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Abstract— This paper deals with the control of the
Pantograph-catenary interaction for high-speed-trains. This
problem is directly related to the electric train current collection
quality and efficiency. Our main contributions are the deriva-
tion of new mathematical description in terms of a multiple
model as an alternative to existing time varying ones and
further the proposition of an LMI control law to keep the
contact force between the pantograph and the catenary close
to a desired value in various operating conditions.

I. INTRODUCTION

High-speed trains are well developping due to their numer-
ous advantages. Indeed, they are safe, sustainable, energy
efficient and very convenient for passengers. One of the
main drawbacks comes from the current collection generally
ensured by a pantograph in mechanical and electrical contact
with the overhead equipement, the catenary.

As the speed increases, this contact becomes not perma-
nent and many losses occur due to operational conditions
(catenary structure variations, overhead contact line oscilla-
tion, train vibrations, etc) and to perturbations (aerodynam-
ics, wind, ice, etc).

Therefore, it is very important to control the PAC
(PAntograph-Catenay) contact force to a suitable value, gen-
erally about 100 N, to guarantee a satisfatory mechanical
contact avoiding excessive wear and a good current/power
collection (Figure 1).

The catenary constitutes the main difficulty since it is a
complex structure which depends on time and space. In [1] to
[4], one can find interesting developments on the modelling
of the PAC system.

The pantograph is a suspension system which is generally
mathematically described by a linear model of order 1 or 2.
Reference [5] is a pioneering work on asymetric pantograph
dynamics discussing lumped parameter pantograph models
and addressing a general 3 degree of freedom model and
corresponding laboratory experiments.

For control purposes, many simplifications have been
considered. [6] and [7] presents basic fundamental and
experimental results on the PAC system control considering
a very simple model of the catenary. Many authors have dealt
with the same problem by considered various simplifications
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on the catenary or pantograph models and by using different
control techniques ([8]-[13]).

Figure 1: Active control of the PAC system

II. PROBLEM STATEMENT

The pantograph is shown in Figure 2 and it is represented
by the 2 degree of freedom mechanical system in Figure
3. The catenary is generally represented by a time-variant
stifness k(t) as in [9].

Figure 2: Pantograph mechanism

The state space representation of the PAC system is [7] :
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Figure 3: The pantograph model representation

{
ż(t) = A(t)z(t)+Bu(t)
y(t) =C(t)z(t) (1)

where

z =
[
z1 z2 z3 z4

]T =
[
x1 ẋ1 x2 ẋ2

]T ,

A(t) =



0 1 0 0

−k1 + k(t)
m1

− b1

m1

k1

m1

b1

m1

0 0 0 1

k1

m2

b1

m2
− k1

m2
−b1 +b2

m2


,

B =

[
0 0 0

1
m2

]T

, C(t) =
[
k(t) 0 0 0

]
,

with (see [9])

k(t) = K0

(
1+ν cos

(
2πV

L
t
))

(2)

V is the train speed (m/s); L the span length (m); K0 the
average equivalent stiffness (N/m); ν is the stiffness variation

coefficient in a span. Typical values of the model parameters
are given in the Table 1. We also have ([9], [13])

ν =
Kmax−Kmin

Kmax +Kmin
, K0 =

Kmax +Kmin

2
Kmax, Kmin being respectively the maximum and minimum

stiffness value in a span (N/m).

III. PAC ALTERNATIVE DESCRIPTION

Multiple models have been widely considered in the last
decade due to their usefulness in many control engineering
applications. In this section, we present a multiple model
description for the PAC. It is easily seen from (2) that k(t)
can be bounded as

K = K0(1−ν)≤ k(t)≤ K = K0(1+ν)

inducing

−k1 +K
m1

≤−k1 + k(t)
m1

≤−k1 +K
m1

·

Consequently, the PAC state space (1) can be rewritten in
terms of a multiple model, that is{

ż = (µ1A1 +µ2A2)z+Bu
y = (µ1C1 +µ2C2)z

(3)

where µ1 +µ2 = 1, and

µ1 =
K− k(t)
K−K

≥ 0, µ2 =
k(t)−K
K−K

≥ 0 (4)
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C1 =
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K 0 0 0

]
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0 1 0 0

−k1 +K
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C2 =

[
K 0 0 0

]

(5)

Description (3) is useful to apply specific methods such
as LMI’s techniques [15] or Takagi-Sugeno approach [16].

2288



IV. PAC CONTROL AND OBSERVATION

A. PAC Control

In this paper, we use LMI’s (Linear Matrix Inequalities)
to control the PAC system modeled by the multiple model
(3). LMI’s have been extensively used in control theory [14],
[15] due to their simple formulation and available computing
solvers such as the LMI’s MATLAB Toolbox.

However, the use of LMI’s gives little insight on the
system dynamics performance. The following proposition
ensures prescribed bounds for the closed-loop eigenvalues.

Proposition 1 : Consider the general m-multiple model,
m > 0,

ż =
m

∑
i=1
{µiAi}z+Bu,

m

∑
i=1

µi = 1, µi > 0.

If there exists X > 0 such that{
AiX +XAT

i −BBT <−2αX
AiX +XAT

i −BBT >−2βX (6)

for some 0 ≤ α < β , then the control law u = −Fz with
F = (1/2)BT X−1, is such that ℜ(λ (Ac)) ∈ [−β ,−α] where
λ denotes the eigenvalue, ℜ the real part, and Ac the closed
loop state matrix given by Ac = ∑

m
i=1 µi{Ai−BF}.

The proof is given in the Appendix.

Remark 1 : By duality, it is easy to get a similar result to
the Proposition 1 to design an observer for mutliple models
with constant output matrix, of the form

 ż =
m

∑
i=1
{µiAi}z+

m

∑
i=1
{µiBi}u

y =Cz
(7)

where ∑
m
i=1 µi = 1, µi > 0.

Now considering our PAC system (3), the control objective
is to drive the output contact force y(t) to a desired constant
yd , typically the desired value being yd = 100 N.

To this end, we introduce the integrator

w(t) =
∫ t

0
(yd− y(θ))θ

or equivalently

ẇ(t) = yd− y(t) (8)

This ensures a zero steady state error. Indeed, at the steady
state where ẇ(t) = 0, one gets y(t) = yd due to equation (8).

Combining this equation with the system dynamics (3)
yields

 ż = (µ1A1 +µ2A2)z+Bu
y = (µ1C1 +µ2C2)z
ẇ(t) = yd− y(t) =−µ1C1−µ2C2 + yd

which can be written more compactly under the augmented
state space representaion

ża = (µ1F1 +µ2F2)za +Gu+Myd (9)

where

za =

[
z
w

]
, Fi =

[
Ai 04×1
−Ci 0

]
, G =

[
B
0

]
, M =

[
04×1

1

]
.

Now, we apply the proposition 1 to the augmented system
(9) which gives the sufficient conditions FiX +XFT

i −GGT <−2αX , i = 1,2
FiX +XFT

i −GGT >−2βX , i = 1,2
X > 0

(10)

and the control law u =−(1/2)GT X−1za.

Remark 2: If one wants to avoid the introdution of the
integrator, an alternative is to consider a feedforward term
in the feedback control to be rewritten

u =−Fz+qyd

where q =−1/[C0(A0−BF)−1B] with

A0 =



0 1 0 0

−k1 +K0

m1
− b1

m1

k1

m1

b1

m1

0 0 0 1

k1

m2

b1

m2
− k1

m2
−b1 +b2

m2


,

C0 =
[
K0 0 0 0

]
.

However, this will yield to a permanent static error since
k(t) is approximated by its mean value K0.

B. PAC Observer

The augmented system {Fi,Hi} with Hi =
[
Ci 0

]
is not

obervable whereas {Ai,Ci}, i = 1,2, is. Hence we consider
an observer for the state vector z, the last state variale w of
za can be estimated by a direct calculation from its dynamic
equation (8) i.e. ẇ(t) = yd − y(t), y(t) being the measured
output at time t.

Therefore the oberver has the form

{ ˙̂z = (µ1A1 +µ2A2)ẑ+Gu+(µ1L1 +µ2L2)(y− ŷ)
ŷ = (µ1C1 +µ2C2)ẑ

(11)

where Li = (1/2)X−1CT
i , i=1,2; X is a positive definite

matrix satisfying the LMI’s

{
AT

i X +XAi−CT
i Ci < 0, i = 1,2

X > 0 (12)
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Considering the expression (11) of ŷ and that of C1 and
C2 in (5), we have

(µ1L1 +µ2L2)ŷ = (µ1L1 +µ2L2)(µ1C1 +µ2C2)ẑ

= (1/2)X−1(µ1CT
1 +µ2CT

2 )(µ1C1 +µ2C2)ẑ

= (1/2)X−1(µ1K +µ2K)2.

Finally, the observer dynamics can be written


˙̂z = (µ1A1 +µ2A2− (1/2)X−1(µ1K +µ2K)2)ẑ

+Gu+(µ1L1 +µ2L2)y
ŷ = (µ1C1 +µ2C2)ẑ

(13)

This dynamics should be combined with the integrator
equation (8) in order to get the overall augmented state za

in (9).

Remark 2: To speed up the observer dynamics for the local
models, one can replace conditions (12) by{

AT
i X +XAi−CT

i Ci <−2γX , i = 1,2
X > 0 (14)

for a chosen γ ≥ 0. Hence γ gives an observer design
parameter.

To summarize, we address the following control design
procedure:

• step1: Choose suitable 0≤ α < β and solve (10) for Xc
using for instance the lmiedit function in MATLAB.

• step2: Choose suitable 0≤ γ and solve (14) giving Xo.
• step3: Compute the control u =−(1/2)GT X−1

c ẑa where

ẑa =

[
ẑ
w

]
.

The dynamics of ẑ is performed using (13) with Li =
(1/2)X−1

o CT
i , i=1,2, and that of w is derived using (8).

V. SIMULATION

Using the MATLAB LMI toolbox, conditions (10) with
α = 10 and β = 50 for the control and (12) for the observer
have been proven to be feasible with the parameters given
in [12] and reproduced in the Table 1. In Figure 4, one can
see the obtained contact force corresponding to a desired
value of 100 N. Figures 5 to 8 illustrate the resulting state
space variables as defined for system (1). These plots clearly
show satisfactory behaviors and highlight the feasibility of
the proposed methods. However, it should be noted that the
results corresponds to a specified constant speed V and are
only valid for the chosen speed.

Figure 4 : The contact Force

Figure 5 : The head displacement x1

VI. CONCLUSION

A new formulation of the PAC model has been addressed
in terms of a multiple linear model. This description allows
the application of control design methods alternatively to
existing ones. We have used the LMI approach to propose
a control-observer scheme to drive the contact force to the
desired value. Progress is under consideration to synthesize
a more general control algorithm which can cope with speed
variations.

VII. APPENDIX : PROOF OF PROPOSITION 1

With u =−Fz =−(1/2)BT X−1z and
m

∑
i=1

µi = 1, the closed

loop state matrix can be written
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Figure 6 : The head speed ẋ1

Figure 7 : The frame displacement x2

Ac =
m

∑
i=1
{µiAi}−BF

=
m

∑
i=1
{µiAi− (1/2)BBT X−1} (using F)

AcX =
m

∑
i=1
{µiAiX− (1/2)BBT} (Postmutiplying

by X)

XAT
c =

m

∑
i=1
{µiXAT

i − (1/2)BBT} (By transposing)

AcX +XAT
c =

m

∑
i=1
{µiAiX +XAT

i −BBT} By adding

AcX +XAT
c ≤

m

∑
i=1
{µi(−2αX)} (Condition (6))

= −2αX

Figure 8 : The frame speed ẋ2

TABLE I
PAC PARAMETERS

Parametres Notations Value
Catenary K0 3.6 kNm−1

α 0.5
L 65 m

Pantograph head m1 8 kg
b1 120 N sm−1

k1 10 kNm−1

Pantograph frame m2 12 kg
b2 30 N sm−1

Next let λ be an eigenvalue of Ac and v an associated
eigenvector, that is Acv = λv. Premultiplying by v∗ and
postmultiplying by v the last inequality yields

v∗AcXv+ v∗XAT
c v≤−2αv∗Xv

→ λv∗Xv+λv∗Xv≤−2αv∗Xv
since X > 0,→ ℜ(λ )<−α.

Using similar arguments, the second condition in (6)
implies ℜ(λ )>−β . The proof is complete.
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