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Abstract— In this paper, a multi-model unfalsified adaptive
switching control scheme is proposed for controlling uncertain
plants subject to time variations. In the adopted approach,
the switching between the candidate controllers is orchestrated
according to a hysteresis logic variant wherein the memory
length is adaptively selected, on the basis of the exhibited
plant I/O behavior, so that past recorded data can be safely
discarded. To this end, novel model-based resetting conditions
are introduced. The global stability of the resulting switched
closed-loop system is guaranteed provided that, at every time
instant, a stabilizing candidate controller exists and that the
(possibly abrupt) changes in the plant model are infrequent.

I. INTRODUCTION

Adaptive switching control (ASC) has recently gained

special attention as a promising approach for controlling

plants in the presence of large model uncertainties. In

switching control, a “high-level” data-driven unit, called the

supervisor, switches-on at any time in feedback with the

plant one element from a family of candidate controllers on

the basis on past plant I/O data. These data are processed

to enable the supervisor to decide whether the currently

controller is adequate, and, in the negative, to replace it by a

different candidate controller. ASC can therefore be seen as

an adaptive version of classic gain-scheduling control. For

an early overview of ASC, the reader is referred to [1].

Multiple schemes for ASC have been proposed in the liter-

ature, which can be classified on the basis of which switching

logic is adopted (with possible alternatives being pre-routing

[2], [3], dwell-time [4], [5], and hysteresis switching [6],

[7]) and on the basis of how the selection of the controller

to be switched on is carried out. As for the latter issue, the

main current approaches to ASC can be subdivided into two

different groups (multi-model ASC and model-free ASC)

according to whether, or not, a family of dynamic nominal

models of the plant be available together with the family of

candidate controllers. Among the most significant approaches

that use multi-model ASC architectures are those investigated

in [1], [5], [8], [9], [10], [11]. On the other hand, the most

relevant model-free ASC schemes are those developed by

Safonov [12], [13], [14], [15] and his coworkers in the so-

called unfalsified control framework. In unfalsified ASC,

thanks to the use of the virtual reference tool, the supervisor

infers the performance of the potential loop made up by each
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candidate controller and selects the one with the best inferred

performance.

More recently [16], [17], a novel approach, multi-model

unfalsified ASC (MMUASC), has been proposed which com-

bines multi-model and unfalsified ASC by: embedding, in

the unfalsified ASC framework, a family of nominal models

pairwise associated with the given candidate controllers; and

devising appropriate test functionals based on a percentage

measure of discrepancy. The resulting MMUASC scheme

retains the main positive features of both approaches. In fact,

like in unfalsified ASC, stability in-the-large is guaranteed

under the minimal conceivable assumption that a candidate

stabilizing controller exists and, like in multi-model ASC,

the magnitude and time duration of learning transient can

be dramatically reduced provided that the nominal model

distribution be dense enough.

Unfortunately, most of the positive features of MMUASC,

as proposed in [16], [17], are lost for plants subject to

persistent time variations due to the infinite memory of the

test functionals and of the adopted hysteresis switching vari-

ant. The objective of this paper is to show how MMUASC

schemes can be modified so as to deal with persistent plant

variations by adaptively selecting the memory length. Such

an adaptive selection is accomplished, on the basis of the

exhibited plant I/O behavior, by devising an appropriate

resetting logic whereby past recorded data can be safely

discarded. This makes it possible to ensure (global) stability

of the resulting closed-loop switched system despite pos-

sible time variations of the uncertain plant. Due to space

constraints all the proofs are omitted.

Notations. Throughout the paper, the prime denotes trans-

pose, | · | Euclidean norm, and S the space of all real-valued

vector sequences on the set Z+ of nonnegative integers.

For any s ∈ S , and t0, t ∈ Z+, t0 ≤ t, we define

s|tt0 := {s(t0), . . . , s(t)}. For simplicity, if t0 = 0, st

indicates the sequence s|tt0 . Given λ, 0 < λ ≤ 1, we

denote the λ-exponentially weighted ℓ2-norm of s|tt0 by

‖ s|tt0 ‖λ :=
√

∑t
τ=t0

λ2(t−τ) |s(τ)|2 whenever t ≥ t0, or

the zero number otherwise. If λ = 1, we let ‖ s|tt0 ‖ denote

the ℓ2-norm of s|tt0 . The ℓ∞-norm of s|tt0 is defined as

‖ s|tt0 ‖∞ := maxτ∈{t0,··· ,t}maxi |si(τ)| where si denotes

the i−th component of s. The sequence s ∈ S is said to be

bounded if its ℓ∞-norm is finite.

II. PROBLEM SETTING

We consider the adaptive control system depicted in Fig-

ure 1. Specifically, the plant P to be controlled consists
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of a discrete-time strictly causal SISO linear time-varying

dynamic system, described by

A(t, d) y(t) = B(t, d) [u(t) + nu(t)]

+ A(t, d)ny(t), t ∈ Z+ (1)

with input u, output y, input disturbance nu and output

disturbance ny . A(t, d) and B(t, d) denote time-varying

polynomials in the unit backward shift operator d.

The supervisor handles the plant I/O past data in order

to generate the sequence σ specifying the switching con-

troller Cσ . The latter has the one-degree-of-freedom form

u(t) = Cσ(t)[r(t) − y(t)], where r is the output reference,

while the subscript σ(t) identifies the specific candidate

controller connected in feedback to the plant at time t. More

specifically, all candidate controllers belong to a finite family

C = {Ci, i ∈
←−
N },

←−
N := {1, · · · , N}, of linear time-

invariant (LTI) controllers with transfer functions Ci(d) :=
Si(d)/Ri(d) with no unstable hidden modes, i.e., the poly-

nomials Si(d) and Ri(d) have no common roots outside the

open unit circle of the complex plane. Accordingly, given

σ(t) at time t, the plant input u(t) is given as follows

Rσ(t)(d)u(t) = Sσ(t)(d) [r(t)− y(t)] (2)

Assume that, for every t ∈ Z+, the LTI plant with

transfer function B(t, d)/A(t, d) have no unstable hidden

modes and belong to an uncertainty set P . Let P∗ denote a

generic element of P . Given a finite family C of candidate

controllers, CS(P∗) will denote the subset of C composed

by all controllers which (internally) stabilize P∗.

Definition 1: The switched system (1)-(2) is said to be

(globally) stable if, for all initial conditions, any bounded ex-

ogenous input (r, nu, ny) produces a bounded output (u, y).
The problem is said to be feasible if CS(P∗) 6= ∅, ∀P∗ ∈P .

A. Basic Assumptions

Definition 2: A polynomial p(d) is said to be a λ-Hurwitz

polynomial (in the indeterminate d) if it has no root in the

closed disk of radius λ−1 of the complex plane.

Definition 3: The feedback loop (P∗/Ci) composed

by the time-invariant plant P∗ and the controller Ci,

whose transfer functions are given by B∗(d)/A∗(d) and

Si(d)/Ri(d), respectively, is said to be λ-stable if its char-

acteristic polynomial

χ∗/i(d) := A∗(d)Ri(d) +B∗(d)Si(d)

is a λ-Hurwitz polynomial.

We make the following assumptions.

A1 The plant uncertainty set P is compact, i.e., for every

P∗ ∈ P , the polynomials A∗ and B∗ have bounded

orders and their coefficients belong to a compact set.

A2 For every P∗ ∈ P , there always exists a candidate

controller Ci ∈ C such that (P∗/Ci) is λ-stable.

A3 The exogenous inputs r, nu, and ny are bounded.

PlantSwitching
controller

Supervisor

σ

r

u

y

nu ny

-

Fig. 1. Adaptive switching control scheme

III. REFERENCE-LOOP IDENTIFICATION AND

MODEL-BASED TEST FUNCTIONALS

In order to decide when and how to change the controller,

the supervisor embodies a family π :=
{

πi, i ∈
←−
N
}

of

test functionals where, in broad terms, πi(t) quantifies the

suitability of the candidate Ci to control P , given the I/O

data up to time t. In some cases, πi(t) might assume the

meaning of a performance measure of (P/Ci). The notation

(P/Ci) denotes the feedback loop composed by the plant P
interconnected in feedback with the controller Ci.

In the remaining of this section, the considered multi-

model test functionals will be described and some of their

basic features analyzed. To this end, it will be assumed that

a finite family M := {Mi, i ∈
←−
N } of N strictly causal LTI

dynamic models Mi is available,

Mi(d) := Bi(d)/Ai(d), i ∈
←−
N

where Bi(d) and Ai(d) are coprime polynomials and

Ai(0) = 1. In a MMUASC scheme, the candidate controllers

Ci, i ∈
←−
N , are chosen so as to satisfy at least the feasibility

condition, while the Mi’s, along with the associated Ci’s,

form a finite family R :=
{

(Mi/Ci), i ∈
←−
N
}

of internally

stable feedback-loops, each designed to fulfill desirable pre-

scriptions. Hereafter, (Mi/Ci) will be referred to as the i-th
“tuned-loop” or “reference-loop”. Given an unknown plant

P ∈P , one of the main steps in MMUASC is to carry out

a reference-loop identification task, viz., select a candidate

controller Cσ in such a way that (P/Cσ) behave as closest

as possible to one of the candidate reference-loops in R.

Hence, roughly speaking, the ideal goal of the switching

supervisor, can be envisaged as follows. Given an uncertain

plant P ∈ P , find an index σ ∈
←−
N such that: i) (P/Cσ)

is stable; and the behavioral data produced by (P/Cσ)
in response to r are as closest as possible to the ones

produced by (Mσ/Cσ) in accordance to the reference-loop

identification criterion

σ := argmin
i∈
←−
N

sup
r 6=0

‖(P/Ci)[r]− (Mi/Ci)[r]‖λ
‖(Mi/Ci)[r]‖λ

(3)

where, by the sake of simplicity, no time-argument is shown

and the dependence of the behavioral data on the distur-

bances nu and ny are omitted.

On-line implementation of (3) is impossible without using

pre-routing, a solution that, in general, has to be ruled out

because it typically causes large and long-lasting learning

transients. A way for side-stepping such a difficulty hinges
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upon the use of the virtual reference (VR) concept [12], [13].

At each time, and for each index i ∈
←−
N , one solves in real-

time with respect to vi(t) the difference equation

Si(d)(vi(t)− y(t)) = Ri(d)u(t), t ∈ Z+ . (4)

In words, vti equals the virtual reference sequence which re-

produces the recorded I/O sequence (ut, yt) should the plant

P be fed-back by the candidate controller Ci, irrespective of

the way the plant input ut is generated.

Since (4) is computed for all the indices in
←−
N , it is

possible to compare the performance achievable by each

candidate loop (P/Ci), driven by its related vi, to that of

its corresponding reference loop (Mi/Ci). Therefore, (3) is

modified as follows

σ := argmin
i∈
←−
N

sup
vi 6=0

‖(P/Ci)[vi]− (Mi/Ci)[vi]‖λ
‖(Mi/Ci)[vi]‖λ

(5)

In order to specify an on-line implementable for (5), let

w := [r nu ny]
′

wi := [vi nu ny]
′

z := [u y]′ .

Then, by the definition of virtual reference, one has

z(t) = (P/Cσ(·))[w](t) = (P/Ci)[wi](t) . (6)

Further, the behavioral data zi := [ui yi]
′ of each candidate

reference-loop (Mi/Ci), driven by the corresponding vi, are

given by

Ai(d) yi(t) = Bi(d)ui(t)
Si(d) (vi(t)− yi(t)) = Ri(d)ui(t)

}

. (7)

Then, a convenient test functional related to the identification

criterion (5) is as follows

πi(t) :=
‖(z − zi)

t‖λ
µ+ ‖zti‖λ

, t ∈ Z+ (8)

where µ > 0 accounts for possible non-zero initial states as

well as for the exogenous disturbances nu and ny . Hereafter,

the test functional (8) will be referred to as virtual percentage

discrepancy relatively to the i-th reference loop.

In the arrangement of equation (5) and the subsequent

developments, it is understood that all vi’s are computable,

which would require that all the candidate controllers be

stably casually invertible. However, it turns out that such

restrictive conditions can be circumvented since it is possible

to obtain (6) without direct computation of the vi. In fact, by

combining (4) with (7), the reference-loop behavioral data zi
can be computed from z as follows

[

−Bi(d) Ai(d)
Ri(d) Si(d)

]

zi(t) =

[

0 0
Ri(d) Si(d)

]

z(t) ,

t ∈ Z+ , (9)

which only requires the i-th tuned loop to be stable. Accord-

ingly, the following assumption is made.

A4 Each reference loop (Ci/Mi) ∈ R is λ-stable.

For reasons that will be clarified later on, A4 actually

requires that each reference loop has a large enough stability

margin. Because R is a finite set, this requirement can always

be fulfilled by choosing λ close enough to one.

To avoid needless complications, we assume that the

switching controller (2) as well as the reference loops (9)

are initialized at time zero from zero initial conditions by

letting r, z and zi,∈
←−
N be zero for t < 0. Regarding the

initialization of (1), let (uP , yP ) denote the sequence of

actual I/O pairs of the plant P . 1 Then, we shall denote

by ξP := [ uP (−1) uP (−n) . . . yP (−1) yP (−n) ]
′

the

vector composed by the plant initial conditions, where n :=
maxP {degB∗, degA∗}, P∗ ∈P .

IV. SWITCHING LOGIC

The properties of test functionals as in (8) have been

thoroughly analyzed and discussed in [16], [17] for time-

invariant plants. In this context, test functionals as in (8)

enjoys the nice property that (P/Ci) is stable if and only

if πi takes on finite values, ∀ r ∈ S and σ. Starting from

these considerations, such test functionals have been shown

capable of ensuring stability despite plant uncertainties and

disturbances when used together with a Hysteresis switching

logic with infinite memory (HSL-∞), wherein one considers

the infinite-memory test functionals

Πi(t) :=
∥

∥πt
i

∥

∥

∞
, i ∈

←−
N . (10)

Unfortunately, a strategy with infinite memory is hampered

in applications involving time-varying plants. In fact, to

handle possible plant variations, one needs to adopt test

functionals with fading memory and analyze stability under

persistent switching (i.e., without relying on a finite switch-

ing as in [16], [17]).

In order to overcome such limitations, we propose to

modify (10) by adaptively selecting the memory length of

Πi(t). In this respect, one simple scheme is to adopt a

resetting logic, where resetting here denotes the mechanism

according to which the supervisor resets all the Πi’s to

zero whenever suitable events (resetting conditions), to be

specified next, occur. Specifically, the mentioned mechanism

consists of: defining the adaptive-memory test functionals

Πi(t) :=
∥

∥

∥
πi|

t
tk

∥

∥

∥

∞
, t ∈ Tk,

Tk := {tk, . . . , tk+1 − 1}

where {tk}k∈Z+
, t0 := 0, is the sequence of resetting instants

to be specified; and then, at each step, computing the least

index i∗(t) in
←−
N such that Πi∗(t)(t) ≤ Πi(t), ∀i ∈

←−
N . In

particular, the switching index sequence σ is generated as

follows

σ(t+ 1) = l(σ(t),Π(t)), σ(0) = i0 ∈
←−
N

l(i,Π(t)) =

{

i, if Πi(t) < Πi∗(t)(t) + h
i∗(t), otherwise















1In view of the feedback configuration in Fig. 1, the sequence (uP , yP )
satisfies uP = u+ nu and yP = y − ny .
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where h > 0 is the hysteresis constant.

For clarity, from now on this logic will be referred to by

HSL-R (Hysteresis Switching Logic with Resetting).

A. Admissible Resetting

The adoption of a resetting rule, which is necessary to han-

dle possible variations, carries the consequent potential risk

that the switched system become unstable due to persistent

switching. To circumvent this problem and obtain stability

it is important that a reset occurs only when the switched

system (P/Cσ) exhibits a satisfactory behavior. In view of

the arrangements of Section III, a possibility for ensuring

this consists in enabling a reset only when (P/Cσ) behaves

close enough to the candidate reference loop (Mσ/Cσ), both

the loop being driven by the actual reference signal r.

To this end, it is convenient to consider, for each reference

loop (Mi/Ci), i ∈
←−
N , the actual percentage discrepancy

π̄i(t) :=
‖(z − z̄i)

t‖λ
µ+ ‖z̄ti‖λ

, t ∈ Z+ (11)

where z̄i are the behavioral data of the i-th reference loop

driven by the actual reference signal r. Each z̄i is computed,

from zero initial conditions, as follows
[

−Bi(d) Ai(d)
Ri(d) Si(d)

]

z̄i(t) =

[

0
Si(d)

]

r(t) , t ∈ Z+ .

(12)

Then the following definition can be introduced.

Admissible Resetting Times: A sequence of reset times

{tk}k∈Z+
is called admissible if, for every k ≥ 0, we have

that

π̄σ(tk)(tk − 1) ≤ πσ(tk)(tk − 1) + ǫ, ǫ > 0 (13)

To understand the rationale for (13), we note that inequal-

ity (13) guarantees that π̄σ does not get much larger than

πσ , whereas the selection of σ through the HSL-R already

makes sure that πσ remains bounded (as will be shown in

Section V).

In accordance with the above considerations, hereafter the

following resetting rule will be considered (with t0 = 0)

tk+1 := 1 +min { t : t ≥ tk;

π̄σ(t+1)(t) ≤ πσ(t+1)(t) + ǫ
}

, k ∈ Z+(14)

which, by construction, always generates an admissible re-

setting sequence satisfying (13).

As shown next, when πσ remains bounded, the reset-

ting rule embodied by eq. (14) enjoys the following two

nice properties: a) the plant input/output data z are always

bounded; b) the admissibility condition (13) is always at-

tained in finite time.

B. Boundedness of the data

Consider an admissible resetting sequence {tk}k∈Z+
and

let

Πk := min
i∈
←−
N

{

max
t∈Tk

πi(t)

}

+ h, k ∈ Z+ . (15)

In order to prove property a), we first derive an upper

bound on the plant input/ouptut data over each interval Tk

as established in the next lemma.

Lemma 1: Let the HSL-R switched system be based on

the test functionals (8). Then, under assumptions A1-A4,

there exists a bounded function g such that, ∀ t ∈ Tk,

∥

∥zt
∥

∥

λ
≤ g

(

Πk
)[

µ+ | ξP |λ
t+1 +

∥

∥wt
∥

∥

λ

+
∥

∥ztk−1
∥

∥

λ
λt−tk+1

]

(16)

holds for any resetting sequence {tk}k∈Z+
. �

Notice that the bound of equation (16) depends both on

the initial condition of the plant, through the term |ξP |λ
t+1,

and on the plant state at the beginning of the interval

Tk through the term
∥

∥ztk−1
∥

∥

λ
λt−tk+1. While the former

contribution goes to zero exponentially, the latter need not

vanish since t − tk is reset to zero every time a reset

occurs. This means that boundedness of
{

Πk
}

k∈Z+
cannot

per se ensure boundedness of the data, unless the sequence
{∥

∥ztk−1
∥

∥

λ

}

k∈Z+

is bounded as well. This is precisely the

point where the admissibility condition (13) comes into play.

In fact, thanks to the boundedness of the actual percentage

discrepancy π̄σ at each reset instant, the following result can

be stated.

Proposition 1: Consider the HSL-R based on (14) and

let assumption A4 hold. Then for any admissible resetting

sequence {tk}k∈Z+
,

‖ztk−1‖λ ≤ (Πk−1 + ǫ)µ+ (Πk−1 + ǫ+ 1) g ‖rtk−1‖λ

for some positive real g ≥ 1. �

Combining Propostion 1 with Lemma 1, it is immediate to

state the following theorem which represents the main result

of this section.

Theorem 1: Consider the HSL-R based on (14) and let

assumptions A1-A4 hold. Further, assume that Πk ≤ Π∗,
∀ k ∈ Z+, for some finite constant Π∗. Then, for any

admissible resetting sequence {tk}k∈Z+

∥

∥zt
∥

∥

λ
≤ g (Π∗) | ξP |λ

t+1+h (Π∗)
[

µ+
∥

∥wt
∥

∥

λ

]

,

∀ t ∈ Z+ (17)

where h (Π∗) := g (Π∗) [(Π∗ + ǫ+ 1) g + 1]. �

It follows from Theorem 1 that, for the proposed switching

adaptive control scheme based on the test-functionals (8)

and on the reset rule (14), boundedness of at least one test

functional in each reset interval is a sufficient condition for

stability. It will be shown in Section V that such a property

holds provided that the plant variations are sufficiently slow.

C. Finite-Time Resetting

As should be evident from the discussion of Section IV,

in order to deal with plant variations it is important that the

reset condition be always attained in finite time. In fact, this

is crucial to ensure that, by discarding past recorded data,
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the supervisor be able to promptly select a controller well-

suited to the currently active plant configuration. In order to

show that the reset rule (14) enjoys such a property, a key

observation is that for the switched on controller the virtual

percentage discrepancy πσ converges to the actual percentage

discrepancy π̄σ. More specifically, the following result holds.

Proposition 2: Let assumption A4 hold. Further suppose

that the same controller, say Ci, is switched on from a certain

time τ up to the current time t. Then

‖(zi − z̄i)
t‖λ ≤ λt−τ+1

(

f1‖z
τ−1‖λ + f2‖r

τ−1‖λ
)

(18)

for some positive reals f1, f2. �

Notice now that, under the same assumptions as in The-

orem 1, the plant input/output data can be upper bounded

as

max
t∈Z+

∥

∥zt
∥

∥

λ
≤ (1− λ2)−1/2h (Π∗) [µ+ ‖w‖∞ ]

+ g (Π∗) | ξP | =: Z (Π∗) (19)

where ‖w‖∞ is finite in view of assumption A4. Then,

combining such an upper bound with inequality (18), it is

an easy matter to see that the admissibility condition (13)

is eventually attained provided that the same controller is

switched on for a sufficiently long time. Since over each

reset interval the number of switching instants is bounded

from the above by N∗ := N ⌈Π∗/h⌉ , the above arguments

can be exploited in order to show that the reset condition

is always attained in finite time. More specifically, if one

defines

∆(Π∗) := (N∗ + 1)

⌈

logλ (ǫ µ)− logλ(Π
∗ + 1)

− logλ

[

f1Z (Π∗) + f2(1− λ2)−1/2 ‖w‖∞

]

⌉

,

the next result can be stated.

Theorem 2: Consider the HSL-R based on (14). Then,

under the same assumptions as in Theorem 1, one has

tk+1 − tk ≤ ∆(Π∗) , (20)

for any k ∈ Z+. �

V. BOUND ON THE TEST FUNCTIONALS AND STABILITY

In this section, we discuss how the HSL-R based on

test functionals (8) and reset rule (14) yields stability of

the switched system (1)-(2) in cases of abrupt, but infre-

quent, plant variations. To this end, let {ℓc}c∈Z+
denote

the sequence of time instants at which a plant variation

occurs, with ℓ0 := 0 by convention. Accordingly, we let

Lc := {ℓc, . . . , ℓc+1 − 1}, c ∈ Z+, define the c-th time

interval over which the plant is constant.

A. Analysis for time-invariant plants

In view of the results of Section IV-B, in order to prove

stability it is sufficient to show that, in each reset interval

there always exists at least one index i for which the test

functional (8) remains bounded. For the sake of clarity, we

first provide a bound on the test functional in each interval

Lc. To this end, let P c denote the time-invariant model taken

on by the plant in the interval Lc and let Bc(d)/Ac(d) be

its transfer function.

Notice now that, by means of simple manipulations, the

discrepancy z − zi can be written as a function of zi and of

the exogenous disturbances nu and ny as follows
[

−Bc Ac

Ri Si

]

(z − zi)(t) =

[

Bc −Ac

0 0

]

ζi(t) ,

t ∈ Lc , (21)

where,

ζi := zi +

[

nu(t)
−ny(t)

]

and, here and in the following, for the sake of compactness

the unit backward shift operator d is omitted. Then, the

mapping from ζi to z − zi coincides with the generalized

sensitivity matrix of the feedback loop (P c/Ci)

Ωc
i =

1

RiAc + SiBc

[

−SiB
c SiA

c

RiB
c −RiA

c

]

.

Since, for indices i belonging to CS(P
c), such sensitivity

matrix is λ stable, the following upper bound can be derived.

Lemma 2: Let assumptions A1-A4 hold. Then, there exist

finite positive constants κ0, κ1, κ2 and κ3 such that, for every

P c ∈P , there exists some i ∈
←−
N for which

πi(t) ≤ κ0 + κ1 | ξP |λ
t+1 + κ2 ‖w‖∞

+κ3

∥

∥zℓc−1
∥

∥

λ
λt−ℓc+1 , ∀ t ∈ Lc . (22)

�

By virtue of Lemma 2, it is possible to readily establish

stability in case the plant be time-invariant, i.e., L0 = Z+.

Indeed, in this case, since ℓ0 = 0 one can conclude that there

always exists at least one index i for which

πi(t) + h ≤ κ0 + κ1 | ξP |+ κ2 ‖w ‖∞ + h =: Π∗TI (23)

Then the following result follows from Theorem 1.

Theorem 3: Consider the HSL-R based on (14) and let

assumptions A1-A4 hold. Further, let the plant be time-

invariant. Then, the switched system (1)-(2) is stable. �

This result, together with Theorem 2, indicates that, when

the plant is time-invariant, stability of the switched system

can be achieved without relying on a finite switching stop-

ping time (as, instead, it was enforced in [16] through the

HSL-∞).

B. Stability under infrequent plant changes

In the presence of plant variations, the upper bound (23)

in general does not hold. Nevertheless, in view of Lemma

2, one can see that for every c ∈ Z+ there always exists a

candidate index i ∈
←−
N such that

πi(t) + h ≤ Π∗TI + κ3

∥

∥zℓc−1
∥

∥

λ
λt−ℓc+1, ∀ t ∈ Lc (24)

where κ3 and Π∗TI are as in (22) and (23), respectively. Thus

for any given accuracy ν and provided that the next plant
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variation instant ℓc+1 be far enough, the right-hand side of

(24) eventually enters a neighborhood of amplitude ν of Π∗TI ,

the upper bound corresponding to the time-invariant case.

With this respect, let

ℓνc := min{t : t ≥ ℓc, κ3‖z
ℓc−1‖λλ

t−ℓc+1 ≤ ν}

and let Lν
c := { t ∈ Lc : t ≥ ℓνc} . Then, if at least two resets

occur between ℓνc and ℓc+1, i.e., there exists at least one

index k such that Tk ⊆ L
ν
c , one can exploit Lemma 1 and

Proposition 1 in order to conclude that at time ℓc+1, when

the next plant variation occurs, the plant input/ouptut data

can be upper bounded as

‖zℓc+1−1‖λ ≤ Z(Π∗TI + ν) (25)

with Z(·) as in (19). Notice that one single reset would not

be sufficient since, while the bound of Lemma 1 depends

only on the values of the test functionals in the current reset

interval, the bound of Proposition 1 is a function of the values

of the test functionals in the previous reset interval.

Combining the latter inequality with (24), an upper bound

on the smallest test functional over each reset interval can

be derived also in the presence of plant variations. More

specifically, by means of simple induction arguments, the

following result can be proved.

Lemma 3: Consider the HSL-R based on (14) and let

assumptions A1-A4 hold. Further, suppose that

∀ c ∈ Z+ ∃ k ∈ Z+ such that Tk ⊆ L
ν
c . (26)

Then, for all k ∈ Z+, one has Πk ≤ Π∗TV with

Π∗TV := max
{

Π∗TI + κ3Z(Π∗TI + ν);

1 + µ−1Z(Π∗TI + ν) + h
}

and consequently the switched system (1)-(2) is stable. �

In the light of Lemma (3), it is immediate to see that

a sufficient condition for stability is that the plant dwell

time, i.e., the minimum interval between two consecutive

plant variations, be large enough to allow the fulfillment

of condition (26). This amounts to requiring that, for any

c ∈ Z+, ℓc+1 be always greater or equal to ℓνc plus the time

needed for two resets to occur. With this respect, notice that

the upper bound (25) implies

ℓνc − ℓc ≤

⌈

logλ
ν

κ3 Z(Π∗TI + ν)

⌉

.

Moreover, by induction arguments, if condition (26) is sat-

isfied up to a certain ℓc then Π∗TV is an upper bound on

the smallest test functional over Lc. This, in turn, implies

that after at most 2∆ (Π∗TV ) steps subsequent to ℓνc the two

required resets occur (see Theorem 2). Then, the following

stability result can be claimed.

Theorem 4: Consider the HSL-R based on (14) and let

assumptions A1-A4 hold. Then, the switched system (1)-(2)

is stable provided that

ℓc+1 − ℓc ≥

⌈

logλ
ν

κ3 Z(Π∗TI + ν)

⌉

+ 2∆(Π∗TV ) ,

for any c ∈ Z+. �

VI. CONCLUSIONS

The problem of controlling uncertain plants subject to

time variations has been addressed within a MMUASC

framework. A novel scheme has been proposed wherein the

supervisor orchestrates the switching by adaptively selecting

the information, characterized in terms of past performance

records, that is necessary to preserve stability. Such an

approach represents a significant advance since it makes it

possible to derive stability properties without relying on a

finite switching stopping time (as instead it was required

in existing MUASSC schemes); thus allowing for persistent

plant variations.
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