
SVD-Based Computation of Zeros of Polynomial Matrices

Matthew S. Holzel1 and Dennis S. Bernstein2

Abstract— We present an algorithm for determining the zeros
of polynomial matrices of arbitrary order, normal rank, and
dimension. Specifically, we use the singular value decomposition
to reduce the problem to an eigenvalue problem.

I. INTRODUCTION

Polynomials, as the basis for ordinary differential and

difference equations, pervade almost every aspect of engi-

neering [1–3]. Regardless of whether one is working in the

continuous-time domain, where one considers polynomials

in the differentiation operator, in the discrete-time domain,

where one considers polynomials in the backshift operator,

or in any other domain, the zeros of a polynomial typify the

dynamics and overall stability of the problem at hand [3–

5]. Hence the ability to compute the zeros of a polynomial

reliably is of prime importance for practical problems.

When handling scalar polynomials, as is the case for

SISO systems, the problem of determining zeros robustly

is well understood, and various algorithms are available for

computing the zeros of a scalar polynomial [6–8]. However,

when dealing with polynomial matrices, the problem is not

as clear. Although a theoretical basis for the zeros of a

polynomial matrix is provided via the Smith and Hermite

forms, or the determinant if the the polynomial matrix is

square, their computation is typically carried out symboli-

cally [9–11], and hence is not amenable to many practical

applications. Furthermore, although an extensive treatment

of linearizations of polynomial matrices can be found [11–

14], much of the attention has been devoted to computing the

generalized eigenvalues of polynomial matrix linearizations

[11, 15, 16]. However, a simple example (Example 2.1) we

provide in the present paper shows that the generalized

eigenvalues are not necessarily the same as the zeros, even

though it appears that this fact is known [11, 14]. In fact,

an entire literature has sprung up regarding these ”infinite

zeros” which are responsible for the difference between the

generalized eigenvalues of polynomial matrix linearizations

and the zeros of polynomial matrices [17, 18].

Here we present a direct, numerical algorithm for com-

puting the zeros of a polynomial matrix which relies solely

on the most basic properties of polynomial matrices and

does not encite the need to discuss these ”infinite zeros”

or other unnecessary facts such as row/column reducedness.

The contents of the paper are as follows. First, we present

the necessary preliminaries concerning polynomial matrices,

allowing us to build the rest of the paper from the most basic
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polynomial matrix facts. Then, after introducing the problem

statement, we present our numerical algorithm for computing

the zeros of a polynomial matrix. Finally, we present several

numerical examples, and conclusions.

II. DEFINITIONS

In this section, we introduce polynomial matrices, normal

rank, and zeros. Although many of these definitions can

be found in the literature [11], we repeat them here for

completeness.

Definition 2.1: Let C0, C1, . . . , Cn ∈ Rp×m and

C(λ) , Cnλ
n + · · · + C1λ + C0. (1)

Then C ∈ Rp×m[λ].
Definition 2.2: Let C ∈ Rp×m[λ] and let n be the

smallest nonnegative integer such that C(λ) is of the form

(1). Then the order of C(λ) is n if C(λ) is nonzero, and

−∞ if C(λ) is zero.

Remark 2.1: In the literature, (1) is sometimes referred

to as a matrix pencil, with the common case being the linear

(or first-order) matrix pencil C(λ) = A − λB.

Definition 2.3: Let C ∈ Rp×m[λ]. Then the normal

rank of C(λ) is maxz∈C rank
[

C(z)
]

. Specifically, we write

nrank
[

C(λ)
]

, max
z∈C

rank
[

C(z)
]

.

Furthermore, C(λ) has full normal rank if m = p and

nrank
[

C(λ)
]

= p.

Definition 2.4: Let C ∈ Rp×m[λ]. Then z ∈ C is a

zero of C(λ) if

rank [C(z)] < nrank [C(λ)] .

Definition 2.4 implies that the zero polynomial matrix

and all other constant matrices have no zeros. Furthermore,

the problem of determining the zeros of a linear matrix

pencil with full normal rank is equivalent to the generalized

eigenvalue problem. However, when a first-order polynomial

matrix is rectangular or does not have full normal rank, then

the generalized eigenvalue problem does not, in general, re-

turn the zeros. This is true for generalized eigenvalue solvers

that uses the QZ decomposition [7, 8], as we demonstrate in

the following example.

Example 2.1: Let

C(λ) ,

[

0 1
0 0

]

λ −

[

0 α
0 0

]

.

Then nrank [C(λ)] = 1 and the only zero of C(λ) is α.

However, the QZ-algorithm leaves C(λ) unchanged since

C(λ) is already upper-triangular. Hence generalized eigen-

value solvers that employ the QZ decomposition return, as

generalized eigenvalues, the ratios 0/0 and 0/0 [7]. 2
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III. PROBLEM FORMULATION

Given a polynomial matrix P ∈ Rp×m[λ], determine all

of the zeros of P (λ).

IV. ZEROS OF A POLYNOMIAL MATRIX

In this section we present a method for computing the

zeros of a polynomial matrix. Although some of these results

may again be found in the literature [11], we present them

again for completeness with our own proofs, so as to guide

the reader in the development of the algorithm.

Lemma 4.1: Let A ∈ Cp×m, B ∈ Cn×m, and

C ,

[

A
B

]

.

Also, let V ∈ Cm×ℓ be a basis for the nullspace of B. Then

nullity (C) = nullity (AV ) . (2)

Proof : Let T ∈ Cℓ×k be a basis for the nullspace of

AV . Then letting U , V T , it follows that CU = 0(p+n)×k.

Next, suppose that U is not a complete basis for the

nullspace of C, that is, suppose there exists an x ∈ N (C)
such that x /∈ R (U), where N (·) and R (·) denote the

nullspace and rangespace, respectively. Then since N (C) ⊆
N (B), it follows that there exists a y ∈ Cℓ×1 such that

x = V y and y /∈ R (T ). However, since y /∈ R (T ), it

follows that y /∈ N (AV ), that is, AV y = Ax 6= 0, which

contradicts the assumption that x ∈ N (C). Hence U is a

complete basis for the nullspace of C.

Finally, since V is a basis, V has full column rank. Hence

U has full column rank. Furthermore, since the dimension

of the nullspace of C and AV both equal k, we have (2). 2

Fact 4.1: Let A ∈ Rp×m[λ], B ∈ Rn×m, and

C(λ) ,

[

A(λ)
B

]

.

Also, let V ∈ Cm×ℓ be a basis for the nullspace of B. Then

z ∈ C is a zero of C(λ) if and only if z is a zero of A(λ)V .

Proof : From Lemma 4.1, for every x ∈ C, we have that

nullity
(

C(x)
)

= nullity
(

C(x)V
)

= nullity
(

A(x)V
)

,

and hence

rank
(

C(x)
)

= rank
(

A(x)V
)

+ m − ℓ.

Therefore, z ∈ C is a zero of C(λ) if and only if z is a zero

of A(λ)V . 2

Fact 4.2: Let A ∈ Rm×p[λ], B ∈ Rm×n, and

C(λ) ,
[

A(λ) B
]

.

Also, let V ∈ Cℓ×m be a basis for the left nullspace of B.

Then z ∈ C is a zero of C(λ) if and only if z is a zero of

V A(λ).
Proof : Let A1(λ) , AT (λ), B1 , BT , V1 , V T ,

and C1(λ) , CT (λ). Then from Fact 2.4, z ∈ C is a zero

of C1(λ) if and only z is a zero of A1(λ)V1. Furthermore,

since for every x ∈ C, rank (C(x)) = rank (C1(x)) and

rank (A1(x)V1) = rank (V A(x)), it follows that z is a zero

of C(λ) if and only if z is a zero of C1(λ), and z is a zero of

A1(λ)V1 if and only if z is a zero of V A(λ). Hence z ∈ C

is a zero of C(λ) if and only if z is a zero of V A(λ). 2

Next, we show that the zeros of a polynomial matrix of

arbitrary order are equivalent to the zeros of an easily con-

structed first-order polynomial matrix. Furthermore, since the

problem of determining the zeros of a first-order polynomial

matrix can be viewed as a special case of the generalized

eigenvalue problem, the problem of determining the zeros of

a polynomial matrix of arbitrary order can be viewed as a

special case of the generalized eigenvalue problem.

Fact 4.3: Let C ∈ Rp×m[λ] be given by (1), and let

E ,

















Cn 0p×m · · · · · · 0p×m

0m Im 0m · · · 0m

...
. . .

. . .
. . .

...
...

. . .
. . . 0m

0m · · · · · · 0m Im

















,

F ,

















−Cn−1 · · · · · · · · · −C0

Im 0m · · · · · · 0m

0m

. . .
. . .

...
...

. . .
. . .

. . . 0m

0m · · · 0m Im 0m

















,

where 0m denotes the m×m zero matrix, and 0p×m denotes

the p × m zero matrix. Also, let

A(λ) , Eλ − F.

Then z ∈ C is a zero of C(λ) if and only if z is a zero of

A(λ).
Proof : Let G ∈ Rp×nm[λ] denote the first p rows of

A(λ), and let H ∈ Rm(n−1)×nm[λ] denote the final m(n−1)
rows of A(λ), that is,

A(λ) =

[

G(λ)
H(λ)

]

,

where

G(λ),
[ (

Cnλ + Cn−1

)

Cn−2 · · · C0

]

,

H(λ),
[

0(n−1)m×m I(n−1)m

]

λ −
[

I(n−1)m 0(n−1)m×m

]

.

Then for every x ∈ C,

U(x) ,
[

xn−1Im · · · xIm Im

]T
,

is a basis for the nullspace of H(x). Furthermore,

G(x)U(x) = C(x).

Hence from Lemma 4.1, for every x ∈ C, we have that

nullity
(

A(x)
)

= nullity
(

G(x)U(x)
)

= nullity
(

C(x)
)

.

Therefore z ∈ C is a zero of C(λ) if and only if z is a zero

of A(λ). 2

Remark 4.1: Fact 4.3 shows that the zeros of a poly-

nomial matrix are equivalent to the zeros of an easily con-

structed first-order polynomial matrix. However, even though

the problem has been reduced to a first-order matrix pencil, a
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generalized eigenvalue solver does not necessarily return the

zeros of the original polynomial matrix, as demonstrated in

Example 2.1. The following Proposition, however, provides

a method for computing the zeros of first-order matrix

pencil by first reducing the problem to a standard eigenvalue

problem.

Proposition 4.1: Let C ∈ Rp×m[λ] be given by (1), and

let A(λ) , E0λ − F0 be given by Fact 4.3. Furthermore,

i) Let i , 0, ℓ0 , (p + [n − 1]m), and k0 , mn.

ii) Compute the singular value decomposition of Ei, that is,

compute the unitary Ui ∈ Rℓi×ℓi , unitary Vi ∈ Rki×ki ,

and quasi-diagonal Si ∈ Rℓi×ki such that Ei = UiSiVi.

iii) Let ri , rank [Ei].
iv) If ri = 0, then go to Step vii). Otherwise, continue.

v) If ri = ℓi, then go to Step vi). Otherwise,

a) Let F ′

i ∈ Rℓi−ri×ki denote the last ℓi − ri rows of

the product UT
i Fi.

b) Compute a basis Wi ∈ R
ki×ji for the nullspace of

F ′

i using the singular value decomposition.

c) Increment i, and let ℓi , ri and ki , ji.

d) Let Ei and Fi denote the first ri rows of the products

UT
i−1Ei−1Wi−1 and UT

i−1Fi−1Wi−1, respectively.

e) Return to Step ii).

vi) If ri = ki, then go to Step vii). Otherwise,

a) Let F ′

i ∈ Rℓi×ki−ri denote the last ki − ri columns

of the product FiV
T
i .

b) Compute a basis Ti ∈ Rji×ℓi for the left nullspace

of F ′

i using the singular value decomposition.

c) Increment i, and let ℓi , ji and ki , ri.

d) Let Ei and Fi denote the first ri columns of the prod-

ucts Ti−1Ei−1V
T
i−1 and Ti−1Fi−1V

T
i−1, respectively.

e) Return to Step ii).

vii) If Ei is zero, then C(λ) has no zeros. Otherwise, z ∈ C

is a zero of C(λ) if and only if z is an eigenvalue of

E−1
i Fi.

Proof : First, from Fact 4.3, z ∈ C is a zero of C(λ) if

and only if z is a zero of A(λ) = E0λ − F0.

Next, suppose that r0 < ℓ0. Then

UT
0 (E0λ − F0) =

[

E′′

0 λ − F ′′

0

F ′

0

]

.

Furthermore, since U0 is unitary, U0 has full rank, and it

follows that z ∈ C is a zero of E0λ−F0 if and only if z is

a zero of UT
0 (E0λ − F0). Additionally, since W0 denotes a

basis for the nullspace of F ′

0, from Fact 4.1, we have that

z ∈ C is a zero of UT
0 (E0λ − F0) if and only if z is a zero

of (E′′

0 λ − F ′′

0 )W0 = E1λ−F1. Hence, z ∈ C is a zero of

C(λ) if and only if z is a zero of E1λ − F1.

Similarly, suppose that r0 = ℓ0 < k0. Then

(E0λ − F0) V T
0 =

[

E′′

0 λ − F ′′

0 F ′

0

]

,

and from Fact 4.2, we have that z ∈ C is a zero of C(λ)
if and only if z is a zero of T0 (E′′

0 λ − F ′′

0 ) = E1λ − F1.

Hence, by induction, for every j ∈ [0, i−1], z ∈ C is a zero

of Ejλ − Fj if and only if z is a zero of Ej+1λ − Fj+1.

Therefore, it follows that z ∈ C is a zero of C(λ) if and

only if z is a zero of Eiλ − Fi.

Finally, if Ei is zero, then there are no points in C at

which the pencil Eiλ − Fi = Fi drops rank. Hence C(λ)
has no zeros. However, if Ei is not zero, then it is square

and nonsingular. Hence z ∈ C is a zero of C(λ) if and only

if z is an eigenvalue of E−1
i Fi. 2

Remark 4.2: Proposition 4.1 reduces the problem of

determining the zeros of an arbitrary polynomial matrix to

the square, regular eigenvalue problem E−1
i Fix = λx.

Remark 4.3: If the final Ei in Proposition 4.1 has

full normal rank, but is ill-conditioned, then more accurate

estimates of the zeros of C(λ) may be obtained by comput-

ing the generalized eigenvalues of (Fi, Ei), as opposed to

computing the eigenvalues of E−1
i Fi.

V. NUMERICAL EXAMPLES

Here we demonstrate the algorithm presented in Propo-

sition 4.1 with two examples. We begin by returning to

Example 2.1.

Example 5.1: Let

C(λ) ,

[

0 1
0 0

]

λ −

[

0 α
0 0

]

.

Then, nrank [C(λ)] = 1 and the only zero of C(λ) is

α. Furthermore, the QZ-algorithm yields, as generalized

eigenvalues, the ratios 0/0 and 0/0.

Next, consider Proposition 4.1. Then

E0 =

[

0 1
0 0

]

, F0 =

[

0 α
0 0

]

.

Furthermore, computing the singular value decomposition of

E0, we find that

U0 =

[

1 0
0 1

]

, S0 =

[

1 0
0 0

]

, V0 =

[

0 1
−1 0

]

.

Therefore, from Step v), we have that

F ′

0 =
[

0 0
]

, W0 = I2,

and hence

E1 =
[

0 1
]

, F1 =
[

0 α
]

.

Finally, returning to Step ii) and computing the singular

value decomposition of E1, we find that

U1 = 1, S1 =
[

1 0
]

, V1 =

[

0 1
−1 0

]

.

Therefore, from Step vi), we have that

F ′

1 = 0, T1 = 1,

and hence

E2 = 1, F2 = α.

Thus α is the only eigenvalue of E−1
2 F2 = α and the only

zero of C(λ). 2

Next, we demonstrate how Proposition 4.1 is used to

computed the zeros of a higher order polynomial matrix.
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Although, Proposition 4.1 can be applied to problems of

arbitrary dimension, normal rank, and order, we consider a

problem with full normal rank and low enough dimensions

so that we can compute the determinant symbolically, and

compare the zeros computed using both methods. Further-

more, note that when a matrix does not have full normal

rank, then one can not compute the zeros by symbolically

computing the determinant.

Example 5.2: Let

C(λ) ,

[

6λ
3 + 4λ

2 + λ + 6 8λ
3 + 7λ

2 + 3λ + 5

3λ
3 + 4λ

2 + 4λ + 8 4λ
3 + 7λ

2 + 5λ + 1

]

.

Then the order of C(λ) is 3 and the matrix coefficients of

C(λ) are given by

C3 =

[

6 8
3 4

]

, C2 =

[

4 7
4 7

]

,

C1 =

[

1 3
4 5

]

, C0 =

[

6 5
8 1

]

.

Furthermore, symbolically computing the determinant of

C(λ), we find that

det [C(λ)] = 5λ
5 − 7λ

4 − 62λ
3 − 37λ

2 − 13λ − 34,

and hence the zeros of C(λ) are

z (C(λ)) =















4.537
−2.433
−1.103
0.1996 ± 0.7202















. (3)

For this low order example, we can now use these values

as a baseline against which to check the algorithm we have

proposed in Proposition 4.1. Specifically, from Proposition

4.1, we have that

E0 =





C3 02×2 02×2

02×2 I2 02×2

02×2 02×2 I2



 ,

F0 =





−C2 −C1 −C0

I2 02×2 02×2

02×2 I2 02×2



 .

Furthermore, computing the singular value decomposition

of E0, we find that r0 = 5 < l0 = 6. Therefore, after

performing Step v), we have that

E1=













−4.800 4.144 4.144 5.92 −1.776
0.06214 0.06214 0.06214 0.08877 0.9734
−0.1450 0.8550 −0.1450 −0.2071 0.06214
−0.1450 −0.1450 0.8550 −0.2071 0.06214
−0.2071 −0.2071 −0.2071 0.7041 0.08877













,

F1=













3.103 −3.605 −1.369 −0.03930 7.614
−0.1450 −0.1450 0.8550 −0.2071 0.06214
−0.4244 −0.4244 −0.4244 −0.6063 0.1819

0.8550 −0.1450 −0.1450 −0.2071 0.06214
−0.1450 0.8550 −0.1450 −0.2071 0.06214













.

Finally, since the singular values of E1 are

σ(E1) =
{

9.79, 1, 1, 1, 0.0693
}

,

we conclude that r1 = 5 = l1 = k1, that is, E1 is square

and nonsingular. Hence

E−1
1 F =













0.02797 −6.427 6.204 6.216 2.481
−0.3071 −2.562 1.469 1.338 1.225

0.9723 −2.282 1.749 1.737 1.105
0.02261 −2.198 2.560 2.570 1.552
−0.1953 0.7710 0.04348 −1.040 −0.3848













,

and we have that the eigenvalues of E−1
1 F1 are

z
(

E−1
1 F1

)

=















4.537
−2.433
−1.103
0.1996 ± 0.7202















. (4)

Therefore comparing (3) and (4), we find that the zeros of

C(λ) and the eigenvalues of E−1
1 F1 are equal, that is, the

algorithm presented in Proposition 4.1 has indeed returned

the correct zeros of C(λ). Furthermore, in this case, the QZ-

algorithm applied directly to (F0, E0) yields the generalized

eigenvalues (4) with an additional eigenvalue at infinity.

However, in general, there is no guarantee that the gen-

eralized eigenvalues of the polynomial matrix linearization

(F0, E0) will be a subset of the zeros of polynomial matrix

as Example 2.1 demonstrates. 2

VI. CONCLUSIONS

We have presented an algorithm for determining the zeros

of polynomial matrices of arbitrary order, normal rank, or

dimension. Specifically, we used the singular value decom-

position to reduce the problem to an eigenvalue problem.
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