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Abstract— This paper considers dynamic state estimation
using blurry measurements from image sensors such as
CCD(charge coupled device) or CMOS(complementary metal
oxide semiconductor) arrays. Typically, the information ob-
tained from these sensors is the time-averaged output mea-
surement during the exposure time. The additional information
available in the intensity distribution, termed blur, is disre-
garded as noise. This manuscript models the image sensor as
an integrative intensity sensor and exploits its unique properties
to extract additional (non-linear) output information through
spatial moments of the intensity distribution. An extended
Kalman filter is then designed to exploit this information for
better state reconstruction. We illustrate this modeling and
algorithm development in the context of state estimation for
adaptive optics systems. Simulation results verify that using
the spatial moments can lead to more fidelous state estimation.

I. INTRODUCTION
Image sensors are now prevalent as feedback measurement

mechanisms for a wide variety of applications. Typical image
sensors consist of an array of CMOS or CCD elements. The
fundamental restriction of these systems is the update rate
of these elements, which are limited to a few hundred Hz
at best and more commonly around 15−50 Hz. The image
sensors deliver temporally integrated measurements over the
exposure period, which are conventionally interpreted the
time-average of the image feature of interest.

A typical vision-feedback system is usually a multi-rate
system, with a fast-acting actuator and a slow image sensor.
Using multi-rate techniques for identification, estimation, and
control of image-feedback systems can certainly enhance
closed-loop performance [1]. However, loop bandwidth will
be still constrained by the fact that the image sensor provides
limited information at a slow rate.

To overcome this seeming impasse, we exploit a unique
feature of the image sensing array. A rapidly changing
(or moving) image produces a blurry beam trace at the
sensor. This blur is considered undesirable and is removed,
assuming it to be “noise”. However, this ignores (and de-
stroys) a unique characteristic of the image sensor that it
is an integrative intensity sensor, i.e., the image sensor
transforms temporal information about the motion of the
object being imaged into a spatial intensity distribution.
This extremely important property of the image sensor can
in fact be used to extract output time-history and hence
reconstruct motion (output dynamics) during the exposure
time. Extraction of time-history at a fast-rate from the slow-
rate integrative sensor promises to break the barrier of control
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bandwidths limited to frame update rates of the image sensor
in applications that rely on image sensor feedback.

In image processing, motion blur [2] refers to the phe-
nomenon observed when an image sensor captures relative
motion of an object during the exposure time. Evolution
of the output (object position) within a single exposure is
codified through a time-varying spatial point spread function
(PSF), which is temporally integrated by the image sensor.
Figure 1 shows an image with motion blur and the cor-
responding deblurred image (taken from [3]). Motion blur
has been the focus of research in both the image processing
community as well as the visual perception community [4].

Fig. 1. Effect of relative motion between the camera and the object (left)
(taken from [3]). The blur is because of the temporal integration of the
sensor during exposure. Deblurring removes this effect partially (right).

Deblurring of a motion-blurred image is an ill-posed
inverse problem [5]. As an example, the image trace of an
object moving left to right will be indistinguishable from
that of the object moving right to left. Several algorithms
have been proposed for extracting motion from blur [2], with
various assumptions that eliminate this ill-posedness (such as
assuming a known motion profile, constant velocity, constant
acceleration, etc.). While these algorithms are effective for
image restoration, they are inadequate for accurate dynamics
reconstruction since they focus primarily on determining the
deblurred image, not the motion field. Furthermore, they
are not implementable in real-time because of computational
complexity. These drawbacks, while not relevant for image
reconstruction, are of prime importance in estimating dynam-
ics for real-time feedback control.

An integrative intensity sensor is unique in that temporal
information of the evolution of the output during the expo-
sure time is captured by the sensor, effectively making it
a non-linear integral transform. There is scarce literature on
modeling sensors as non-linear integral transforms. Bao et al
[6] modeled the relationship between ocean wave spectra and
the corresponding AT-INSAR (along-track interferometric
synthetic aperture radar) phase image spectrum measurement
as a non-linear integral transform using Gaussian basis
functions, which were then approximated as perfect delta
functions. This model was not, however, utilized in any
dynamic systems framework.
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It is clear that information in the intensity distribution
can be used to estimate the state more accurately through
a suitable inversion of the sensor transform. As mentioned
earlier, because of the ill-posed-ness of this inverse problem,
we require regularization techniques. We propose a regular-
ization that uses the dynamic model of the underlying system
to remove the ill-posed-ness. Our approach uses a multi-
rate extended Kalman filter (EKF) to estimate the state and
output evolution during the exposure time from (1) a fast-
rate system model, and (2) a slow-rate measurement from an
integrative intensity sensor.

To illustrate algorithm development, we present an adap-
tive optics (AO) system as the target application. AO, i.e.,
manipulating light wavefronts by dynamically changing op-
tics, was originally proposed in [7] by to correct wavefront
errors introduced by atmospheric disturbances in ground
based telescopes. Since then, AO has also been used for beam
shaping in laser communications [8], confocal microscopes
[9], multi-photon microscopes [10], among others.

AO systems use an image sensor to detect wavefront
dynamics. The feature that is extracted from this image
sensor is a point object. The development presented in
this paper therefore considers extracting dynamics of point-
objects in image sensors. However, the proposed approach
can be generalized to extracting dynamics of general (non-
rotating) image features.

The paper is organized as follows. Section II presents a
brief introduction to AO systems, while Section III defines
the scope of the problem considered. Section IV introduces
the wavefront sensor (WFS) in the AO system and models it
as an integrative intensity sensor. In Section V, the properties
of the integrative intensity sensor are exploited for the design
of an EKF that utilizes first and second spatial moment
information from the intensity distribution obtained from the
WFS. Section VI simulates a simplified single-lenslet single-
actuator AO system to establish the efficacy of the proposed
EKF. Finally, conclusions are drawn in Section VII and a
research roadmap is presented.

II. ADAPTIVE OPTICS SYSTEM
A typical closed-loop AO configuration (for a telescope)

is shown in Figure 2. The actuator in a typical AO system
is a MEMS deformable mirror, which can be actuated at
fast rates well into the KHz range. In addition to the
deformable mirror, the closed loop AO wavefront correction
system consists of a wavefront measurement device. There
are several types of wavefront sensors (WFS), the most
popular of which is the Shack-Hartmann (SH) sensor [11].
The SH sensor measures the local slopes of the wavefront
and algorithmically reconstructs the wavefront. It consists
of a lenslet array and an imaging device (a CMOS or
CCD camera). Typical AO loops use WFS with 10− 50
Hz sampling and 30× 30 lenslet arrays. The performance
limiting component of the WFS is the image sensor array.

Deformable Mirror Model
The AO deformable mirror-actuator system is often mod-

eled as a uniform membrane with attractive Coulomb force

The incoming wavefront from a point source reference
(guid star) and the nearby object of interest has been
distorted by the atmosphere

Fig. 2. Adaptive optics for telescope observation

exerted by electrostatic actuators [12]. The non-linear ac-
tuator (u f (k) = γV 2

f (k)) is compensated through an inverse-
map. The model structure for the mirror-actuator is a standard
discrete-time form as shown below, with a (fast) sample time
Tf corresponding to the actuator update rate:

x f (k+1) = A f x f (k)+B f u f (k)+Bww f (k) (1)
θ f (k) =C f x f (k)

The matrix C f represents the map from deflection at the
actuator locations x f , to the wavefront slope measurements
θ f .A f , B f are functions of the membrane properties and
may be obtained by system identification. u f (k) is the force
generated by the actuator, which is ∝ V 2

f (k), the applied
voltage. Typically Tf is of the order of a few hundred µs.
Wavefront Sensor Model

The wavefront phase slopes (θ f (k)) are measured by a
Shack-Hartmann (SH) WFS. Figure 3 shows a schematic of
the sensor. The WFS consists of two key components: (1) a
lenslet array (typically grids of 20×20 to 50×50 lenslets)
and (2) a CCD/CMOS image sensor. Each lenslet in the array
focuses the beam locally onto the image sensor. The local
average of the slopes of the wavefront at the lenslet, θx =

x
L

and θy =
y
L , can be computed from the displacements (x,y) of

the beam focus spot from the axis of the lenslet and the focal
length of the lenslet L, as shown in Figure 3. The wavefront
phase can be reconstructed through a linear operation on the
locally averaged slopes at each lenslet.

Fig. 3. Schematic of a Shack-Hartmann WFS. The deviation of the focal
point from the center of the lenslet (x, y) is directly related to the slopes of
the incoming wavefront θ .

In the WFS, each lenslet covers a section of the camera
field. Within this section, each pixel location (x,y) corre-
sponds to a particular wavefront slope set (θ = [θx θy]

T )
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in a one-to-one fashion with the x-coordinate determining
θx and the y-coordinate determining θy. Let the wavefront
phase slopes of the incoming beam at the pth lenslet be
θx,p(τ) and θy,p(τ), for the time instant τ . We now present
the development of the WFS as an integrative intensity
sensor. The intensity measurement at the camera section
corresponding to the pth lenslet is given by (we drop the
subscript p for clarity)

I(x,y) =
∫ Te

τ=0
Ψ(x−θx(τ),y−θy(τ))dτ +η(x,y) (2)

η includes the random and shot noises for the image sensor
and Te is the exposure time.

III. PROBLEM FORMULATION
Based on the fast-rate actuator model and the image sensor

model, we pose the following state estimation problem, (P),
for the AO system with a fast-rate mirror (updated at Tf ) and
a slow WFS measurement (updated at Te = NTf ).

x f (k+1) = A f x f (k)+B f u f (k)+Bww f (k)

θ(τ) = [θx(τ) θy(τ)]
T =Cx(τ)

I( j) =
∫ jNTf

( j−1)NTf

Ψ(x−θx(τ),y−θy(τ))dτ +η(x,y),

where j = b k
N
c (P)

We pose the problem of estimating x f at the fast-rate Tf
based on measured intensity information I( j) obtained at the
slow-rate NTf .

IV. INTEGRATIVE INTENSITY SENSOR MODEL

1-D Intensity Sensor Model
We present the analysis of the WFS as a 1D intensity

sensor. The function Ψ (termed the image kernel) captures
the intensity distribution relating the spread of the intensity
for a specific wavefront slope set θ(τ). For ideal AO systems,
Ψ is assumed to be a 2D Dirac delta function: Ψ(x,y) =
δ (x)δ (y). Since the x and y dependance of Ψ is separable,
we can individually look at intensities along each axis, x and
y, for the corresponding slopes θx and θy (assuming that the
noise η is also separable in x,y). The full coupled 2D case
when Ψ is non-separable will be considered in the future.

For ease of notation, we will henceforth denote this single
variable as ω (which can take on x or y depending on
the slope direction we wish to analyze). This results in an
intensity map in the variable ω , as shown below

Y (ω) =
∫ Te

τ=0
Ψ(ω−θω(τ))dτ +η(ω) (3)

where ω ∈ {x,y} This is an example of a unique kind of
sensor: an integrative intensity sensor. Based on Eq. (3),
these sensors can be interpreted as a non-linear integral
transform from the time-doman τ ∈ [0,Te] to the pixel domain
ω . Thus, this leads us to believe that output reconstruction
within the exposure time may be possible from the intensity
distribution. But, the inverse transform for the integrative
intensity sensor is an ill-posed inverse problem[5]. Therefore,
suitable regularization techniques must be used to extract

temporal wavefront information from the intensity distribu-
tion. In Section V we present an EKF approach, which is
essentially a regularization based on the underlying fast-rate
dynamic system model.
The Image Kernel

The function Ψ(x,y) establishes the intensity distribution
at a given instant τ and is dependent on the irradiance of
the source that is generating the intensity distribution. For
example, if the sensor is viewing an image then Ψ(x,y) cap-
tures the image irradiance information. Typically, in image
deblurring applications the image kernel is unknown and
needs to be identified along with the motion path.

In visual servoing applications, the kernel Ψ can be
deduced from the specific feature being tracked, for example,
the centroid of an object with known shape, an object edge
line, etc. For an ideal WFS, this kernel is a point source
because of the focusing lenslet, hence modeled as a delta
function δ (x)δ (y). In an actual WFS, the ideal point source
is actually smudged to give an intensity smear which can be
approximated by

Ψ(x) =
1√

2π|Σ|
e−xT Σ−2x where x = [x y]T (4)

, where | · | represents the determinant. The amount of smear
is indicated by the largest singular value of Σ, i.e., σ̄ (Σ).
Time-averaged Output from Intensity Measurement

In Eq.(3), the integration over Te means that we obtain
a time-averaged estimate of the intensity profile. Assuming
Ψ to be the ideal delta function, we can easily derive the
following:∫

∞

−∞

ωY (ω)dω =
1
Te

∫ Te

τ=0
θω(τ)dτ and

∫
∞

−∞

Y (ω)dω = 1 (5)

Using the above relationships, the center of gravity yCG
(or the first moment) of the intensity distribution is given by

θω,ave = yCG =

∫
∞

−∞
ωY (ω)dω∫

∞

−∞
Y (ω)dω

=
1
Te

∫ Te

τ=0
θω(τ)dτ (6)

where ω ∈ {x,y}. Therefore, as in typical image processing
applications, the center of gravity of the intensity profile is
computed to retrieve the time-averaged output (θω,s). We use
the subscript s to emphasize that this reading is available at
the much slower image update rate (Ts = Te) than the actuator
update rate (Tf ).
Higher Moments of the Intensity Distribution

Moment computations of intensity distributions have been
used frequently in image deblurring algorithms [2], [13]. The
pth moment of the univariate intensity distribution in ω is
defined as

yp =

∫
∞

−∞

ω
pY (ω)dω∫

∞

−∞

Y (ω)dω

(7)

For an image kernel (Ψ) that is a delta function, this higher
order moment reduces to yp = 1

Te

∫ Te
τ=0 θ(τ)pdτ . Therefore,

for this special case, higher spatial moments of the intensity
distribution are time-averages of powers of the output (θ p).
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It is key to note that the spatial moments are projections
of the intensity profile onto the polynomial basis set B =
{bn : bn (ω) = ωn,n ∈ Z+}. Alternative basis functions may
be designed to improve computational tractability based on
the image feature of interest (i.e. the image kernel) and/or
the nature of information to be extracted.

In the following sections, we present state estimation
schemes for systems with integrative intensity sensor mea-
surements, for the univariate intensity distribution case and
assume that the image kernel is Ψ(ω)= δ (ω), a point object.
The case of a 2D intensity sensor grid can be developed from
extension of these results.

V. STATE ESTIMATION

Noise Modeling for Integrative Intensity Sensors
In the presence of additive noise at the sensor, the mea-

sured intensity distribution at the camera (with exposure time
Te) is given by

Ym(ω) =
∫ Te

τ=0
(Ψ(ω−θ(τ)))dτ +η(ω) = Y (ω)+η(ω)

(8)
We assume that the noise at each pixel (η(ω)) is indepen-
dent, zero-mean, and Gaussian, with covariance V . Hence,
E [η(ω)] = 0 and E [η(ω)η(ξ )] = V δ (ω − ξ ). Further, we
assume that the pixels ω ∈ [−1,1] and the output θ(τ) ∈
[−1,1] ∀ τ ∈ [0,Te].

The (noise-free) center of mass (i.e., the first moment of
Y (ω)) is given by

θave = yCG =
∫ 1

−1
ωY (ω)dω =

1
Te

∫ Te

τ=0
θ(τ)dτ (9)

In the presence of noise η , using Eqs. 9 and 12, we get

E [yCG,m] = yCG +E
[∫ 1

−1
ωη(ω)dω

]
= yCG (10)

Thus we have no bias in the first moment computation due to
noise. To find the covariance of the noise in the first moment,

E
[
(yCG,m− yCG)

2
]
= E

[∫ 1

−1

∫ 1

−1
ωξ η(ω)η(ξ )dωdξ

]
=

2
3

V.

Following a similar procedure, we can also show that for
the second moment

E [y2,m] = y2 and E
[
(y2,m− y2)

2
]
=

2
5

V. (11)

Finally, we show that the cross-covariance terms
E [(y1,m− y1)(y2,m− y2)] are zero.

Discrete-time Estimation
Since the estimation and control algorithms are designed

in discrete time, we may approximate the moment equation,
Eq. (7) as a finite sum with a sampling time Tf , and N = Te

Tf
.

yp =
1
N

N−1

∑
i=0

(
C f Ai

f x f (k)
)p

(12)

Therefore, we have the following lifted system description
when we use the first moment (p = 1) as the only output

measurement

x f (k+N) = AN
f x f (k)+Bww(k)

y1,m(k+N) = C̄x f (k)+n1(k),

=
1
N

[
C f +C f A f + . . .+C f AN−1

f

]
x f (k)+n1(k),

w∼N (0,W ) n1 ∼N

(
0,

2
3

V
)

where the process noise is Bww(k) and the measurement
noise is n1(k).

Remark 1: It is easy to show that
(

AN
f ,C̄
)

is an observable
pair if

(
A f ,C f

)
is observable.

Using only the center of mass of the intensity distribution
means that we are throwing away quite a bit of information
available in the sensor measurement. For example, by using
the second moment of the intensity distribution, we have an
additional output equation

y2,m(k+N) = h(x f (k))+n2(k), n2 ∼N
(
0, 2

5V
)

=
1
N

N−1

∑
i=0

(
CAix f (k)

)2
+n2(k) (13)

Thus, we now have a non-linear output (y2,m) in addition to
the linear output(y1,m).

Remark 2: This is a Wiener system with a static non-
linearity on the output of a polynomial form. Conditions
for these Wiener systems developed in [14] established that
the system is detectable from the non-linear output (y2,m) if
ρ(Ā)< 1 and

(
Ā,C̄

)
is observable.

We approximate the probability distributions of n1 and n2
jointly using their second order statistics (mean and covari-
ance) assuming a Gaussian distribution. Thus, the overall
lifted system description becomes:

x f (k+N) = AN
f x f (k)+Bww(k) w∼N (0,W )

y1,m(k+N) = C̄x f (k)+n1(k)

y2,m(k+N) = h(x f (k))+n2(k)[
n1
n2

]
∼N

([
0
0

]
,

[ 2
3V 0
0 2

5V

])
(14)

Remark 3: Using the additional non-linear output can
achieve a smaller (or equal) estimation error covariance.
From the definition of conditional expectation, the optimal
estimator using y1 and y2 delivers estimation error covariance
lesser than or equal to the optimal estimator that uses only y1.
Therefore, next we design an extended Kalman filter (EKF)
[15] using the two outputs to exploit the second moment
information obtained from the image sensor.
Extended Kalman Filter Estimation

For the system described above, we then use the following
EKF as the state estimator [15]. Since measurements are
received every N steps, we will introduce the index j, which
increments by 1 every N time steps. The local linearization,
H j of the nonlinear output y2 is given by

H j =
∂y2( j)
∂x f ( j)

|x j| j−1 =
2
N

N−1

∑
i=0

xT
j| j−1

(
C f Ai

f
)T (

C f Ai
f
)

(15)
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We use this local linearization for the EKF estimation as
shown below:

Prediction: x̂ j| j−1 = AN
f x̂ j−1| j−1 (16)

Pj| j−1 = AN
f Pj−1| j−1(A

N
f )

T +BwWBT
w (17)

Kalman Gain: K j = Pj| j−1

[
C̄
H j

]([ 2
3V 0
0 2

5V

]
+

[
C̄
H j

]
Pj| j−1

[
C̄T HT

j
])−1

(18)

Correction: Pj| j = Pj| j−1−K j

[
C̄
H j

]
Pj| j−1 (19)

x̂ j| j = x̂ j| j−1 +K j

([
y1,m( j)
y2,m( j)

]
−
[

C̄
H j

]
x̂ j| j−1

)
(20)

It is interesting to note that since H j and C̄ are locally
independent, we may entertain the possibility of constructing
a passive output yP as a combination of the two outputs y1
and y2. This passive output can then be used for a robust
feedback controller.

VI. SIMULATED EXAMPLE
We now present an example to illustrate the EKF scheme

developed in the previous section.
System Model

The underlying discrete-time fast-rate system (with sam-
pling rate Tf = 1ms corresponding to the actuator update
rate) is given by the following model

x f (k+1) =
[

1.0000 0.0010
−0.0197 0.9704

]
x f (k)

+

[
0
1

]
u f (k)+

[
0

0.05

]
w f (k) (21)

θ f (k) =
[

0.001 0
]

x f (k) (22)

The exposure time is Te = 200ms, i.e., we get an intensity
distribution measurement every N = 200 fast-rate steps.
The intensity distribution is assumed to be generated by a

Gaussian image kernel Ψ(ω−θ(t)) = 1√
2πσ

e−
(ω−θ(t))2

σ2 with
σ = 0.05 (σ = 0 corresponds to a delta function). A small σ

results in a small smudging of the perfectly sharp intensity
distribution.

The additive random noise in the image intensity distri-
bution η is white, zero mean, and with covariance V = 0.1
(This corresponds to a signal to noise ratio of 0.05 at the
photodetector for the CMOS element). The effect of the
process noise w f (k) ∈ ℜ over N steps is w( j) ∈ ℜ, with
zero mean and covariance W = B̄Wf B̄T = 0.1.
Observer Design Scenarios

We compare three design scenarios: (O1) A steady state
Kalman filter designed based on the lifted system Ā, B̄ and
the noise covariances V and W , using only the first moment
(y1) of the intensity distribution, (O2) an EKF designed
based on the lifted system Ā, B̄ and the noise covariances V
and W , using only the second moment (y2) of the intensity
distribution and (O3) the EKF observer designed in the
previous section based on the lifted system Ā, B̄ and the
noise covariances V and W , using both the first and second

moments (y1,y2) of the measured intensity distribution. Note
that the measurements are available only every N fast-rate
steps. To account for the input u f , the predictor equations
for the observers are modified as x̂ j| j−1 = AN

f x̂ j−1| j−1 +
N−1

∑
i=0

Ai
f B f u f ( jN− i).

Results
Figure 4 shows a comparison of the estimated state x̂ f ,1 =

θ̂ using (1) a measurement of the first moment y1 only (O1)
and (2) a measurement of the second moment y2 only (O2).
We observe that state estimation is possible by using either
y1 or y2 since in both cases the estimates converge to the
true state. This corroborates our claim that the lifted system
is observable from y1 as well as the non-linear output y2.

Fig. 4. Estimation of the state variable x f ,1 = θ f using (dashed) a
measurement of the first moment y1 only (O1) and (dotted) a measurement
of the second moment y2 only (O2).

Next, we use the EKF scheme O3 (which uses both
y1 and y2) derived in Section V for state estimation and
compare to the steady state KF O1 (which uses only the
linear output y1). Figure 5 shows the state estimation error
norm (‖x̂ j| j − x( j)‖2) plotted against the time step j. It is
evident that the EKF delivers a lower steady-state estimation
error covariance (∼ 0.05) as compared to the KF (∼ 0.07).
Figure 6 shows the error in estimation of the wavefront
slope θ f at the fast-rate for a section of the simulation
time. Therefore, using the additional non-linear output y2
can improve the estimation of the output, particularly in the
presence of significant process noise. Finally, in Figure 7, a
zoomed-in detail of the estimate and actual output within a
single exposure of the image sensor is shown, highlighting
the fact that we have a multi-rate estimation scheme that has
better inter-sample behavior.

VII. CONCLUSIONS AND FUTURE WORK
Image sensors are now widely being used as feedback

mechanisms. These sensors, essentially CCD or CMOS cam-
era elements, fall into a unique class of integrative intensity
sensors. Typically, the image sensors are slow and outputs are
estimated by finding the center of mass (the first moment) of
the intensity distribution, which corresponds to the temporal
average of the output profile over the exposure period of the
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Fig. 5. State estimation error norm (‖x̂ j| j − x( j)‖2) plotted against the
time step j using (1, dotted) a measurement of the first moment (y1,m) only
through a KF (O1) and (2, dashed) combining the first and second moment
measurements y1,y2 using the EKF (O3).

Fig. 6. Estimation of the state variable x f ,1 = θ f using using (1, dotted)
a measurement of the first moment (y1) only through a KF (O1) and (2,
dashed) combining the first and second moment measurements y1,y2 using
the EKF (O3).

image sensor. The intensity blur is considered undesirable
and discarded through this averaging. However, substantial
temporal information about the output is encoded in the
intensity blur and may be used for a better state estimate.

Thus, a model was developed for the class of inte-
grative intensity sensors. The integrative intensity sensor
is effectively a non-linear integral transform from time-
domain evolution of the output to a pixel-domain intensity
distribution that captures the relative length of time for
which the output resides at a given value. Thus, additional
information (about the output) in the form of higher moments
of the intensity distribution were obtained from these sensors.
Observability of the system from first and second moments of
the intensity distribution was established. In addition, an EKF
that used the first and second moments for state estimation
was proposed and was shown to outperform a standard KF
using only the first moment.

This research opens up the potential for several exciting
possiblities for applications that use image sensors, such as
system identification using integrative sensors, robust inverse
transforms for integrative sensors, and dynamic control of
exposure time as a means of extracting more information

Fig. 7. Zoomed-in detail of estimation of the output within a single
exposure (i.e., in between measurements).

from such sensors.
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