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Abstract— In this study, an online time delay identification
technique is proposed. Different from the relevant literature, the
time delay is considered as a nonlinear parameter and nonlinear
parameter estimation techniques are adopted. The stability
of the adaptive update law can be guaranteed via Lyapunov
based arguments and numerical simulations are conducted to
demonstrate the proof of concept.

I. INTRODUCTION

Time delay is a widely came across phenomenon in
dynamical systems in a wide variety of disciplines such
as chemistry, biology, communications, mechanics, control,
and signal processing applications. In dynamical systems,
time delay may have negative effects such as instability
and/or reduction in performance. On the other hand, its
accurate identification is crucial for several signal processing
applications such as distance measurement and localization
systems [1], [2], [3], [4], [5]. Due to its occurrence in several
disciplines and to overcome its negative effects, a significant
amount of research was devoted to time delay phenomenon,
its effects on systems, and identification and control methods.
A broad overview on time delay, its effects on systems and
open problems may be found in [6].
Identification of time delay in systems is a per se research
area and several techniques and algorithms are available. In
[7], Tugnait proposed an adaptive frequency domain filter
based on high-order statistics for a class of error-in-variable
models and applied this method to time delay identification.
Zhou and Frank [8] developed an approach based on a
modified tracking filter for time delay identification for a
class of nonlinear autoregressive processes with exogenous
inputs. Diop et al. [9] utilized an on-line estimation scheme
based on least squares algorithm to identify time delay
while providing exponential stability. In [10], So presented
an unbiased impulse response estimation approach for time
delay identification between signals received at two spatially
separated sensors. Zhang and Li [11] analyzed the time-
varying communication delay and proposed a time delay
identification method based on steepest descent algorithm.
Wen et al. proposed a new symmetrical adaptive structure
to solve the problem of time delay identification in noisy
environment and developed a stochastic gradient algorithm
to calculate the optimum solution [12]. Shaltaf presented
a neuro-fuzzy technique for identification of time delay
embedded within a received noisy and delayed replica of
a known reference signal [13]. Sharma and Joshi utilized
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fractional Fourier transform for time delay identification [14].
In [5], Brennan et al. presented the equivalence between time
and frequency domain methods when estimating time delay
and identified the conditions under which both methods are
identical and then applied these methods to determine the
position of leak in water distribution pipes. Govindan et
al. [15] showed that the coherence analysis is suitable for
time delay identification of narrow band coherence signals
for which the conventional methods can not be reliably
applied and used the method to identify time delay between
two simultaneously measured signals. In [16], Harva and
Raychaudhury proposed a Bayesian approach for identifying
time delay between signals that are irregularly sampled.
Bhardwaj and Nath [17] proposed a maximum likelihood
identifier for time delay associated with each path in a multi-
path acoustic channel. Bastard et al. presented a modified
version of the estimation of signal parameters via rotational
invariance techniques algorithm which takes both transmitted
pulse shape and any noise into account, to identify time delay
in backscattered radar signals [18].
Most of the relevant past research on time delay identification
are limited to linear (or linearized) time invariant systems
[19]. Even in the studies that considered nonlinear systems,
time delays were assumed to be appearing as linear param-
eters [20]. The proposed approaches in the literature usually
use least squares algorithm, gradient algorithm, correlation
analysis, filter based techniques, or stochastic approximation
techniques [8]. A good categorization and comparison of
time delay identification methods may be found in [21].
These approaches are efficient mostly for linear systems
and also for some nonlinear systems where time delay is
assumed to be a linear parameter. But, in reality, time
delay acts as a nonlinear parameter. There are not many
notable results in the literature for nonlinear systems. Most
of the proposed algorithms in the literature, i) are generally
weak under stability analysis, ii) do not apply to general
systems, iii) and/or require measurability of some signals
that are usually unavailable. For example, in [9], Diop et al.
used an identification approach which provides exponential
stability. But the assumption that obstruct zero crossing
of the derivative of signal restricts the area of usage and
furthermore, as indicated in the paper, in implementation,
ultimate convergence can be provided instead of exponential
convergence. Review of the relevant literature highlights the
fact that time delay should be considered as a linear param-
eter for general systems and should not be considered as a
linear parameter and thus nonlinear parameter identification
techniques should be proposed for time delay identification.
In this study, a novel online adaptive time delay identification
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technique is presented to identify constant time delays for
the systems of the form in (1). Unlike most of the relevant
past studies in the literature, time delays are considered
as nonlinear parameters. Since time delay is treated as a
nonlinear parameter, it is not possible to use a standard adap-
tive estimator or a gradient based estimator. To overcome
this, inspired by [22], a nonlinear parameter identification
technique is adopted as a time delay identification method.
According to the authors’ best knowledge, nonlinear param-
eter identification techniques are, for the first time in the
literature, considered as a time delay identification method.
The proposed time delay identification algorithm is based
on a min-max optimization algorithm. It is shown that the
developed estimator identifies the unknown time delay upon
satisfaction of a nonlinear persistent excitation condition
and is robust to noise as demonstrated by the numerical
simulation results. The main contributions of this paper are
(i) time delay is considered as a nonlinear parameter affecting
the system and nonlinear parameter identification techniques
are utilized as the time delay identification method, (ii) the
developed identifier is continuous, and (iii) the developed
identifier provides identification of time delay within a
desired precision that can be adjusted to be very small.

II. PLANT MODEL

The general model considered in this paper is of the
following form

q(τ,Π) = Ψ1(t) + Ψ1(t− τ1)) + ...+ Ψ1(t− τn) +

...+ Ψm(t) + Ψm(t− τ1) + ...+ Ψm(t− τn) (1)

which can be rewritten as

q(τ,Π) =

m∑
i=1

Ψi(t) +

m∑
i=1

n∑
j=1

Ψi(t− τj) (2)

where q(·) ∈ R is a measurable signal, Π(·) is a measur-
able function including known and measurable parameters,
Ψi(t) ∈ R, i = 1 · · ·m, are arbitrary chosen functions and
τ = [τ1 · · · τn]T ∈ Rn where τj , j = 1, 2, .., n denote time
delays. We assume that the time delays are unknown and
all the remaining parameters are known. The signals shown
below may be given as examples for the model given in (1)

q (τ,Π) = sin (2πf1t) + sin (2πf1t− τ1) (3)

q (τ,Π) = sin (2πf1t− τ1) + sin (2πf2t) (4)

q (τ,Π) = sin (2πf1t− τ1) + sin (2πf2t− τ2) (5)

where f1 and f2 are frequencies, τ1 and τ2 are time delays
and Π(t) = t. The model in (1) satisfies the conditions
given in Assumptions 1, 2, 3, and 4.

Assumption 1: It is assumed that τ , the unknown time
delay vector, is bounded and in a known hypercube Ω ⊂ Rn.

Assumption 2: It is assumed that the function q(·) is either
concave or convex on a simplex1 Ωs in Rn, also Ωs ⊃ Ω.

1A simplex in Rn is a convex polyhedron with n+ 1 vertices.

Definition 1: A function W is convex on Ω if it satisfies
the following inequality

W (κν1+(1−κ)ν2) ≤ κW (ν1)+(1−κ)W (ν2) , ∀ν1, ν2 ∈ Ω
(6)

and concave if it satisfies the following inequality

W (κν1+(1−κ)ν2) ≥ κW (ν1)+(1−κ)W (ν2) , ∀ν1, ν2 ∈ Ω
(7)

where 0 ≤ κ ≤ 1.
Assumption 3: It is assumed that the function Π(t) is

continuous function of its arguments, bounded, and Lipschitz
in t as follows

‖Π(t1)−Π(t2)‖ ≤ L1|t1 − t2|, ∀t1, t2 ∈ R+ (8)

where L1 ∈ R+ is the Lipschitz constant.
Assumption 4: It is assumed that q(τ0,Π) is Lipschitz

with respect to its arguments as

|q(τ0+∆τ0,Π+∆Π)−q(τ0,Π)| ≤ L2(‖∆Π‖+‖∆τ0‖) (9)

where ∆Π , Π(t1) − Π(t2), ∆τ0 , τ0(t1) − τ0(t2) and
L2 ∈ R+ is the Lipschitz constant.

Remark 1: Affine functions always satisfy convexity and
concavity defined in Definition 1 [23]. Therefore all affine
functions are both convex and concave. Conversely, it can be
said that all functions which are both convex and concave are
affine (also linear). In Assumption 2, q(·) is assumed to be
either convex or concave. Thus, this assumption is equivalent
to excluding affine functions.

III. DELAY ESTIMATION

The estimate form of (2) is defined as

q̂ =

m∑
i=1

Ψi(t) +

m∑
i=1

n∑
j=1

Ψi(t− τ̂j) (10)

where q̂ = q(τ̂ ,Π) ∈ R. An auxiliary filter signal, denoted
by qf (t) ∈ R, is designed as follows

q̇f = −αqf + q , qf (t0) = 0 (11)

where α ∈ R is a positive constant. The estimate form of
(11) is designed as

˙̂qf = −α(q̂f − εsat(r)) + q̂ − a∗sat(r) (12)

where q̂f (t), ˙̂qf (t) ∈ R are the estimates of qf (t) and q̇f (t),
respectively, ε ∈ R is the desired precision, a∗(t) ∈ R is the
tuning function and r(t) ∈ R is defined as follows

r ,
q̃f
ε

(13)

where q̃f (t) ∈ R is an error signal defined as follows

q̃f , q̂f − qf . (14)

In (12), sat(r) is a saturation function and defined as

sat(r) =

 1 , r > 1
r , |r| < 1
−1 , r 6 −1

. (15)
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After taking the time derivative of (14), the below expression
may be obtained

˙̃qf = −αq̃fε + q̂ − q − a∗sat(r) (16)

where (11) and (12) were utilized and q̃fε(t) ∈ R is the
tuning error defined as

q̃fε , q̃f − εsat(r). (17)

Remark 2: It should be noted that from (17) and its time
derivative, it is clear that

q̃fε = 0 when |q̃f | ≤ ε
.
q̃fε =

.
q̃f when |q̃f | > ε

where (13) was utilized.
This remark will later be utilized in the stability analysis.
The update law is developed with a projection as follows

˙̂τ = Proj{−Γq̃fεφ
∗} (18)

where φ∗(t) ∈ Rn is the sensitivity function, Γ ∈ Rn×n is
a positive definite diagonal gain matrix and the projection
algorithm assures that τ̂(t) always belongs to the hypercube
Θ. The projection algorithm is as

τ̂j =

 τ̂j , if τ̂j ∈ [τj,min, τj,max]
τj,min , if τ̂j < τj,min
τj,max , if τ̂j > τj,max

(19)

where the subscript j denotes the jth element of the corre-
sponding vector ∀j = 1, 2, . . . n, τj,min, τj,max ∈ R are the
minimum and maximum values of the jth component of τ ,
respectively. The solutions for φ∗(t) and a∗(t) are obtained
from the following min-max optimization problem2

a∗ = min
φ∈Rn

max
τ∈Ωs

J(φ, τ) (20)

φ∗ = arg min
φ∈Rn

max
τ∈Ωs

J(φ, τ) (21)

where J(·) ∈ R is performance index and given as follows

J(·) = sat(r)[q̂ − q − Γτ̃Tφ] (22)

where τ̃(t) ∈ Rn is the parameter estimation error defined
as follows

τ̃ , τ̂ − τ. (23)

The expressions in (20) and (21) can be obtained as follows
a) when q̃f (t) < 0

a∗ =

{
0 if q is concave on Θs

A1 if q is convex on Θs
(24)

φ∗ =

{
∇q(τ̂) if q is concave on Θs

A2 if q is convex on Θs
(25)

b) when q̃f (t) > 0

a∗ =

{
A1 if q is concave on Θs

0 if q is convex on Θs
(26)

2Although the derivations are very similar to that of [23], we presented
them for the sake of completeness.

φ∗ =

{
A2 if q is concave on Θs

∇q(τ̂) if q is convex on Θs
(27)

where A(t) ∈ Rn+1 is given as follows

A = [A1 A
T
2 ]T = G−1b (28)

where A1(t) ∈ R, A2(t) ∈ Rn and G(t) ∈ R(n+1)×(n+1)

and b(t) ∈ Rn+1 are defined as

G =


−1 βΓ(τ̂ − τs1)T

−1 βΓ(τ̂ − τs2)T

−1 βΓ(τ̂ − τs3)T

−1 βΓ(τ̂ − τs4)T

 (29)

b =


β(q̂ − qs1)
β(q̂ − qs2)
β(q̂ − qs3)
β(q̂ − qs4)

 (30)

where β ∈ R is defined as follows

β =

{
1 if q is convex on Θs

−1 if q is concave on Θs.
(31)

In (30), qsh , q(τsh,Π) ∀h = 1, 2, . . . , n + 1 where τsh ∈
Rn are the vertices of the simplex Θs. In (25) and (27),
∇q(τ̂) ∈ Rn is the gradient function given as follows

∇q(τ̂) = (δq/δτ) |τ=τ̂ . (32)

Remark 3: The hypercube Ω may be obtained by using
minimum and maximum values of τ . The vertices of the
simplex Ωs may be obtained by first inscribing Ω in a n-
dimensional sphere and then inscribing this sphere inside a
(n+ 1)-dimensional polyhedron [22].

Remark 4: The tuning error q̃fε(t) and the saturation
function sat(r) assure that the estimator is continuous even
if a discontinuous solution of the min-max algorithm is
obtained [22].

IV. STABILITY ANALYSIS

Theorem 1: The adaptive update law in (18) assures that
q̃fε(t) ∈ L2 ∩ L∞; hence, the stability of the identifier
and the global boundedness of the overall adaptive system
are guaranteed. The estimator assures that ‖τ̃(t)‖ 6

√
γ as

t→∞ provided the following nonlinear persistent excitation
condition holds

β(Π(t2))(q(τ̂(t1),Π(t2))− q(τ,Π(t2))) > εu‖τ̂(t1)− τ‖
(33)

where γ, c1 ∈ R are positive constants defined as

γ ,
8εc1
ε2
u

, c1 , 4L1L2 + 2νL2Lφ + νL2
φ (34)

where ν ∈ R is the maximum eigenvalue of Γ, t2 ∈
[t1, t1 + T0], t1 > t0, and T0, εu ∈ R are positive constants.
Proof: Although the systems considered in this work are
completely different from the one in [23], and the update law
in (18) is slightly different than the one in [23] (i.e. unlike our
work, there is no gain matrix in the adaptive update rule (see
equation (31)) in [23]), the proof of the theorem is similar to
the one in [23]. In this paper, the stability analysis is given
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in appendix and the reader is referred to [23] for the rest of
the proof.

Remark 5: From its definition in (34), it is clear that γ
can be made smaller by choosing a smaller precision ε.
It’s also clear that as ε → 0 then γ → 0, thus the time
delay identification error also goes to zero in the sense that
‖τ̃(t)‖ → 0.

V. NUMERICAL SIMULATION RESULTS

The performance of the proposed technique was evaluated
by conducting numerical simulation using Matlab/Simulink.
During the simulation, the update law in (18) was utilized
with gains and parameters α = 250, Γ = 150 and ε =
0.0001. The lower and upper bounds of time delay were 0.1
seconds and 1.1 seconds, respectively. The initial values of
qf (t) and q̂f (t) were set to 0 and the initial value of τ̂(t)
was 0.3 seconds.
The model in (3) was considered with f1 = 5 Hz and τ1 =
0.6 seconds. The performance of the proposed technique
was evaluated with and without additive noise where white
Gaussian noise with a 20 dB SNR was injected to q(t) to
demonstrate robustness against noise. The estimate of τ1 is
presented in Figures 1 and 2, for noiseless and noisy cases,
respectively. From Figures, it is clear that identification of
time delay is achieved even in the presence of noise.
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Fig. 1. τ̂1(t) for constant delay without noise

VI. CONCLUSION

In this work, a novel adaptive time delay identification
technique was presented. Time delays were considered as
nonlinear parameters and the nonlinear parameter estimation
method [22] was utilized as the time delay identification
algorithm for the first time in the literature. Numerical
simulation results were conducted to demonstrate the
efficiency of the estimator for constant time delays and
its robustness to noise. From the results, it is clear that
the developed technique efficiently identifies constant time
delays. In future, this technique will be adapted to general
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Fig. 2. τ̂1(t) for constant delay with noise

classes of systems with control applications.

APPENDIX

Proof: To facilitate the proof, a nonnegative Lyapunov
function V (t) ∈ R is defined as follows

V =
1

2
q̃2
fε +

1

2
τ̃T τ̃ . (35)

The time derivative of (35) can be obtained as follows

V̇ = q̃fε
.
q̃fε +τ̃T

.
τ̃ . (36)

After utilizing the time derivative of (23), the expression
given in (36) can be written as follows

V̇ = q̃fε
.
q̃fε +τ̃T

.

τ̂ . (37)

After substituting (18) into (37), the following expression is
obtained

V̇ = q̃fε
.
q̃fε +τ̃TProj{−Γq̃fεφ

∗}. (38)

It should be noted that an adaptive law with the projection
algorithm defined on a convex set retains all the properties
of the adaptive law without the projection algorithm [24].
The projection strategy given in (19) is on the hypercube Θ
(i.e., a convex set); hence, the expression given in (38) can
be written as follows

V̇ = q̃fε
.
q̃fε −τ̃TΓq̃fεφ

∗. (39)

The expression given in (39) is rearranged as follows

V̇ = q̃fε

[ .
q̃fε −Γτ̃Tφ∗

]
. (40)

Two different cases are considered, Case I when |q̃f | ≤ ε,
and Case II when |q̃f | > ε.
Case I) From Remark 2, it follows that

V̇ = 0 ∀ |q̃f | ≤ ε. (41)
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Case II) Also, from Remark 2 and (40), the following
expression can be obtained

V̇ = q̃fε

[ .
q̃f −Γτ̃Tφ∗

]
∀ |q̃f | > ε. (42)

After substituting (16) into (42), the following expression is
obtained

V̇ = q̃fε
[
−αq̃fε + q̂ − q − a∗sat(r)− Γτ̃Tφ∗

]
. (43)

The expression given in (43) can be rearranged as follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − Γτ̃Tφ∗ − a∗sat(r)

]
. (44)

Now two distinct sub-cases of Case II are considered: (a)
when q̃f > ε, and (b) when q̃f < −ε. (a) When q̃f > ε,
from (15) and (17) it follows that q̃fε > 0 and sat(r) =
sgn(q̃f ) = 1. After utilizing (44), V̇ (t) can be written as
follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − Γτ̃Tφ∗ − a∗

]
. (45)

It follows from (45) that V̇ (t) ≤ 0 if the following inequality
holds

a∗ ≥ q̂ − q − Γτ̃Tφ∗ ∀τ ∈ Θ. (46)

Therefore, we choose to maximize a∗(t) as follows

a∗ = max
τ∈Θ

[q̂ − q − Γτ̃Tφ∗] for any φ∗. (47)

Since, a∗(t) is like a gain in (16), we seek to find φ∗(t) so
that a∗(t) is minimized; thus, a∗(t) is chosen as follows

a∗ = min
φ∈Rn

max
τ∈Θ

[q̂ − q − Γτ̃Tφ∗]. (48)

(b) When q̃f < −ε, from (15) and (17) it follows that q̃fε <
0 and sat(r) = sgn(q̃f ) = −1. After utilizing (44), V̇ (t) can
be written as follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − Γτ̃Tφ∗ + a∗

]
. (49)

From (49) it follows that V̇ (t) ≤ 0 if the following inequality
holds

a∗ ≥ q − q̂ + Γτ̃Tφ∗ ∀τ ∈ Θ. (50)

Following along the same lines as in (a), the following
expression can be written

a∗ = min
φ∈Rn

max
τ∈Θ

[q − q̂ + Γτ̃Tφ∗]. (51)

After combining (48) and (51), the following expression is
obtained

a∗ = min
φ∈Rn

max
τ∈Θ

sat(r)
[
q̂ − q − Γτ̃Tφ∗

]
. (52)

After utilizing (46) and (50) the following inequality can be
obtained

sat(r)
[
q̂ − q − Γτ̃Tφ∗

]
− a∗ ≤ 0. (53)

The expression given in (45) can be rewritten as follows

V̇ = −αq̃2
fε + q̃fεsat(r){sat(r)[q̂− q−Γτ̃Tφ∗]− a∗} (54)

Thus, after utilizing (53), and the fact that q̃fεsat(r) ≥ 0

when |q̃f | > ε, V̇ (t) can be upper bounded as follows

V̇ ≤ −αq̃2
fε ∀ |q̃f | > ε. (55)

After integrating (55), the following inequality can be ob-
tained

α

∫ ∞
t0

q̃2
fε dτ < V (t0)− V (∞). (56)

From (35), (41), and (55), it can be concluded that V (t) ∈
L∞. From (56), it is clear that q̃fε(t) ∈ L2 ∩ L∞; thus,
from (17), it can be concluded that q̃f (t) ∈ L∞. Since the
projection strategy given in (19) ensures τ̂(t) ∈ Θs; thus, it
follows that τ̂(t) ∈ L∞. Hence, from (12), it follows that
q̂(·) ∈ L∞. Since a∗(t) is a function of the bounded signals,
and q(·) is a measurable bounded signal, from (16), it follows
that

.
q̃f (t) ∈ L∞. It is clear from the projection strategy that

.

τ̂ (t) ∈ L∞; thus, from (23),
.
τ̃ (t) ∈ L∞.
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