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Abstract— We design a robust fault estimation technique for
arbitrary time-varying faults based on an adaptive observer
with enhanced speed of adaptation. The construction of the
observer is carried out through a transformation of the plant
model into its special coordinate basis (SCB) form. This
transformation allows a decoupling of the fault estimates from
the disturbances. A key feature of the overall scheme is that
the adaptive mechanism is viewed as a filtering process which
allows easy parameter tuning to achieve faster and exact fault
estimation in the presence of disturbances and plant-model
uncertainties.

I. INTRODUCTION

As failures might have drastic consequences on plant

operation, it becomes mandatory to increase significantly

the reliability of automated systems with devices capa-

ble of a continuous monitoring of the plant states. For

economic and hardware weight reasons, the core of such

monitoring schemes is based on a mathematical model of

the controlled plant which allows faults characterization in

plant-components from a comparison of the signals gen-

erated by this plant-model with the available actual plant-

measurements. A key problem with analytical models is that

the real plants are subject to unknown disturbances and

models are never perfect and may be imprecisely know.

Fortunately, some unmeasurable perturbations can often be

incorporated in plant models by viewing them as unknown

inputs. Hence, when the unknown inputs are certain causes

such as faults in actuators or other plant-components, thanks

to the above view, unknown input estimation may be carried

out directly for the purpose of fault detection and isolation.

Amongst many methods and techniques for fault detection

and estimation which have been developed over the past

several years, the unknown input observer (UIO) is one of

the most attractive techniques [4], [6], [15]. For uncertain

systems, FDI based on unknown input observers which are

sensitive to faults but insensitive to model uncertainties

and/or unknown disturbances have been proposed in [8],

[9], [12], [3], [4]. In reference [5], the authors proposed

an input estimator in a more general setting not directly

related to the FDI problem, however their technique can

be viewed as an approach for fault estimation, albeit no

distinction is made between disturbances and fault signals.

The main drawback of the technique is that the existence

of the proposed estimator depends on very strict conditions

and moreover it cannot achieve exact asymptotic estimation

of the unknown inputs but only asymptotic estimation of the
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unknown inputs to some degree of accuracy. The authors in

reference [14] proposed a Luenberger-type adaptive observer

to simultaneously estimate the state and the unknown fault.

The fault was viewed as the adjustable (unknown) parameter

of the observer and the adaptive law for updating the fault

estimation was chosen judiciously in order to ensure stability

and convergence of the fault estimation algorithm. However,

an adaptive observer based on the nominal plant-model might

have some troubles in estimating faults when the real plant

is uncertain and subject to disturbances. In order to cope

with this issue related to plant uncertainties/disturbances,

references [18], [17], [16] presented a nice solution with

a fault diagnosis observer able to produce residuals which

are insensitive to the disturbances. However, this solution

can only deal with constant/slowly time-varying unknown

inputs which are quite restrictive as classes of faults in

the context of system diagnosis. In this paper, we rely on

the above mentioned results to construct a robust adaptive

observer able to estimate arbitrary time-varying actuator

faults with enhanced estimation speed despite the presence

of disturbances and plant uncertainties.

The main contribution of this paper is twofold: first, the

class of actuator faults, viewed as unknown inputs, is en-

larged to that of arbitrary time-varying unknown inputs and

the derived estimation technique can achieve exact tracking

of the unknown fault. Second, the adaptive law synthesis

for fault estimation is presented from a new and different

angle of view, i.e. as a filtering process in which the fault

estimate is the output of a filter driven by the residuals.

The reward of this new viewpoint is consequential in that it

allows for a straightforward proof of the closed-loop stability

and the convergence of the adaptation mechanism through a

passivity property and as a byproduct it yields, without any

additional effort, a general adaptive law to simultaneously

achieve stability, convergence and enhanced speed for fault

estimation mechanisms. In addition to the above points, the

robust estimator is designed under less restrictive existence

conditions, as compared to those of the standard UIO [4].

II. PRELIMINARY MATERIALS

A. Plant description

We consider a nominal plant subject to actuator faults and

represented by the following linear time-invariant model :

S ≡

{
ẋ(t) = Ax(t) +Bu(t) + Ef(t)

y(t) = Cx(t)
(1)

where x(t) ∈ ℜn, u(t) ∈ ℜm and y(t) ∈ ℜp are the state,

control input and output vector respectively and f(t) ∈
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ℜh represents the actuator faults. The matrices A, B and

C are known constant matrices of appropriate dimensions

and E denotes the distribution matrix for actuator faults.

Furthermore, we assume that E is of full column rank and

the pair (A,C) is observable. Note that full rank assumption

on E is necessary for estimation of f(t).

B. The adaptive diagnostic observer

Using the plant model (1), the standard adaptive diagnostic

observer proposed in [14] is written as

˙̂x(t) = Ax̂(t) +Bu(t) + Ef̂(t) +K(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(2)

where f̂(t) ∈ ℜh is an estimate (to be determined) of the

actuator fault f(t). From the observability of the pair (A,C),
the observer gain K can be selected such that (A−KC) is

stable. Set x̃(t) = x(t) − x̂(t), ỹ(t) = y(t) − ŷ(t), f̃(t) =
f(t)− f̂(t), then the error dynamics is given by

˙̃x(t) = (A−KC)x̃(t) + Ef̃(t)

ỹ(t) = Cx̃(t)
(3)

We quote the following proposition from [14] for computing

the fault estimate.

Proposition 1: If there exist symmetric positive definite

(SPD) matrices P ,Q ∈ ℜn×n and two matrices K∈ ℜn×p

and F∈ ℜh×p such that the following conditions hold

P (A−KC) + (A−KC)TP = −Q,

ETP = FC
(4)

then the adaptive observer given by

˙̂x(t) = Ax̂(t) +Bu(t) + Ef̂(t) +K(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(5)

with adaptation law
˙̂
f(t) = −βF (y(t)− ŷ(t)) (6)

where β ∈ ℜh×h is a SPD matrix, achieves limt→∞x̃(t) = 0
and limt→∞f̃(t) = 0.

Note that the above adaptive diagnostic observer is derived

on the basis of the nominal plant model (1) subject to

actuator faults. This adaptive observer will get into trouble

in case the plant experiences input disturbances and model

uncertainties. The actuator fault estimate may be seen as the

output of an integrator, and clearly such estimation scheme

will be only able to deal with constant or very slow time-

varying fault.

III. PROBLEM STATEMENT

Consider the plant subject to actuator faults and un-

certainties. These uncertainties might be possibly external

disturbances acting on the plant and/or dynamics uncertain-

ties due to modelling errors. All these uncertainties can be

summarized as unknown inputs acting on the plant. Thus,

the plant is described with the following model

{
ẋ(t) = Ax(t) +Bu(t) + Ef(t) +Gd(t)

y(t) = Cx(t)
(7)

where x(t) ∈ ℜn is the state, u(t) ∈ ℜm is the control

input, y(t) ∈ ℜp is the output. The matrices A,B,C are

the nominal plant matrices. Signal f(t) ∈ ℜh with h ≤ p

is the vector of actuator faults with E their distribution

matrix. Vector d(t) ∈ ℜq denotes all the unknown inputs and

G∈ ℜn×q the corresponding distribution matrix. It is worth

noting that both model uncertainties and input disturbances

have been grouped together in the additive unknown input

d(t) and act on the plant dynamics through the Gd term

in the above formulation. This representation obtained by

transforming at the outset model uncertainties into unknown

inputs is a standard practice for tackling the robustness issue

with UIO’s in the FDI framework [4], [7], [12]. Throughout,

it is assumed that the matrix G is perfectly known and full

rank. The issue we address is:

How to design an adaptive observer to estimate ar-

bitrary time-varying actuator faults despite model-

uncertainties and unknown input disturbances?

In order to solve this problem, our road map will be the

following. First, we need to design a disturbance-decoupling

residual in order that the observer fault estimation error

be independent from the uncertainties and disturbances.

Second, if this decoupling is feasible, the estimation updating

mechanism should be devised as a function of the residual

signal, and this function should take the form of a dynamical

filter. To proceed with these requirements, we consider an

adaptive observer for simultaneous residual generation and

fault estimation having the following structure

˙̂x(t) = Ax̂(t) +Bu(t) + Ef̂(t) +K(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

r(t) = W (y − ŷ(t))

f̂(t) = g(t) ∗ r(t)

(8)

where x̂ is the state estimation, f̂ is the fault estimation of

the real fault f and g ∗ r is the convolution of the residual

r with the impulse response g of some linear filter to be

designed. In order to increase the degree of design freedom,

the residual r is defined as a “post-filtering” of the output

estimation error by a constant matrix W . Substracting the

real dynamics (7) with that provided by the observer (8)

gives the following errors dynamics

˙̃x(t) = (A−KC)x̃(t) + Ef̃(t) +Gd(t)

ỹ(t) = Cx̃(t)
(9)

It is clearly seen that the errors dynamics is corrupted by the

uncertainties and unknown disturbances d(t). The residual

vector can be written r(t) = Wỹ(t) = WCx̃(t). This

yields the relationship between residual and faults signal and

unknown inputs which we write in transfer operator form

r(s) = Grd(s)d(s) +Grfa(s)f̃(s) (10)

with Grd(s) = WC(sI−A+KC)−1G the transfer from dis-

turbance to residual and,Grfa(s) = WC(sI−A+KC)−1E

the transfer from actuator fault to residual. In the light of the
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above adaptive observer structure, the tasks to be done are

to find

1) suitable matrices K and W such that A − KC is

Hurwitz and, independently of the unknown inputs d,

the residual r should be zero (or close to zero) in the

absence of faults and different from zero in case of

fault occurence

2) an “adaptive law” for continuously updating f̂ , where

f̂ is seen as the output of a to-be-designed filter g(t)
which ensures convergence and speed of the fault

estimation.

The above two points are solved in the next sections.

IV. SCB-BASED ROBUST RESIDUAL GENERATION

The so-called structural decomposition basis (SCB) allows

an equivalent representation of a dynamical system [13], [11,

Chap. 3] and it has emerged as a key tool for many aspects

of system analysis and design. Furthermore, there is now

available toolkits with algorithms for computing SCB[10].

Roughly speaking, this representation provides deep insight

into the internal structure of systems by revealing their

distinctive parts which are directly associated with their zero

dynamics as well as their left and right invertible dynamics.

Here, we summarize the structural decomposition of a linear

system in the following main theorem and gives some of its

key properties [11, Chapter 3].

Theorem 1: For any given linear system described by the

following equations

Σ ≡

{
ẋ(t) = Ax(t) +Gd(t)

y(t) = Cx(t) +Dd(t) with D = [0p×q]
(11)

there exists

1) coordinate free nonnegative integers n−

a , n+
a , nb, nc,

nd, md≤p and qi, i = 1, 2, ...md, nd =
∑md

i=1
qi

2) nonsingular state, output and input transformation Γ1,

Γ2 and Γ3 which take the given Σ into a special

coordinate basis (SCB) that displays explicitly both

the finite and infinite zero structures of Σ. The SCB is

described by the following set of equations :

x̄ = Γ−1

1 x, ȳ = Γ−1

2 y, d̄ = Γ−1

3 d

x̄ = [(x−

a )
T , (x+

a )
T , xT

b , x
T
c , x

T
d ]

T , ȳ = [(yd)
T , (yb)

T ]T ,

d̄ = [(dd)
T , (db)

T ]T

Σ̄ ≡

{
˙̄x(t) = Āx̄(t) + Ḡd̄(t)

ȳ(t) = C̄x̄(t)
(12)

where Ā, Ḡ, C̄ are given by

Ā := Γ−1

1 AΓ1

=




A−

aa 0 L−

abCb 0 L−

adCd

0 A+
aa L+

abCb 0 L+

adCd

0 0 Abb 0 LbdCd

GcE
−

ca GcE
+
ca LcbCb Acc LcdCd

GdE
−

a GdE
+
a GdEb GdEc Ad




(13)

Ḡ := Γ−1

1 GΓ3 =




0 0
0 0
0 0
0 Gc

Gd 0




(14)

C̄ := Γ−1

2 GΓ1 =

[
0 0 0 0 Cd

0 0 Cb 0 0

]
(15)

Some of the key properties revealed by the system SCB form,

which are of interest to us, are listed below

Property 1:

System Σ is right invertible if and only if xb and hence yb
do not exist, i.e., nb is equal to zero; it is left invertible if

and only if xc and hence dc do not exist, i.e., nc is equal

to zero.

Property 2:

na = n−

a +n+
a , where n−

a , n+
a are the number of stable and

unstable transmission zeros of system Σ respectively.

Property 3:

nd is the number of infinite zeros with nd =
∑md

i=1
qi,

where qi is the number of infinite zeros of order i and md

is the highest order of an infinite zero, also it is the row

number of Cd.

Property 4:

n = na + nb + nc + nd

Property 5:

(Abb, Cb) forms an observable pair.

The following proposition which is the basis for realizing

the disturbance decoupling (DDR) residual is from [18] and

the proof is sketched for the reader to get some insight into

the DDR algorithm.

Proposition 2: [18] There exists matrices K and W such

that the observer given in equation (8) satisfies the distur-

bance decoupling property, with A − KC being Hurwitz,

if and only if the pair (A,C) is detectable and system

(A,G,C) is not right invertible.

Proof : Assume (A,G,C) is transformed in SCB form.

From the requirement of disturbance decoupling residual, the

transfer from disturbance to residual

Grd(s) = WC(sI −A+KC)−1G (16)

must be equal to zero and this can be achieved if and only

if WC has the form

WC = Wc = [W−

ca 0 Wcb 0 0] (17)

where Wcb has nb columns. Thanks to the SCB form of

matrix C, partition W as W = [W1 W2] where W1 and

W2 have compatible dimensions with C then

WC = [0 0 W2Cb 0 W1Cd] (18)

Comparing (17) and (18) implies that W1Cd must be zero.

The term W2Cb would be nonzero if and only if nb 6= 0.

In this case, we can therefore find a matrix W such that

WC 6= 0 to satisfy the requirement Grd(s) = 0 and a matrix

K to ensure stability of (A−KC).
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V. ROBUST ADAPTIVE FAULT ESTIMATION DESIGN WITH

ENHANCED ADAPTATION SPEED

In the observer (8), the unknown parameter representing

the actuator fault is replaced by its estimate. By means of

the updating law, the parameter should therefore be adjusted

in real time such that its value quickly converges to the

actual fault. Since we assume that the fault might be an

arbitrary time-varying signal, the adaptive law should be

such that the fault estimate tracks closely the actual fault

signal. From classical control theory, it might be expected

that faster adaptation rule can be achieved with filter having

proportional and integral terms, i.e., the updating law may

have the form of a filtering process

f̂(t) = {g(t) ∗ F ỹ (t)} (19)

with g(t) = −(β1δ (t) + β21(t)) (20)

where F is a matrix to be determined, g the impulse response

of the filter and β1, β2 are filter tuning matrix parameters

(of dimension h × h ) which are assumed to be positive

definite matrices. The symbols δ (t) and 1(t) denotes the

Dirac impulse and the Heaviside function respectively.

Let us disregard, for the moment, the unknown disturbance

d and assume that F is computed as in proposition 1. Then,

from the Kalman-Yakubovitch-Popov lemma [1], the error-

dynamics system with output ỹF defined by

˙̃x(t) = (A−KC)x̃(t) + Ef̃(t) (21)

ỹF (t) = FCx̃(t) (22)

is strictly positive real (SPR). Now, consider the adjusting

law (19) in connection with the error dynamics system (21)-

(22) as depicted in the figure below.

We claim the following result.

Proposition 3: Assume that matrix F is computed from

conditions (4) of proposition 1 . Then, under the positive def-

initeness of matrices β1 and β2, the closed-loop system (21)-

(22)-(19)-(20) is asymptotically stable, that is, limt→∞ ỹ = 0
and limt→∞ f̃ = 0.

Proof: From the positive definiteness of matrices β1

and β2, it follows that the filter with impulse response g(t)
is a positive real system, that is, a passive system. Therefore,

the closed-loop (21)-(22)-(19)-(20) is a negative feedback

interconnection of a strictly passive system and a passive

one. The result follows as a direct application of the passivity

theorem for linear systems [1, Chapter 2].

Remark 1: A similar proportional and integral adaptation

law has been used in [19]. It was only shown there that

the adaptive observer achieves uniformly bounded estima-

tion errors ỹ and f̃ but the authors failed to prove exact

reconstruction of the fault. Proposition 3 is a stronger result

which shows that proportional and integral adaptation laws

really achieves exact asymptotic estimation of the fault.

Remark 2: Note that under the positive definiteness of the

filter matrix parameters β1 and β2, the passive property of the

filter g(t) is independent of the “magnitude” of the elements

of these matrices and, consequently the asymptotic stability

of the closed-loop system (21)-(22)-(19)-(20) is always guar-

anteed. Therefore, with large “magnitude” elements of the

proportional term β1, it can be expected that fast adaptation

can be achieved.

It is clearly seen from proposition 3 that a more general

convergent adaptation scheme can be envisioned as a filtering

of the output-error ỹF , provided that the filter is passive.

An example of such a passive filter might be a proportional-

integral-and-derivative (PID) filter leading to an updating law

of the form

˙̂
f = β1

˙̃yF + β2ỹF + β3
¨̃yF (23)

where β1,β2 and β3 are positive definite. This general result

is stated in the next proposition.

Proposition 4: Assume that matrix F is computed from

conditions (4) of proposition 1 . Then any adaptation law

obtained as a filtering of the F -weighted output-estimation-

error ỹF with a filter having a positive real transfer matrix

G(s) achieves exact asymptotic fault estimation. Further-

more, the closed-loop error-dynamics of the adaptive ob-

server is asymptotically stable.

Now, we are in a position to derive the robust adaptive

fault estimation algorithm with enhanced adaptation speed.

We simply combine the disturbance decoupling residual

generation with an updating mechanism law of PI or PID

type. The algorithm proceeds through the following steps.

1) STEP 1 - Compute K and W using "SCB

transformation"

Find nonsingular state, output and input transformation

Γ1, Γ2 and Γ3 which take the given

Σ = {A,G,C} into the form of (SCB) given by :

Ā := Γ−1

1 AΓ1, Ḡ := Γ−1

1 GΓ3 and C̄ := Γ−1

2 GΓ1

Ā =




Aaa LabCb 0 LadCd

0 Abb 0 LbdCd

GcEca LcbCb Acc LcdCd

GdEa GdEb GdEc Ad


 ,

Ḡ =




0 0
0 0
0 Gc

Gd 0


 , C̄ =

[
0 0 0 Cd

0 Cb 0 0

]

(24)

where the row dimension of Cd is md, and row di-

mension of Cb is the maximum dimension of residual,

that is, mr = p−md

1-a) If nb = 0, stop

1-b) Otherwise continue
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a) Since (Abb, Cb) forms an observable pair, choose

a gain Kbb such that eigenvalue λ(Abb −KbbCb)
are placed at desired location in C

−

b) Define matrices A and C as

A =




Aaa 0 LadCd

GcEca Acc LcdCd

GdEa GdEc Ad


 (25)

C = [0 0 Cd] (26)

As the pair (A,C) is detectable, (A, C) is also

detectable. Choose a gain K such that eigenvalues

λ(A − KC) are assigned at desired location in

C
−. Partition K as K = [KT

aK
T
c K

T
d ] and form

the matrix K̄ as

K̄ =




Ka Lab

Lbd Kbb

Kc Lcb

Kd 0


 (27)

Select matrix W̄ = [Wd Wb] such that WdCd =
0, and Wb is any nonsingular matrix with com-

patible dimension with Cb such that WbCb 6=
0. Note that we can choose Wb=Imr

. Finally,

compute the desired K and W as

K = Γ1K̄Γ−1

2 , W = W̄Γ−1

2 (28)

2) STEP 2 - Compute f̂ using the estimation law (19)

where g(t) is the impulse response of a passive filter

(e.g., PI or PID-type filter)

a) Matrix F is computed from conditions (4)

b) The updating fault estimation mechanism is de-

rived from f̂(t) = {g(t) ∗ Fr (t)} where F =
[F̄ ∗] and F̄ has compatible dimension with

W and r(t) = Wỹ(t)

Remark 3: Note that, apart from the existence of matrix

F imposed by conditions (4), the algorithm is conditioned

to the non right invertibility of the triplet (A,G,C) which

is the condition nb 6= 0.

Remark 4: In step 1 of the above algorithm, the com-

plete structural decomposition yielding the Γ′s-matrices

as well as the transformed matrices Ā, Ḡ, C̄ and the

integers md, nb is entirely performed by the linear

systems toolkit [2, Chapter 12] (also available at

http://linearsystemskit.net/).

VI. A SIMULATION EXAMPLE

The algorithm derived in the previous section is applied

to realize a robust adaptive fault estimation with enhanced

speed using a PI-type filter for the updating estimation

mechanism. We illustrate the effectiveness of this algorithm

with a double-effect pilot evaporator subject to an actuator

fault in its first input channel [16]. The plant model is given

by the state space matrices A,B,G,C as follows

A =




0 0 −0.0034 0 0
0 −0.041 0.0013 0 0
0 0 −1.1471 0 0
0 0 −0.0036 0 0
0 0.094 0.0057 0 −0.051




B =




−1 0 0
0 0 −0
−0 0 0.948

0.916 −1 0
−0.598 0 0



, G =




0 1
0.062 −0.132

0 −7.189
0 0
0 0




C =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0




This plant has three inputs and three outputs and we assume

that a fault occurs in the first input channel with a distribution

matrix given by E = [−1 0 0 0.916 −0.598]T . There

are three independent output measurements and one fault.

Then, it is possible to estimate the actuator fault because

rank(C) > rank(E). The standard UIO-based models in

reference [4], [6] are not applicable for this plant with regard

to the decoupling of the unknown input disturbances, because

rank(CG) < rank(G) (i.e, 1 < 2). The test for disturbance

decoupling using SCB transformation produces nb = 2 and

the pair (A,C) is detectable. Therefore, this system satisfies

the existence conditions of our algorithm. From the SCB

transformation, we get Abb, Cb, Ad and Cd as

Abb =

[
−1.1715 0
−0.0036 0

]
, Cb =

[
1 0
0 1

]

and Ad = 0.0244, Cd = 1. The row dimension of Cd

is md = 1. Then, the maximum dimension of the residual

vector is mr = p −md = 3 − 1 = 2. The matrices K and

W are designed as

K =




0.8500 0 0
−6.5395 0.0009 0

19.05092.32850
0 −0.0036 10

0.7593 0.0057 0




W =

[
7.189 1 0
0 0 1

]

and F̄ = [−205.3002 0.2605] and the corresponding PI

parameters are given by β1 = −0.0016, β2 = −0.01. Figures

2, 4 and 5 show the fault estimation results (the actuator fault

estimate is shown in solid line). It is observed that the robust

adaptive fault estimator exactly reconstructs the waveform

of the unknown fault. Clearly, for arbitrary time-varying

faults, the robust adaptive fault estimator provides better

performance as compared to the robust estimator approach

given in [16] on the same double-effect pilot evaporator

example.
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Fig. 1. Robust fault estimation with the algorithm in [16]: constant fault.
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Fig. 2. Robust adaptive fault estimation (our algorithm): constant fault.
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Fig. 3. Robust fault estimation with the algorithm in [16]: drift fault.
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Fig. 4. Robust adaptive fault estimation (our algorithm): drift fault.

VII. CONCLUSION

In this paper, a robust adaptive observer for deterministic

and uncertain systems has been designed using a disturbance

decoupling residual generator combined with a fairly gen-

eralized adaptation mechanism for actuator fault estimation.

The adaptive observer is a full Luenberger-type observer and

the adaptation mechanism is viewed as an error filter which

can be any dynamical filter provided it has positive real

properties. It is shown that the algorithm assures a perfect

disturbance decoupling residual generation, an asymptotic

exact estimation and may improve drastically the estimation

speed through particular structures of the filter, as e.g., filters

with a proportional term. The application of this approach to

a double-effect pilot evaporator model has been performed

to validate the effectiveness of the designed robust adaptive

observer.
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Fig. 5. Robust adaptive fault estimation (our algorithm): time-varying fault.
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