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Abstract— This paper describes a new efficient approach to
the conventional nonlinear tracking problem in a nongaussian
setting that consists in the transformation of the nonlinear
output measurement function in a linear form by the definition
of a virtual measurement process. Such a procedure leads to
the use of an efficient filter capable to take into account the
nongaussanity of the transformed measurement noise process.
This key feature is also exploited to consider and suitably
manage a nongaussian and more realistic motion behaviour
of the target object.

Compared with the traditional approaches (e.g., extended
Kalman filter (EKF) and unscented Kalman filter (UKF)) used
in passive localization, the proposed method has potential
advantages in robustness, convergence speed, and tracking
accuracy.

I. INTRODUCTION

The target tracking is a widely studied problem of nonlin-
ear filtering. The general purpose is the real-time estimation
of the kinematic state of a moving object. The main difficulty
of this aim arises from the strong nonlinear nature of the
available measurements. Indeed, the linearization introduced
by traditional solutions based on the extended Kalman filter
(EKF) algorithm may return large errors in the state estimate,
leading to sub-optimal performance and sometimes filter
divergence [20].

This problem arises in a wide class of similar applications
(e.g. SLAM [10], [5], [13]). As a consequence, a great deal
of attention has been devoted to the development of solutions
capable to reduce the linearization error. Prior works suggest
suitable modifications of the EKF algorithm [15], [7] or
iterative repetitions of the filtering steps [2]. Further works
introduce more efficient solutions such as the unscented
Kalman filter (UKF) [8], [9], the iterated unscented Kalman
filter (IUKF) [20], and the particle filter [1].

In particular, the UKF succeeds in overcome the EKF
with comparable computational complexity [11], [18]. The
key idea of this technique is to approximate the probability
distribution instead of the nonlinear system equations. In the
application of target tracking, however, the UKF also shows
weakness in robustness and tracking accuracy because of the
large initial error and weak observability of the system. In
the IUKF a repeated correction procedure is added to the
standard UKF leading to an improved estimation accuracy.
Obviously, this is paid in terms of computational complexity
which grows linearly on the state dimension. For simple
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applications the additive computational load given by this
extra iterative procedure does not represent a problem. On
the contrary, for real application, it may be considered
a significant limitation. New solutions able to outperform
standard EKF and UKF with severe nonlinearities in the
measurement process recently emerged, e.g. [16], [17].

Nonlinearity is not the only difficulty which arises in
the scenario of target tracking. What makes really hard to
solve this problem is the unknown behaviour of the moving
object. Indeed, any dynamic model can only give weak
information about the target movements based on assump-
tions on the maneuvering capability and external disturbance
(e.g. atmospheric turbulences). However, especially when
measurements are strongly corrupted by noise end/or the
measure rate is low, an accurate stochastic dynamic model
of target motion may have a crucial role in the estimation
process. On the other hand, a model must be sufficiently
simple to permit ready implementations.

Such a model is usually based on the fact that the moving
objects under consideration generally follow straight line
constant velocity trajectories. If the targets were not able
to deviate from these trajectories than the tracking problem
could be solved quickly and simply using standard filtering
algorithms. However, the maneuver capability of the con-
sidered target constitutes the single feature that makes these
algorithms generally unsuitable for accurate tracking [14].
This maneuver capability is usually modelled by random
acceleration terms within the dynamical equations. The most
correct representation of the target behaviour arises with
a nongaussian statistical characterization of these random
terms [12]. Existing methods generally use a Gaussian ap-
proximation of the acceleration terms tacking into account
the only first and second order moments of the statistical
distributions. If the target behaviour is really nongaussian,
a second order approximation may be not sufficient for
accurate tracking.

In this paper a new approach to the planar tracking is
suggested. This new method attempts to deal with both
the mentioned difficulties of the problem. The main idea
is to use the range and angle measurements as time-varying
parameters of the output matrix and of a virtual output vector.
This simple manipulation allows the proposed algorithm
to avoid any linearization of the measurements. On the
other hand, it makes the measurement noise nongaussian.
In [6] a similar technique was introduced showing accurate
performances on a Gaussian setting. The nongaussianity of
the transformed measurement process was tackled with a
polynomial approach which is able to take into account
statistical moments up to a certain order [4]. This feature of
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the proposed algorithm naturally holds for the state noise.
This means that such a new approach is also capable to
manage the nongaussian behaviour of the target in a more
accurate way with respect to the existing methods. In this
work a modified quadratic form of the basic algorithm in [6]
is developed. The resulting technique is able to outperform
both the EKF and the UKF in the considered nongaussian
setting, as shown by numerical results.

The paper is organized as follows. In section II the
tracking problem is formalized. Section III introduces the
new approach. Results are provided in section IV. Finally,
conclusions are summarized in Section V.

II. PROBLEM FORMULATION

In this paper, a kinematic model for planar motion is
considered where the state is given by position, velocity and
acceleration in the 2-D plane, namely

x = [x1, x2, ẋ1, ẋ2, ẍ1, ẍ2]T .

The state equation in Cartesian Coordinate System (CCS)
coordinates (x1, x2) can be represented by the vector-matrix
equation in the form

x(k + 1) = Ax(k) + Fak, (1)

with

A =

 I2 ∆I2
∆2

2 I2
02 I2 ∆I2
02 02 I2

 , F =

 02

02

I2

 , (2)

where In and 0n denote the n × n identity matrix and the
null block matrix, respectively, and ak = [a1,k, a2,k]T is
the random acceleration noise along the x1 and x2 axis.
It is assumed that the sequence {ak} is white and that
the accidental acceleration perturbations a1,k and a2,k at
each measurement time step are completely uncorrelated.
Moreover, the object is supposed to experience a disturbance
of ±Am P1 of time, zero acceleration P2 of time, and for the
rest of time a uniform distributed acceleration disturbance, as
shown in Fig. 1. The statistical moments of this nongaussian
distribution are given by the following equation:

ψ(i)
a`

:= E
[
ai`,k

]
=

{
0 i odd;

Aim

(
1−(P2+2P1)

i+1 + 2P2

)
i even;

(3)
for any order i = 1, 2, . . . and ` = 1, 2.

As usual, the measurements process, at each time instant
k, is given by the noisy values of the radius ρm(k) and the
angle position θm(k) of the target, respectively:

ρm(k) = ρ(k) + nρ,k =
√
x2

1(k) + x2
2(k) + nρ,k (4)

θm(k) = θ(k) + nθ,k = tan−1

(
x2(k)

x1(k)

)
+ nθ,k (5)

where nρ,k and nθ,k denote the measurement errors, assumed
to be independent zero-mean white sequence with σ2

ρ and σ2
θ

variances, respectively.
Since the measurement process is nonlinear, the state

estimation requires a nonlinear algorithm, that is, in general,

P1P1

P2

-Am Am

h=[1-(P2+2P1)]/(2Am)

Fig. 1. Probability density function of range acceleration

an infinite dimensional problem. Therefore only suboptimal
algorithms can be used for engineering applications, for
example EKF and UKF. Here, a new approach to planar
tracking is adopted which is based on a suitable transforma-
tion of the measurements in order to obtain a linear output
model. This will be performed at the expense of loosing the
Gaussianity of the measurement noise and the time-invariant
property of the output matrix [6]. Finally a quadratic filter
for the linear nongaussian model could be applied to improve
the performance of Kalman filtering. The quadratic form is
here preferred to the linear one since in [6] it is proved that
performances increase with the filter order.

III. THE NEW FILTER

A. The Virtual Measurement Map

Taking account that{
x1(k)cos(θ(k)) = ρ(k) cos2(θ(k))
x2(k)sin(θ(k)) = ρ(k) sin2(θ(k))

(6)

and the first definition in (4)-(5), it readily follows that

ρm(k)− nρ,k = ρ(k) =

=cos(θm(k)− nθ,k)x1(k) + sin(θm(k)− nθ,k)x2(k)

=C1(θm(k), nθ,k)x(k),
(7)

where

C1(θ, n) =
[
cos(θ − n) sin(θ − n) 0 0 0 0

]
.

Moreover, from (4)-(5), it follows:

θ(k) = θm(k)− nθ,k,
sin(θ(k))

cos(θ(k))
=
x2(k)

x1(k)
,

from which:

0 = −sin(θm(k)− nθ,k)x1(k) + cos(θm(k)− nθ,k)x2(k)

= C2(θm(k), nθ,k)x(k),
(8)

where

C2(θ, n) =
[
−sin(θ − n) cos(θ − n) 0 0 0 0

]
.
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Equations (7) and (8) realize in a linear form the nonlinear
output measurements (4) in a nongaussian setting. Now, let
the virtual output be the sequence

yv(k) =

[
ρm(k)

0

]
,

so that the following output measurement map holds true:

yv(k) = C(θm(k), nθ,k)x(k) +Gnρ,k, (9)

where

C(θm(k), nθ,k) =

[
C1(θm(k), nθ,k)
C2(θm(k), nθ,k)

]
, G =

[
1
0

]
.

(10)
Remark 1: Note that the definition of a virtual output

leads to rewrite the nonlinear measurement process in the
linear form (9) where the output matrix becomes to be
stochastic. For such kind of systems, sub-optimal filtering
algorithms are available in literature (e.g. [19]).

For the sequel, it will be useful to recognize that the matrix
in (10) can be factorized as

C(θ, n) = R(θ − n)S, (11)

where

R(α) =

[
cos(α) sin(α)
−sin(α) cos(α)

]
, S =

[
I2 02 02

]
.

(12)
Moreover, note that the rotation matrix R(α) satisfies the
following properties for any α, β ∈ R:

R(α+ β) = R(α)R(β), (13)
R−1(α) = RT (α) = R(−α). (14)

The described manipulation makes the considered setting
nongaussian for both the state and the measurement noises.
Because of this nongaussianity, the performances of the filter
could be not full satisfying for specifically applications.
Significant improvements could be derived by using specific
algorithms which take into account the shape of the distri-
butions as suggested in [6]. Next section will be devoted
to the definition of a filter which takes into account higher
statistical moments of the noise sequences.

B. Quadratic Extension

In order to suitably solve the introduced nonlinear non-
gaussian problem, a polynomial filtering approach [4] can
be used. In particular, such a nonlinear estimate can be
obtained through a filtering process computed on a system
whose output vector carries the Kronecker powers of the
original output vector up to a certain order. In this work this
order is set equal to two. The resulting algorithm will be
thus quadratic and able to take into account the statistical
moments of the noise sequences up to the fourth order.

At first, the extended state vector is defined as

X (k) :=

[
x(k)
x[2](k)

]
∈ RN ,

where N = 6+62 = 42 is the extended state dimension. Fur-
thermore, the statistical moments of the state noise sequence
are given by

ψ(i)
a := E

[
a

[i]
k

]
.

Note that the i-th moment of the vector ak carries elements
of the form ψ

(p)
a1 · ψ

(q)
a2 , p + q = i, i.e. the i-th moments of

the nongaussian state noise. Finally, let å(i)
k be the random

zero-mean vector

å
(i)
k := a

[i]
k − ψ

(i)
a .

Taking into account these last definitions, properties in
Lemmas 1 and 2, and (1), the second-order Kronecker power
of the state vector x(k) (i.e. the second block-entry of the
extended state) results to satisfy the following equation:

x[2](k + 1) =A[2]x[2](k) + F [2]a
[2]
k

+M6((Ax(k))⊗ (Fak))

=A[2]x[2](k) + F [2]ψ(2)
a + F [2]å

(2)
k

+M6((Ax(k))⊗ (Fak)).

(15)

From (1) and (15) the extended state equation is obtained as
follows:

X (k + 1) = AX (k) + U + Vk, (16)

where

A =

[
A 06×62

062×6 A[2]

]
is the extended dynamic matrix (0n×m denoting the n×m
null matrix),

U =

[
06×1

F [2]ψ
(2)
a

]
is a deterministic term, and

Vk =

[
Fak

F [2]å
(2)
k +M6((Ax(k))⊗ (Fak))

]
is a is a zero-mean multiplicative state noise vector. It can
be proved that the random sequence {V(k)} is a white
sequence. Moreover, the corresponding covariance matrix
can be computed exploiting property (27) in Lemma 2. The
resulting expression follows:

Q(k) = E
[
VkVTk

]
=

[
Q11(k) Q12(k)
QT12(k) Q22(k)

]
with

Q11(k) = Fst−1
2 (ψ(2)

a )FT

Q12(k) =
((
ATE[xT (k)]

)
⊗
(
Fst−1

2

(
ψ(2)
a

)
FT
))

MT
6

Q22(k) = F [2]
(
st−1

4 (ψ(4)
a )− ψ(2)

a ψ(2)T
a

)
FT [2]

+M6

((
AΨx(k)AT

)
⊗
(
Fst−1

2

(
ψ(2)
a

)
FT
))

MT
6

(17)

where Ψx(k) = E[x(k)xT (k)]. Note that this covariance
matrix depends on the statistical moments of the nongaussian
state noise up to the fourth order.
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The definition of the extended output vector does not differ
from that in [6]. However, to be more clear, the particular
second order case is described in the sequel.

Preliminary definition are given for i = 1, 2:

ψ(i)
nρ := E

[
niρ,k

]
, (18)

R
(i)

σθ
:= E

[
R[i] (−nθ,k)

]
, (19)

n̊iρ,k := n
(i)
ρ,k − ψ

(i)
nρ , (20)

R̊(i) (−nθ,k) := R(i) (−nθ,k)−R(i)

σθ
. (21)

Note that the mean value of the random quantities introduced
in (18) and (19) can be easily computed basing on the knowl-
edge of the statistical moments of the measurement noise
sequences, which are supposed to be Gaussian. Moreover,
note that the quantities in (20) and (21) are composed by
zero-mean random variables.

Exploiting (13)-(14), (9) can be rewritten as

RT (θm(k))yv(k) = R(−nθ,k)Sx(k) +RT (θm(k))Gnρ,k.
(22)

The extended output vector will be composed by the left-
side hand of (22) and its quadratic Kronecker power. There-
fore, (22) will be manipulated for linear and quadratic
components, respectively, taking into account (18)-(21) and
Lemmas 1 and 2.

Linear components:

RT (θm(k))yv(k) =R
(1)

σθ
Sx(k) + R̊(1) (−nθ,k)Sx(k)

+RT (θm(k))Gnρ,k

= C1X (k) +W1,k,

(23)

with

C1 =
[
R

(1)

σθ
S 02×62

]
,

W1,k = R̊(1) (−nθ,k)Sx(k) +RT (θm(k))Gnρ,k.

Quadratic components:

R[2]T (θm(k))y[2]
v (k) =

= R[2](−nθ,k)S[2]x[2](k) + R[2]T (θm(k))G[2]n2
ρ,k

+M2

(
(R(−nθ,k)Sx(k))⊗

(
RT (θm(k))Gnρ,k

))
= R

(2)

σθ
S[2]x[2](k) + R̊(2)(−nθ,k)S[2]x[2](k)

+R[2]T (θm(k))G[2]ψ(2)
nρ +R[2]T (θm(k))G[2]n̊2

ρ,k

+M2

((
R̊(1)(−nθ,k)Sx(k)

)
⊗
(
RT (θm(k))Gnρ,k

))
+M2

((
R

(1)

σθ
Sx(k)

)
⊗
(
RT (θm(k))Gnρ,k

))
.

(24)

Equation (24) can be rewritten as

R[2]T (θm(k))
(
y[2]
v (k)−G[2]ψ(2)

nρ

)
= C2X (k) +W2,k,

(25)

with

C2 =
[

022×6 R
(2)

σθ
S[2]

]
,

W2,k = R̊(2)(−nθ,k)S[2]x[2](k)

+R[2]T (θm(k))G[2]n̊2
ρ,k

+M2

((
R̊(1)(−nθ,k)Sx(k)

)
⊗
(
RT (θm(k))Gnρ,k

))
+M2

((
R

(1)

σθ
Sx(k)

)
⊗
(
RT (θm(k))Gnρ,k

))
.

Finally, by defining the extended virtual output vector as

Yv(k) =

[
RT (θm(k))yv(k)

R[2]T (θm(k))
(
y

[2]
v (k)−G[2]ψ

(2)
nρ

) ] ∈ Rq,

q = 2 + 22 = 6, from (23) and (25), the extended output
results to have the form

Yv(k) = CX (k) +Wk, (26)

where
C =

[
C1
C2

]
and Wk =

[
W1,k

W2,k

]
are the extended output matrix and the output zero mean
noise sequence. This last can be proved to be a nongaussian
white random sequence.

The system modelled by (16) and (26) satisfies the require-
ments for applying the standard linear Kalman algorithm
that, in this case, constitutes the optimal linear filter with
respect to the virtual output process. It is remarkable that
Kalman filtering for (16) and (26) is only a linear optimal
technique because of the nongaussianity of state and output
noises. On the other hand, as shown in this section, the
new filter takes into account the statistical moments of the
noise sequences up to the fourth order, promising to better
represent the nongaussian behaviour of the target and of the
transformed output noise.

C. Reduced state-space filter

A considerable reduction of the filter state-space dimen-
sion can be obtained by eliminating the redundancy con-
tained in the vector X (k). In fact, the second block entry of
X (k) is composed by monomials in the form xl(k)xp(k),
1 ≤ l ≤ p ≤ 6. These terms do not change their values
with a permutation of the indices l and p so that the same
value can be repeated many times. This can be avoided
by using a suitable definition of Kronecker power, instead
of the classical one, which eliminates all redundancies, as
suggested in [3]. This helps in reducing both memory space
and computation time.

For the particular case of this paper, it is sufficient to define
two suitable matrices T̃ and T such that:

x[2](k) = T̃ x[2](k), x[2](k) = Tx[2](k),

x[2](k) = T T̃x[2](k), x[2](k) = T̃ Tx[2](k),

where x[2](k) is the reduced quadratic Kronecker power of
x(k) which contains the same quantities of x[2](k) but with-
out redundancies. Since the number of possible monomials
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is here 21, x[2](k) ∈ R21, T̃ ∈ R21×36 and T ∈ R36×21. For
details the reader is referred to [3].

Now, let

T̃e =

[
I6 0

0 T̃

]
and Te =

[
I6 0
0 T

]
.

The reduced state can be so the vector

Xr(k) =

[
x(k)
x[2](k)

]
= T̃eX (k)

whose dimension is 27. The reduced filter can be finally
obtained by applying the standard Kalman algorithm to the
reduced system

Xr(k + 1) = ArXr(k) + Ur + Vr,k,
Yv(k) = CrXr(k) +Wk,

where

Ar = T̃eATe, Ur = T̃eU ,
Vr,k = T̃eVk, Cr = CTe.

IV. SIMULATION RESULTS

In this section it is presented the performance of the new
filter VOKF (Virtual Output Kalman Filter) for simulated
typical tracking settings. Moreover a comparison with the
classical EKF and UKF solutions is shown.

In the simulation, the angle standard deviation (σθ) is
considered within the set [0.87, 1.31, 1.75, 2.18, 2.62]e − 2
rad and the radius standard deviation (σρ) is 0.35 m. The
initial state for the filters is calculated from the first measure-
ments. The random acceleration noise is assumed identically
distributed for two axis, with Am = ge−4 (g = 9.8m/s2),
P2 = 30% and P1 = 10%.

The evaluation metric of interest is the standard relative
position error (RPEi(k)) which is defined for each sample
measurement noise realization i at time k as

RPEi(k) =

√(
ê

(i)
1 (k)

)2

+
(
ê

(i)
2 (k)

)2

√(
x

(i)
1 (k)

)2

+
(
x

(i)
2 (k)

)2
· 100%,

with ê(i)
l (k) = x

(i)
l (k)− x̂(i)

l (k), l = 1, 2, x̂(i)
l (k) being the

estimated state vector.
The average value of RPEi(k) with respect the subset of

samples corresponding to stable behaviour of the filters, over
a total number of 100 samples will be denoted by RPE(k).
The average value of RPE(k) with respect time will be
indicated with RPE. A run is considered to be convergent
only if the RPEi(k) < 15% at the end of any simulation.

These parameters were computed for 100 different trajec-
tories (i.e. 100 different realizations of the nongaussian state
noise), obtaining strictly similar results.

Below the results of two simulations with different kine-
matic range are presented considering the movement of a
slow (e.g. planar robot) and a fast (e.g. airplane) object.

TABLE I
NUMERICAL RPE RESULTS

σθ
0.87e-2 1.31e-2 1.75e-2 2.18e-2 2.62e-2

VOKF 0.3695 0.5195 0.6939 0.8342 0.9141
UKF 0.3788 0.5894 0.8244 1.0405 1.2012
EKF 0.3789 0.5932 0.8413 1.0869 1.3041

60 70 80 90 100 110 120 130
50

100

150

200

250

300

350

400

x
1
 (m)

x
2
 
(
m
)

VOKF
UKF
Groud truth

Fig. 2. Estimation result for a typical trajectory in CCS [x1(0) =
120 , x2(0) = 80 , σθ = 2.63e− 2 rad, σρ = 0.35m]

A. Slow object

It is assumed that the observer is located at the axis origin,
and the target moves at a nearly constant velocity in the 2-D
plane, with initial state:

x(0) =
[

120m 80m −1.5ms 1ms 0ms2 0ms2
]T

and the measurement process is available with a sampling
time of 2 s.

In Table I the RPE for the given set of different σθ values
for VOKF, UKF and EKF algorithms is presented. It appears
clear that the VOKF has superior performance for higher
values of angle noise variance, while EKF shows worst
behaviour for high noise when the linearization generates
significant approximation errors.

In Fig. 2 the estimation result for a typical trajectory in
CCS is graphically represented.

B. Fast object

In this simulation, the target moves with initial state

x(0) =
[

12km 8km −120ms 15ms 0ms2 0ms2
]T
.

The EKF results to be non stable because for 95% of
simulations is unable to converge, meanwhile both VOKF
and UKF are stable. This is due to a larger initial estimation
error.

In Table II the RPE for the given set of different σθ values
for VOKF and UKF algorithms is presented.

In Fig 3 a typical behaviour of RPE(k) is represented
showing that the VOKF is superior to the UKF both in
convergence time and tracking error.
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TABLE II
NUMERICAL RPE RESULTS

σθ
0.87e-2 1.31e-2 1.75e-2 2.18e-2 2.62e-2

VOKF 0.2371 0.3500 0.4881 0.6456 0.8047
UKF 0.2408 0.4299 0.6359 1.0551 1.0329

Fig. 3. Comparison of tracking results for VOKF and UKF algorithms
with measurement precision [σθ = 1.75e− 2 rad, σρ = 0.35m]

V. CONCLUSIONS

The idea here presented of the definition of a virtual output
process capable to transform the nonlinear measurement
output function with respect the system state in a linear
time varying one, even losing the gaussianity property of
the noise, seems to be very promising and effective.

Future works will be devoted to develop higher order filter
to better manage nongaussanities.

APPENDIX

In the following Lemmas a few useful properties are
summarized.

Lemma 1: For any matrices A, B, C, and D, it is

(A+B)⊗ (C +D) =

= (A⊗ C) + (A⊗D) + (B ⊗ C) + (B ⊗D),

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D),

(A⊗B)
T

= AT ⊗BT ,

where · and st(·) denote the standard matrix product and the
stack operation on a given matrix, respectively.

Lemma 2: Let x, y ∈ Rn, it is

st(xxT ) = x[2] ⇔ xxT = st−1
n (x[2]), (27)

(x+ y)
2

= x[2] + y[2] +Mn(x⊗ y), (28)

where st−1
n (·) denotes the inverse stack operation on a

given vector and Mn is a suitably dimensioned commutation
matrix.
For a detailed proof of Lemma 1 and 2, see [4].
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