
  

  

Abstract— Wiener models, which consider a linear 

dynamical model and a nonlinear output map, can represent a 

wide range of industrial processes. In this paper, observer 

design approaches for these systems are proposed. The 

approaches consider a Wiener structure having a Lipschitz 

nonlinear perturbation term and explicit and implicit nonlinear 

output maps. The observers gain are obtained by solving a set 

of LMIs which consider the Lipschitz constant associated to the 

nonlinear perturbation and the convex hull associated to the 

output map derivative. A conductivity tracking problem and 

pH neutralization processes illustrate the main features of the 

design process and the performance obtained with the 

proposed design approach. 

Keywords: Chemical process; Wiener structure; Observer 

design; Nonlinear systems; LMI solution; Nonlinear output 

maps; Differential Mean Value Theorem  

I. INTRODUCTION 

IENER models can approximate a wide range of 
industrial processes. One example is motivated by 
state estimation in process tomography using fluid 

dynamics models; which are usually modeled as Markov 
models. A second example can be found in the pH 
neutralizing processes, where the nonlinearity is associated 
to the measuring systems. In both cases, Lipschitz 
nonlinearities in the process and nonlinear output map are 
common features in these applications.  Observer designs for 
these processes have considered standard techniques such as 
Extended Kalman filter [1] and geometric methods [14]. 

Recent work based on Luenberger observer structures for 
systems with Lipschitz nonlinearities consider alternative 
approaches such as Linear Varying Parameters [2,6] and 
observer design with weighted feedback [7]. The use of the 
Lipschitz constant associated to the nonlinear perturbation 
term in observer design has been addressed in [4,13]. Less 
conservative results have been obtained using the one-sided 
Lipschitz condition [8,10,11,12] or quasi-one-side Lipschitz 
condition [9]. In addition, by applying the mean value 
theorem the error dynamic can be transformed into a LPV 
system [2,5,20] to design observers with improved 
performance.  Only few of these works have addressed the 
problem of systems with nonlinear output maps. In [2] and 
[6] observers based on linear feedback are proposed, 
whereas in [7] a weighted feedback is considered, but this 
approach is limited to linear models having just one 
eigenvalue in the imaginary axis. In this work, these results 
are tailored to Wiener models and they are extended to deal 
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with linear models having an arbitrary number of 
eigenvalues in the imaginary axis and also with systems 
having implicit output maps. 
 

The paper is organized as follow. In Section 2, an 
observer design method based on [6] is proposed for systems 
with Lipschitz nonlinear dynamics and explicit Lipschitz 
nonlinear output, also a variation of this method is presented 
where a nonlinear term is added to the feedback. In Section 
3, the method is extended to deal with systems where the 
nonlinear output is defined implicitly. Two examples are 
presented in Section 4, a conductivity tracking process and a 
pH process, which illustrate the proposed methods. Finally, 
conclusions are presented in section 5.  

II. EXPLICIT OUTPUT 

A. Luenberger observer structure 

In this section, an observer design is proposed for systems 
with Lipschitz nonlinear dynamics and Lipschitz nonlinear 
output. 

 
Consider linear systems following the form � x� = Ax + Bu + f�x, uy = h�x                       � (1)  

where f: ℝ� × ℝ� ↦ ℝ� is a global Lipschitz nonlinear map 
with respect to x�k; i.e. ‖f�x�, u − f�x�, u‖ ≤ γ�‖x� −  x�‖ (2)  

where γ� is the Lipschitz condition constant. This can be 
rewritten as 1γf�  ! ≤ "!" (3)  

The nonlinear function h: ℝ� ↦ ℝ# is a continuous function 
with bounded derivatives with respect to x. 

The proposed observer follows the traditional structure: x$� = Ax$ + Bu + K�h�x$ −  y +  f�x$, u (4)  

The error is defined as e = x$ −  x and the error dynamic is e� = Ae + K'h�x$ − h�x( + 'f�x$, u − f�x, u( (5)  

The differential mean value theorem [6] states that for a 
given ), * ∈ ℝ, and  -: ℝ, → ℝ/, differentiable in 01�), *, 
then there are constant vectors 2�, … , 2/ ∈ 01�), *  

φ�a − φ�b = 78 Ω:,; ∂φ:∂x; �z:#,�
:,;>� ? �a − b (6)  

where Ω:,; ∈ ℝ#×� is a real matrix whose �i, j term is 1, and 
all the rest are 0.  

By considering (6) for the output function h�x, the error 
dynamic is 
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e� = Ae + K 78 ϑ:,;�z:Ω:,;
#,�

:,;>� ? e + 'f�x$, u −  f�x, u( (7)  

where �ϑ:,;�z: = ∂h:�x∂x; CD>EF
 (8)  

and 2 ∈ 01�"$, ". 
Let’s rewrite 

�∂h�x∂x CD>E = 8 ϑ:,;�z:Ω:,;
#,�

:,;>� = C�ϑ (9)  

Also, let �C:�H:HI be the convex-hull matrices such that C�ϑ ∈ {C�, … , CI} (10)  
where ‘v’ is the number of convex-hulls. 

 
Now the first theorem can be stated: 
Theorem 1: If a matrix K can be chosen such that A + KC:, ∀ 1 ≤ i ≤ v is stable, and P = PO > 0 is a solution 

of the inequality  

RST + U0VW!X + XST + U0VW + Y X
X − 1Z[� Y\ < 0 

and the Lipschitz condition holds, then the proposed 
observer (4) yields globally asymptotically stable estimates 
of the observed system (1). 

 
Proof: Consider the Lyapunov function V�e = e_Pe, 

where e = x$ − x is the error, X = X! > 0 and the observer 
defined as (3). The derivative of the Lyapunov function �̀ �e  = a� !Xa + a!Xa�                           

                        = a! RA + U 78 ϑ:,;�zΩ:,;
#,�

:,;>� ?\
!

Xa
+ a!X RT + U 78 ϑ:,;�zΩ:,;

#,�
:,;>� ?\ a

+  2a!XS �"$, c −  �", cW 

(11)  

Which can be rewritten as 

V� �a = da e! f g̀� XX 0 h da e (12)  

With  

g̀� = ST + U0�iW!X + XST + U0�iW 
In addition, from (2) we have  

da e! R – Y 00 1Z[�
 \ da e ≤ 0 (13)  

Now, using equations (12) and (13), and the S-procedure 
[3], a sufficient condition to have V� �e < 0 for all x ∈ ℝ� is 
attained: 

RSA + KC�ϑWTP + PSA + KC�ϑW + I P
P − 1

γf� I\ < 0 

ϑ:,; ≤ ϑ:,;�x ≤ ϑ:,;       ∀i, j 
(14)  

where ϑ:,; and ϑ:,;, are the lower and upper bound of element ϑ:,;�x respectively. 
 

This set of equations can be transformed into an LMI 
optimization problem by replacing the time-varying 
parameters by its convex-hulls defined by (10), which means 
equation (14) becomes: 

RST + U0mWnX + XST + U0mW + Y X
X − 1Z � Y\ <  0 

∀ 1 ≤ i ≤ v 

(15)  

This ends the proof.∎ 
 

B. Luenberger observer structure with weighted 

nonlinear feedback 

In this section, an observer design method is proposed for 
systems with Lipschitz nonlinear dynamics and Lipschitz 
nonlinear output map, where the proposed observer follows 
the Luenberger structure with a weighted feedback added to 
it. 

Let’s consider the systems described by (1). The proposed 
observer follows the structure: x$� = Ax$ + Bu +  f�x$, u + K1�h�x$ −  y+ K2∇h�x$T�h�x$ − y 

(16)

The nonlinear term U�qℎ�"$!�ℎ�"$ − s considers the 
output sensitivity to adjust the feedback gain. 

The error is defined as e = x$ −  x and the error dynamics 
for such observer are e� = Ae + 'f�x$, u − f�x, u( + K��h�x$ − y+  K�∇h�x$_�h�x$ − y 

(17)  

 
Using (6) and (8) to (10) a theorem addressing the 

stability of this kind of observer can now be stated: 
 

Theorem 2: If a matrix U� can be chosen such that A + K�C:, ∀ 1 ≤ i ≤ v is stable, and P = PO > 0 is a solution 
of the inequality  

RSA + K�C:W_P + PSA + K�C:W − 2C:_C: + I P
P − 1γ�� I\ < 0 

and the Lipschitz condition holds, then the proposed 
observer (16) yields locally stable estimates around a = 0 of 
the observed system (1) with U� = −Xt�. 

 
Proof: Consider the Lyapunov function V�e = e_Pe, 

where e = x$ − x is the error, X = X! > 0, U� = −Xt� and 
the observer defined as (16). Linearizing all terms around a = 0 in the error dynamics (17) but without considering the 
Lipschitz nonlinearity we get 

e� = uA + K� ∂h�xv" + U� vℎ�"v"
! vℎ�"v"  w e

+  'f�x$, u − f�x, u( 

(18)  
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Rewriting using (8) and (9) e� = 'A + K�C�ϑ + U�0�i!0�i(e+  'f�x$, u − f�x, u( 
(19)  

The derivative of the Lyapunov function is �̀ �a = a� !Xa + a!Xa�= a!'T + U�0�i(!Xa+ a!X'T + U�0�i(a− 2a!0�i!0�ia +  2a!XS �"$, c −  �", cW 

(20)  

which can be rewritten as 

V� �a = da e! f g̀� XX 0 h da e (21)  

with  

g̀� = ST + U�0�iW!X + XST + U�0�iW − 20�i!0�i 
 
Using equations (13) and (21), and the S-procedure [3], a 

sufficient condition to have V� �e < 0 for all x ∈ ℝ� is 
attained: 

RVk2 + I P
P − 1

γf� I\ < 0 

ϑ:,; ≤ ϑ:,;�x ≤ ϑ:,;       ∀i, j 
(22)  

where ϑ:,; and ϑ:,;, are the lower and upper bound of element ϑ:,;�x respectively. 
 

This set of equations can be transformed into an LMI 
optimization problem by replacing the time-varying 
parameters by its convex-hulls defined by equation (10), 
which means equation (22) becomes: 

RSA + K�C:W_P + PSA + K�C: W − 2C:_C: + I P
P − 1

γ�� I\ < 0 

∀ 1 ≤ i ≤ v 

 

(23)  

This ends the proof. ∎ 
 

III. IMPLICIT OUTPUT 

In this section, an observer design for systems having 
implicit output is proposed. Let’s consider the following 
form � x� = Ax + Bu + f�x, u0 = h�x, y                     � (24)  

The proposed observer follows the traditional structure: x$� = Ax$ + Bu + K'h�x$, y −  h�x, y( +  f�x$, u (25)  

and since h�x, y = 0, can be rewritten as x$ = Ax$ + Bu + Kh�x$, y +  f�x$, u (26)  

The error is defined as e = x$ −  x and the error dynamic 
for such observer is e� = Ae + K'h�x$, y − h�x, y(+ 'f�x$, u − f�x, u( 

(27)  

The theorem addressing the stability of the observer is 
stated as follows 

Theorem 3: If a matrix K can be chosen such that A + KC:, ∀ 1 ≤ i ≤ v is stable, and P = PO > 0 is a solution 
of the inequality  

RST + U0VW!X + XST + U0VW + Y X
X − 1Z[� Y\ < 0 

and the Lipschitz condition holds, then the observer 
proposed (25) yields asymptotically stable estimates of the 
observed system (24). 

 
Proof: The proof for this case follows similar steps as the 

one presented in section 2.  

IV. SOME APPLICATIONS 

A. Conductivity tracking 

Conductivity based sensors can be used in those 
applications where the conductivity of solid, liquid and gas 
give valuable information to monitor industrial processes 
[1], [15]. Electrical methods have the advantage that they do 
not need transparent tanks or columns. In thickeners for 
instance, solid concentrations, solids profiles and clear/slurry 
interfaces level can be determined from conductivity 
measurements [17]. In many column applications estimating 
the height of interfaces automatically has proved difficult 
due to the signal noise [16]. In order to cope with noisy 
signals and the dynamic variations of the conductivity an 
observer based approach has been proposed. A typical and 
simple conductivity probe consists of a bipolar power supply 
and a sensor cell connected to the power supply through a 
resistor. 

The sensor cell considers some electrodes and a data 
acquisition system for collecting and processing the voltage 
signals. Since the relationship between conductivity and 
voltage is nonlinear, the values of the associated resistor of 
each cell must be carefully selected in order to avoid 
resolution problems [15]. A neural network approach was 
proposed in [15] to deal with this nonlinear characteristic by 
training the network to learn the inverse function of the 
nonlinearity.  

In this paper, a different solution based on dynamic 
models and observers is proposed. The first step is to model 
the electrode or cell voltage variation by a simple dynamical 
model.  One of the simplest options is to model the voltage 
dynamic variation by the following continuous-time state 
model, where the variables " are considered real values 
representing a stochastic process described by the following 
Markov model: x� = Ax + Bωy (28)  

where A is the state transition matrix, ω is the evolution 
noise process having zero mean and covariance Γ{ , B is the 
transition matrix of the noise process. Matrix A defines the 
type of evolution assumed for the state variables. For 
instance if A = 0, then  a simple random walk model is 
obtained. In addition we also assume that the conductivity 
values belong to a closed set Ω ∈ ℝ�, where n is the 
dimension of x. 
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 For time varying signal, a Newtonian kinematic model is 

more suitable, and in this case the equations representing 
these variations consider the following state transition 
matrix:  A = f0 10 0h (29)  

 
For a conductivity based sensor, the measurements can be 

described by a continuous nonlinear function h�⋅ 
representing the relationship between conductivity and 
measured voltage:  yy = h�xy + εy (30)  

where y is the vector of measured voltages, and εy is a 
random gaussian noise with zero mean and covariance Γ� . It 
is assumed that the Jacobian matrix of h�⋅ satisfies the 
following condition: 

a:,; ≤ ∂h;∂x: ≤ b:,; (31)  

Now, let’s consider a conductivity application where the 
process and the measuring system can be described by the 
following model � x� = Ax    y = h�x � (32)  

 

 
 
 

 
Where A is defined as in (29), x is the conductivity, and 

the voltage is the output defined by the function h�⋅ 
described by h�x = V: ⋅ R ⋅ x�K + Rx�  (33)  

 with V: = 15 V, R = 50 Ω and K = 1.5, and whose 
Jacobian  

0 <  vℎ�"v"� = V̀� d 1U + �"� − "��U + �"��e ≤ V̀�U  (34)  

Since the conductivity x� > 0 
The conductivity dynamics and their estimated values 

using the Luenberger observer with constant feedback gain 
are presented in Fig.1, whereas Fig.2 shows the output error s� = s$ − s. 

In Fig.3, the conductivity dynamics and their estimated 
value given by the Luenberger observer with weighted, 
nonlinear feedback are presented. Fig.4 shows its output 
error. The use of the non-linear term increases the gain 
improving tracking but not filtering.  

 

 

 
Fig. 4. Output error for conductivity tracking example using Luenberger 

observer with weighted feedback 
 

 
Fig. 2. Output error for conductivity tracking example using 

Luenberger observer. 
 

Fig. 3. Conductivity dynamics and the value estimated by the Luenberger 

 
Fig. 1. Conductivity dynamics and the value estimated by the 

Luenberger observer 
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B. pH process 

This example considers a pH neutralization process which 
consists of three inputs: (u�) a base stream, NaOH, (u�) a 
buffer stream, NaHCO�, and (u�) an acid stream, HNO�, 
mixed in a constant volume (V) stirring tank. The acid flow 
rate and the volume of the tank are assumed to be constant, 
and the objective usually is to control the output, the pH of 
the effluent solution, by manipulating the base flow u�despite the unmeasured buffer flow rate u�. 
 
 
The model of this example 
 "� = 1̀ dc����� − "� + c2���� − "� + c����� − "�c����� − "� + c2���� − "� + c����� − "�e 

ℎ�", s = "� + 10�t�� − 10t� + x� 1 + 2 × 10�t#��1 + 10#��t� + 10�t#�� = 0 

(35) 

Where the parameters pK� and pK� are the first and second 
disassociation constants of the weak acid H�CO�. The 
nominal operation conditions of the pH neutralization 
process, table 1, were used in the observer design process. 
 
 
Matlab LMI toolbox was used to solve the LMI problem, 
obtaining P = f 6.3581 −7.0969−7.0969 8.7926 h 

 K = f−2.8644−2.4019h 
 
Simulation results depicted in Fig.5 show the evolution of 
the state variables x� and x� and its estimates x$� and x$�. 
Note that in this case it is not necessary to solve the output 
map in order to build the observer, simplifying in this way 
the implementation of observers for this class of processes. 
 

 

 

V. CONCLUSION 

In this paper, two observer design methods for Wiener 
structure have been proposed. These methods can deal with 
explicit and implicit nonlinear output and only require 
solving a LMI optimization problem for calculating the 
observer gain to ensure the stability of the observer. 

Even though it’s not addressed in this document, the 
presented method can easily be adapted to use one-side 
Lipschitz condition or quasi-one-side Lipschitz condition in 
the observer design, attaining less conservative results. 

Future work considers more complex application such as 
tomography sensor and input estimation in pH neutralization 
process. In addition, the design of robust observer by taking 
into account parametric uncertainties will be also explored 
along the use of performance measure to shape the dynamic 
response. 
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