated in Section V-D.

II. PROBLEM FORMULATION

We consider identification of models on the form

M (θ) :
xt+1 = F(θ)xt +G(θ)ut + vt

yt = H(θ)xt + et
(1)

where xt is the state vector, {ut}N
t=1 is a known input

sequence, vt and et are zero-mean, Gaussian processes with
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covariance matrices Rv and Re respectively and θ is an
unknown parameter vector. We assume that there exists a
parameter vector, say θo, such that the model (1) describes
the true system, denoted S .

The process is assumed to be controlled using MPC with
the quadratic cost function

J(t) =
M−1

∑
i=0

(
‖ŷt+i+1|t − rt+i+1‖2

Q

+‖∆ut+i|t‖2
R1
+‖ut+i|t −ud

t+i‖2
R2

)
, (2)

where ŷt+i|t , ut+i|t and ∆ut+i|t = ut+i−ut+i−1 are i-step pre-
dictions of the output, input and input update of the system,
respectively. The known reference trajectory is denoted rt
and ud

t are target input values. The matrices Q, R1 and R2
are tunable weights. The norm ‖x‖A is equal to

√
xT Ax.

The cost function is minimized with respect to the input
updates and the update ∆ut+1 is applied to the process. The
optimization is performed in each timestep in accordance
with the receding horizon control philosophy. The cost (2)
is used by the MPC toolbox in Matlab [7].

A major advantage of MPC is the ability to handle signal
and state constraints on the process in the controller. How-
ever, there is no explicit solution to the optimization problem
in the controller [8]. We will see that this is a limiting factor
in the experiment design and requires numerical calculations.

To find the predicted output used in (2), a model of the
process is needed. The more accurate the model, the better
the MPC performance. The degradation in performance due
to an inaccurate model is formalized in the next section.

A. Application cost

The performance of a controller designed based on the pro-
cess model, is directly related to the quality of the model. If
θo are available for the design, the performance specifications
are met. However, for estimates different from θo, the perfor-
mance degrades. Application cost relates model parameters
to performance degradation and is denoted Vapp(θ).

We choose the cost function such that its minimal value
is zero and occurs when the true parameter vector θo is
used, i.e., Vapp(θo) = 0, V ′app(θo) = 0 and V ′′app(θo)� 01. A
maximal allowed performance degradation gives

Vapp(θ)≤ 1/γ, (3)

for some real-valued positive constant γ . The parameters
corresponding to acceptable performance degradation belong

1A� B means that A−B is a positive semi-definite matrix.
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to the set

Θ = {θ
∣∣Vapp(θ)≤ 1/γ}, (4)

which we call the application set. Thus, the objective of
system identification should be to deliver parameter estimates
that belong to the application set.

We can make a convex approximation of Θ using a Taylor
expansion. Hence, inequality (3) can be approximated by

[θ −θo]
TV ′′app(θo)[θ −θo]≤ 2/γ. (5)

For sufficiently large γ , the set of acceptable parameters (4)
can thus be approximated by the ellipsoidal set

Eapp = {θ
∣∣[θ −θo]

TV ′′app(θo)[θ −θo]≤ 2/γ}. (6)

We call this the application ellipsoid.
In [4] the scenario approach [9], [10], is presented as

another possible approximation of the application set. The
idea is to randomly select parameters that satisfy (3), called
scenarios. If enough scenarios are used, the performance
degradation can be guaranteed with high probability.

B. System identification

Let θ̂ be the estimated parameter vector of the model
based on N input–output observations using the prediction
error method (PEM). A result from PEM for open-loop
identification is the asymptotic (in sample size) Gaussian
distribution of the estimates θ̂ [11], i.e.,
√

N(θ̂ −θo)∼N (0,P), (7)

P−1 = E

{
d

dθ
ŷ(t,θ)

∣∣∣∣
θ=θo

R−1
e

d
dθ

ŷH(t,θ)
∣∣∣∣
θ=θo

}
. (8)

The confidence ellipsoids for the estimates are given by

θ̂N ∈ ESI = {θ
∣∣[θ −θo]

T P−1[θ −θo]≤ κ/N}, w. p. α. (9)

The positive constant κ depends on the number of parameters
to be estimated and the probability α . Its value is obtained
from the χ2-distribution. This means that the estimate lies
inside the system identification set (9) with probability α .

C. Input design

We want the estimated parameters θ̂ to be acceptable
with respect to control performance. Since the estimates
are random variables, this is hard to guarantee. Therefore,
we relax the condition and require only that the estimated
parameters satisfy the control performance with some (high)
probability. That is, we require the system identification set
(9) to be contained in the application set (4), i.e.,

ESI ⊆Θ. (10)

If we use approximation (6), both sets are ellipsoids and
(10) is equivalent to the linear matrix inequality (LMI)

N
κ

P−1 � γ

2
V ′′app(θo). (11)

LMI (11) together with (9) imply that the estimated param-
eters lie in the application ellipsoid, i.e., θ̂N ∈ Eapp, with at
least probability α . This idea is presented in [12].

If we use the scenario approach, we replace (10) with

[θk−θo]
T N

κ
P−1[θk−θo]≥ γVapp(θk), k = 1, . . . ,K, (12)

where θk ∈Θ are samples taken from a uniform distribution
on Θ. For sufficiently large values of K (12) approximates
the original constraint well. For more details see [10] and
[4].

A natural objective of the input design is to minimize
some experiment cost while guaranteeing that (10) holds.
Experiment cost can, for instance, be experiment time, input
power or input energy. The key is that the inverse covariance
matrix P−1 can be expressed in the frequency domain as
an affine function of the input spectrum. Hence, a linear
parameterization, and any convex objective function of the
spectrum will lead to input design problems that are semi-
definite programs. This has been extensively discussed in the
literature, see e.g., [13].

The application set gives the directions of high perfor-
mance degradation with respect to model parameters. Thus,
we can determine which linear combinations of elements
of θ are important to estimate with high accuracy. The
application set is linked to the identification through the input
design. When the optimal input is applied to the system,
the most sensitive parameter directions are excited while
unimportant dynamics are not.

III. IDENTIFICATION FOR MPC

In this section we present a scheme for optimal input
design in an MPC context. There are two major challenges
with the implementation of the method. The first is that
optimal input design relies on knowledge of the true system
parameters. These are, of course, not known. The two pro-
posed ways around this are to design inputs that are robust to
parameter variations, e.g., [14], or to use an initial parameter
estimate instead of the true parameters in the optimal input
design. The latter approach is considered here. The second
challenge conserns time domain constraints in MPC. There
is, as of yet, no good way of including such constraints in
the input design formulation considered here. The solution
here is to include them in the calculation of the application
cost but not to consider them in the identification part of the
method. It may be possible to enforce some time domain
constraints when the optimal signal is generated, e.g., [15].

A. Application cost

A reasonable application cost for the MPC case is the
difference between the output of the process controlled by
MPC based on a model using θ 6= θo and one based on θo,
denoted yt(θ) and yt(θo), respectively. Therefore, we choose

Vapp(θ) =
1
N

N

∑
t=1
‖yt(θo)− yt(θ)‖, (13)

which has the desired properties mentioned in Section II-A.
In an application, it is unlikely that one can evaluate

(13) using outputs from the real process. Since this requires
controlling the process based on models with more or less
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Construction of Ṽapp(θ , θ̂)

Fig. 1. The method of optimal input design for MPC. The true system (S ) is excited by a white noise sequence (u0). Initial parameter estimates (θ̂ ) are
obtained from system identification (SYS ID). The control performance and how it is effected by different values of the parameters (θ ) is examined. This
is done by simulating a model of the system (M (θ̂)) controlled with an MPC using θ̂ and another MPC using θ (MPC(θ̂ ) and MPC(θ ) respectively).
Based on this, the approximate application cost (Ṽapp(θ , θ̂)) is calculated (APP C). The application cost and initial estimate are then used in the optimal
input design (OID) and the optimal input signal is obtained. The input is optimal for M (θ̂) but might not be optimal for the system S .

arbitrary parameter values. Instead, we introduce an approx-
imation of Vapp where the true system is replaced with the
linear model using estimated parameter values. This gives

Ṽapp(θ , θ̂) =
1
N

N

∑
t=1
‖yt(θ̂ , θ̂)− yt(θ , θ̂)‖. (14)

The first argument is the parameter used by the MPC and
the second argument the parameter used in the linear model
replacing the system, cf. Simulation MPC block in Figure 1.

The choice of acceptable performance degradation is
highly application dependent. We consider the reference
tracking capability of the MPC using a model with θo,

V (θo) =
1
N

N

∑
t=1
‖yt(θo)− rt‖2, (15)

and allow for a certain level of degradation, e.g., a 1 %
degradation of the performance corresponds to

γ = 100/V (θo). (16)

In equations (15) and (16), we use an initial estimate of the
parameters instead of θo in the implementation.

B. Input design
Optimal input design minimizes experimental cost while

guaranteeing performance. Quantifying experiment cost is
not obvious, however we choose to focus on input power.
To formalize, we can write the full input design problem as

minimize
φu(ω)

trace
(

1
2π

∫
π

−π

φu(ω)dω

)
(17a)

subject to ESI ⊆Θ (17b)
φu(ω)≥ 0 ∀ω (17c)

where φu(ω) is the input spectrum. Depending on if we
choose the ellipsoidal approximation of Θ or the scenario

approach, (17b) is replaced by (11) or (12), respectively.
With linear parameterization of φu(ω), problem (17) can be
written as a semi-definite program, see e.g., [13].

C. Identification algorithm

We construct an optimal input design and identification
method to estimate models to be used in MPC. The true
parameters in the expressions are replaced with estimates
thereof. The proposed method is described by the following
algorithm and further illustrated in Figure 1.

Algorithm
Step 0 Find an initial estimate of the parameters using

white noise as input in the identification experi-
ment.

Step 1 Find the application cost based on simulations of
the model with the parameter estimates.

Step 2 Design the optimal input signal based on the appli-
cation cost and parameter estimates.

Step 3 Find a new estimate of the parameters using the op-
timal input signal in the identification experiment.

Note: If a good initial guess of the parameters are available,
e.g., through physical insight of the process, this guess can
replace the initial estimation in Step 0.

The algorithm can be iterated so that the estimate from
Step 3 is used in Step 1 and 2 to calculate a new input design.
As more data is used in the identification step and if there
exist parameters θo such that S =M (θo), the estimates will
converge to their true values. Therefore, one can expect the
input design to converge to what would be obtained had θo
been known. A discussion on this and a formal proof for the
case with ARX systems are found in [16].

IV. WATER TANK PROCESS

We have implemented the method of system identification
for MPC described in Section III on the water tank process
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presented in [17]. It consists of four interconnected water
tanks. The layout of the process is shown in Figure 2.
The control objective is to regulate the water levels of the
two lower tanks, according to a reference trajectory, using
MPC. The process is nonlinear, however, a linearized and
discretized model of the process is used in the MPC. We
want to estimate the parameters of the linearized model.

A. Process description

The four water tanks are connected to two pumps that
deliver water into the tanks. Two valves are used to control
the amount of water pumped into the upper and lower tanks
respectively. The input signals are the voltages of the two
pumps and the outputs are the water levels in the two lower
tanks. There are physical constraints on the process, such as
input voltages to the pumps and water levels in the tanks.

We derive a nonlinear model of the process from Torri-
celli’s principle,

dx1

dt
=− a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1k1

A1
u1,

dx2

dt
=− a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2k2

A2
u2,

dx3

dt
=− a3

A3

√
2gx3 +

(1− γ2)k2

A3
u2,

dx4

dt
=− a4

A4

√
2gx4 +

(1− γ1)k1

A4
u1,

where xi is the water level in centimeters of tank i and u j is
the voltage in volt of pump j. The parameters of the process
and their nominal values are found in Table I.

TABLE I
PHYSICAL PARAMETERS OF THE FOUR TANK PROCESS.

Parameter Nominal Description

ai {0.17 0.15 0.11 0.08} cm2 area of outlet of tank i
Ai 15.5 cm2 area of tank i
γ j 0.625 parameter of valve j
k j 4.14 cm3/(sV) parameter of pump j

B. Linear Model

We derive a linear and time discrete model of the process
that will be used in MPC. The nonlinear model is linearized
around its equlibrium points, x0 and u0, giving

dx̄
dt

=


−1
τ1

0 A3
A1τ3

0
0 −1

τ2
0 A4

A2τ4
0 0 −1

τ3
0

0 0 0 −1
τ3

 x̄t +


γ1k1
A1

0
0 γ2k2

A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

 ūt ,

y =
[

1 0 0 0
0 1 0 0

]
x̄t + et ,

where x̄ = x−x0, ū = u−u0 and τi =
Ai
ai

√
2x0

i
g . The measure-

ment noise et is assumed to be zero-mean Gaussian with
covariance matrix Re. The equilibrium points of our process
are x0 = [15 15 3 12]T cm and u0 = [7.8 5.25]T V. The

linear model is then discretized assuming zero-order hold
sampling at a sampling rate of Ts = 1 Hz. The parameters to
be estimated in the identification experiment are the physical
parameters presented in Table I. The equilibrium points and
gravity are considered known and hence the factor

√
2x0

i /g
in τi, i = 1, . . . ,4, is also known.

C. Control Strategy

The objective of the controller is to perform reference
tracking of the water levels in the two lower tanks. The MPC
implemented is provided by the MPC Toolbox in Matlab. The
MPC constructs an optimal control strategy by minimizing
the cost function defined by (2), with the deviation variables
used instead of ŷ, r, ∆u and u, subject to the constraints of
the process. These constraints are listed in Table II.

TABLE II
PHYSICAL CONSTRAINTS OF THE FOUR TANK PROCESS.

Parameter Limit Description

xi,max 25 cm maximum water level of tank i
xi,min 0 cm minimum water level of tank i
u j,max 15 V maximum voltage of pump j
u j,min 0 V minimum voltage of pump j

u1

x1 x2

x3

x4

u2

γ1 γ2

Fig. 2. The water process. Water is pumped from the reservoir into the
four tanks. The voltages to the pumps are input signals and the levels in the
two lower tanks, x1 and x2, are measured outputs. The setting of the two
valves regulate how much water is pumped into the upper and lower tank.

V. OPTIMAL INPUT DESIGN EXAMPLE

In this section we implement the method on simulations of
the water tank process presented in Section IV. The optimal
input design is found and identified models are evaluated.

A. Simulation Setup

The MPC prediction and control horizons are 10 time
steps. There are no constraints on the input rate in the MPC
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control problem and the covariance matrix Re is set to zero
for the calculations of the scenarios in the input design. For
all other settings we use the default values provided by the
MPC Toolbox in Matlab. The optimal input design problem
is (17) using the scenario approach, i.e., constraint (12). The
problem is solved with Re = 10−3I{2×2}, N = 400 and κ

from the χ2(10)-distribution with α = 0.95. The number of
scenarios used is 3,000.

B. Input Design
We compare the optimal design obtained when using θo

and one where the design is based on an initial estimate of
the parameters. These estimates were obtained using a zero
mean white Gaussian input with variance 0.01. The optimal
input spectra for 1 % performance degradation, i.e., γ given
by (15) is shown in Figure 3. The optimization problem is
implemented in CVX and solved using SDPT3 [18], [19].

We see that the optimal spectrum is temporally colored
but almost spatially white. The spectrum has high energy
at low frequencies, indicating that the static gain of the
system is important. This is expected since the application
cost relates to reference tracking and therefore emphasizes
the static gain. The design obtained from the initial estimate
is very close to the optimal.

We constructed the Hessian of the application cost. It gives
that it is most important to estimate γ1 with high accuracy.
This seems reasonable since the pump corresponding to γ1
is supplying water to tank 1 and tank 4, which have the
largest outflows of the process. Thus, an error in γ1 would
highly effect the control performance. We also see that it is
important to estimate the parameters related to tanks 2 and
4 of the process, i.e., a2, a4 and γ2, with high accuracy.

C. Control Performance Comparison
As a motivation for optimal input design, we estimate the

water tank process using an optimal input with minimum
power and a white noise input with the same power. We
then compare the performance of the MPC controllers based
on these estimates. The simulation is performed with the
setting specified in Section V-A and γ is defined by (16).
The resulting output trajectories are shown in Figure 4.

We see that the optimal input outperforms white noise in
terms of satisfying the specification on control performance.
In total 91 % of the models estimated using the optimal input
satisfy requirement (3) compared to only 15 % of the models
estimated with white noise.

If we instead use a white noise input with variance equal to
the optimal, eight times more samples are needed to achieve
the same control performance as for the optimal input.

The reason that we do not reach the goal of 95 % ac-
ceptable models is, to some extent, due to that the identified
system is nonlinear and no θo exists. If a linear system is
estimated, using the same signal realizations, 94 % of the
models are acceptable, which is closer to the specifications.

D. Reducing Performance Degradation
We look at the effects of decreasing the upper limit on the

performance degradation when a linear model is used for a
nonlinear process. To decrease the application cost, we want
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Fig. 3. The input spectra obtained using optimal input design based on
θo (solid) and an initial estimate of the parameters (dashed). φi j(ω) is the
cross spectrum between ui and u j .

estimates with lower variance. Had the process been linear,
increasing input power, var(u), or the experiment length, N,
would both reduce the estimate variance. We can always
trade power for experiment time or vice versa. However,
when the process is nonlinear, increasing input power might
drive the process too far from the linearization point for the
model to be accurate. Therefore, one might have to increase
experiment time to reduce the variance.

To investigate this for the tank process, we conduct two
experiments. In the first we use N = 100 in the input design
which gives a high input power solution. In the second we
use N = 10,000 which gives a low power solution. Note that
both designs use the same input energy. We allow for 0.01 %
performance degradation, i.e., γ = 10,000/V (θo). Figure 5
shows the resulting trajectories, when the estimated models
from the two experiments are used in the MPC.

We see that increasing power can degrade the quality
of the estimates when the identified plant is nonlinear. If
experiment time is increased, higher quality estimates are
obtained. In total 85 % of the models from the low input
power identification satisfy the requirements while none of
the estimates from the high input power identification do.

VI. CONCLUSION

We presented a method for optimal input design for MPC.
The identified model is guaranteed, with high probability, to
give a prescribed control performance. The method thereby
links system identification and intended use of the model.
Optimal input design requires knowledge of the true parame-
ters. These are not known. The proposed solution is to use an
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Fig. 4. The trajectories of the process controlled by MPC with models
based on estimates from 100 identification experiments. In the upper plot
optimal input has been used whereas in the lower plot a white input has been
used. For the upper plot 91 % of the trajectories satisfy the performance
degradation requirements while only 15 % of the trajectories in the lower
plot satisfy the requirements.

initial estimate instead. It can be obtained in an identification
experiment or through knowledge of the system. The method
requires an evaluation of the control performance degradation
with respect to the model. The evaluation may effect the
behavior of the system, preventing it from being performed
on-line. We propose that it is based on simulations of the
system. We used a linear model to approximate the process,
even though the true system was nonlinear. We saw that one
have to be careful when trading power of the input signal
with number of observations in the identification experiment.
This is because we use a linear model for input design but
identify a nonlinear process. A high variance of the input
signal may drive the process state from its linearization point
and thus the model is no longer accurate.
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