
  

  

Abstract—With increasing number of variables the 
Hotelling's T2 statistic can detect only larger failures in the 
variables. A new method is introduced for reducing the 
dimension of the Hotelling's statistic in order to detect smaller 
failures. The basic idea is to group some variables into a 
combined variable and to calculate the T2 value from this 
variable and from the remaining variables. As the new 
calculated variable has not a Gaussian distribution a proper 
static transformation is applied. Both uncorrelated and 
correlated data are dealt with. In the latter case principal 
component analysis is used before calculating T2. Several 
simulations show that the sensitivity of the new T2 control 
charts is improved. The theory is confirmed by an application 
of sensor fault monitoring of a gas analyzer. 

I. INTRODUCTION 

n the quality control for multivariate data there exist 
several methods for fault detection and identification 

(FID). Many methods are based on the T² or Q statistic. 
Several (e.g. five) variables can be simultaneously 
monitored by using more (e.g. five) control charts. The 
advantage of this univariate analysis is the fast calculation of 
control charts and the simple parameterization. However, 
there are disadvantages like:  

• The user has to check several control charts at the same 
time. 

• Only the variances of the variables are taken into 
account, but not the relations (covariance’s) between the 
variables.  

Alternatively Hotelling’s T2 value or Mahalanobis 
distance D can be monitored as a single variable. If this 
value exceeds a prescribed limit then at least one of the 
variables exceeds its limit. The T2 value is calculated from 

vector xm
k

1ℜ∈u  of the measured values, the mean vector 
xm1ℜ∈u  and the covariance matrix mxmℜ∈S  by (1), 

where m indicates the number of variables and k the time. 

( ) ( )T122 uuSuu −−== −
kkkk DT  (1) 

The mean value and the covariance matrix are estimated 
usually from a training data set. The quality of this 
estimation is relevant for the fault detection ability of the 
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control chart. In practice it is often very difficult to separate 
a training data set which contains no disturbances or 
outliers. With the standard estimation method the estimation 
of variance and covariance is adversely affected by 
disturbances such as outliers, thus the sensitivity of the 
control chart decreases. In [2] median and MAD (Median 
Absolute Deviation) are recommended for robust estimation 
of these parameters. For the ongoing analysis it is assumed 
that the data have Gaussian distribution and the mean vector 
and the covariance matrix are known, or they are estimated 
from a large amount of data. In this case the T2 value of (1) 

has 2χ  distribution. [8] The control limit UCL for the 

number of variables m can be calculated for a given 
confidence level α by  

2
;mUCL αχ=  (2) 

In Fig. 1 the control limits for different number of 
variables m and a probability 9973.01 =−= αP , better known 
as 3 sigma confidence limits in univariate quality control, 
are shown. As it can be seen the control limits are increased 
as the error of type I is increased with increasing number of 
variables m according to (3). This is a well-known problem 
in the literature e.g. see [8]. 

m
res )1(1 αα −−=  (3) 

 
Fig. 1 Control limits for different number of variables m with a 
probability P = 1 - α = 99.73% 

The Mahalanobis distance D is used as a measure of the 
deviation of the actual measurements from the normal state 
usually characterized by the mean value. With increasing 
number of the variables the detectable disturbance is always 
farther from the mean value. This means, the more variables 
are monitored the more difficult is to detect small deviations 
from the normal state. In the literature several methods like 
PCA, PLS and multi-block methods exist to handle this 
problem. In this paper a new alternative method based on 
PCA is presented. By using PCA it is common to separate 
the principal components in a principal component subspace 
(PCS) and a residual subspace (RS). This means some 
(probably) not important principal components (PC’s) are 
excluded from the analysis. For the choice which PC’s are 
not used several evaluation criteria such as 90% of the 
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explained variance, Kaiser or elbow criterion are known. 
But these criteria are not good enough as deviations in the 
non-monitored / not used PC’s can never be detected. An 
alternative but more complicated way is to observe the 
important PCS with a T² value and the non-important RS 
with the SPE value (Squared Prediction Error). As all the 
variables are considered, there is no information lost. But it 
is necessary to observe two quality values T² and SPE. For 
more details see [10]. By using the separation in PCS and 
RS it is useful to work with combined indices. A linear 
combination of T² and SPE is defined in [12] and [11] define 
a weighted version. In [1] a modified covariance matrix for 
the RS is used. However the evaluation of SPE is more 
difficult for a practitioner than using the T2 control chart.  

II. NEW METHOD FOR IMPROVING THE 

SENSIBILITY OF T² 

In this article an alternative, new method is presented for 
improving the sensibility of T². By this method which is 
easier than the combined calculation of T² and SPE charts 
there is no information loss. 

 
a) Density function f and the cumulative distribution function F of 2~

T  

 
b) Symmetric distribution of ∗2~

T  

 
c) Mahalanobis distance ∗D

~
 

 
d) Gaussian variable ND∗~

 

Fig. 2. Density and sum functions during the transformation 

In this procedure some variables are grouped to a new, 
calculated variable. As the new variable has not a Gaussian 
distribution it is transformed to a Gaussian distribution. 
From this Gaussian variable and the other remaining, non-

grouped variables the T² value is calculated and monitored 
in a single control chart. As the dimension of the variables in 
the T2 control chart is less than the total number of variables, 
the failures in the non-grouped variables can be detected 
easier. Also the deviations in the grouped variables can be 
detected, even they become smaller. Please don’t confuse 
grouping methods with sub-grouped data and with 
individual observations. Using grouped variables with sub-
grouped data means to calculate one quality parameter e.g. 
T² from N measurements of each m variables. Some detailed 
explanations can be found in [5] and [8]. The new method 
deals only with individual observations, which mean a T² 
value is calculated from one measurement of each m 
variables [8]. This is rather similar to the grouping with 
multi-block PCA, see [9], [10] and [13]. Because here the 
data are grouped in e.g. parts of a plant and in a second step 
these groups are combined in a quality parameter. There 
exist several methods how to interpret a T2 signal. [8] and 
[6] try to decompose the variable T2 into independent 
components. An overview about several methods can be 
found in [7]. But all these methods start their work if the T2 
control chart has detected an abnormal state. Therefore, it is 
important to improve the sensibility of the T2 calculation and 
exactly this is proposed in the present paper. 

A. Principle of the new method 

The measurement matrix NxmR∈U  is given with N  
measurement of m  variables. By using the PCA the 
corresponding score vector T  and loading matrix P  can be 
determined. Equation (4) show the relation between the 
measurement matrix U and the score matrix T with the 

mean vector .U  

( )UUPT −= T  (4) 

In the observation phase only one measurement of each 

variable is available, xm
k R1∈u . The score vector can be 

separated in two parts, see (5). The first one kT̂  span the 

principal component subspace (PCS) which includes 

lit ik ,...,1, ∈  and the second kT
~

 span the residual subspace 

(RS) which includes mlit ik ,...,1, +∈ . In the formulation 

ikt ,  stands for the ith column of the score vector kT . 

[ ]kkk TTT
~ˆ=  (5) 

If S  is the covariance matrix of U  then 
( )mdiag λλ ,...,1=Λ  is the covariance matrix of the scores, 

where iλ  are the eigenvalues of S  [10]. Also Λ  can be 

separated into two parts, see (6). 

( )
( )






=












=

+ ml

l

diag

diag

λλ
λλ

,...,0

0,...,
~

0

0ˆ

1

1

Λ

Λ
Λ  (6) 

The kT
~

 vector contain 1~ +−= lmm  variables. The 2~
kT  

104



  

value of the m~  variables follow a 2χ  distribution, see Fig 

2a. In the ideal normal condition there is no deviation 
between the mean value u and the measured value u . This 
point 0=− uu , is in the middle of a symmetric Gaussian 

distribution. The normal state of the 2~
kT  value is also zero. 

But the point 0
~2 =kT is at the left edge of a non-symmetric 

2χ  distribution. Before using the grouped variables ( 2~
kT  

value) as a new input variable in a T² control chart there are 
some aspects to be considered: 

• The ideal normal condition of T² value must lie in the 
middle of a symmetric distribution. 

• The transformed symmetric distribution of the grouped 
variables has to be a Gaussian distribution. Otherwise the 
new grouped variable might not be used in a new T² 
control chart.  

• The transformation to a Gaussian distribution should be 
static and exactly defined, because a reverse calculation 
should be possible if a disturbance is detected. 

To solve the first problem the normal calculation of a T² 
value which was defined in (1) is extended by a factor Ck. 

∏
=

−

−

=
⋅=

= m

i ik

ik
k

kkkk

kkk

t

t
Cwith

CT

T ~

1 ,

,

T1*2

T12

~

~

~~~~

~~~~

TΛT

TΛT
 (7) 

This factor in (7) is used to get a ∗2~
kT  value which follows 

a symmetric distribution. The new symmetric density 
function of ∗2~

kT  is defined in (8), see. Fig. 2b. The factor Ck 

assigns 50% of the ∗2~
kT  values a positive sign  and to 

the other 50% a negative sign , see Fig. 2b. Therefore 
the ∗2~

kT  value is also defined in the negative region. Because 

the area A( 2~
T ) and A( ∗2~

T ) under the density function in 

Fig. 2a and 2b have to be equal the maximum of ( )∗2~
Tf  is 

only 50% of ( )2~
Tf . 
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In the next step the Mahalanobis distance ∗
kD

~  is calculated 

by a simple Box-Cox transformation, see (9).  

( ) 5.02~~ ∗∗ = kk TD  (9) 

The resulting functions are shown in Fig. 2c. As ∗
kD

~  is not 

normally distributed, it is transformed by (10) to the 
Gaussian variable N

kD∗~ .  

( )mDfDD kk
N

k
~,

~~~ *** ⋅=  (10) 

The nonlinear function ( )mDf k
~,

~*  is shown in Fig. 3. The 

mathematical definition of this function is given in (11). For 

a given deviation *~
kD  the corresponding probability 

( ) α−=∗ 1
~

kDP  of the *~
D -distribution is determined. In a 

following step the same probability is used to determine the 

new quantile ( )( )∗
kDPquant

~
of the ND*~

-distribution. 

 
Fig. 3 example for the nonlinear transformation function ( )mDf ~,

~ ∗   

m~  ∈ (2, 5, 10, 15, 20, 25) 

( ) ( )( )*** ~~~,
~

kkk DPquantDmDf =  (11) 

The new variable N
kD∗~  have a Gaussian distribution, with 

zero mean. The new score vector ∗
kT  and the covariance 

matrix ∗Λ  can be formulated as shown in (12). Note that the 

covariance vector Dtcov  between the new variable ND*~
 

and the scores T̂  are different from zero and have to be 
determined in a training phase from a probably fault free 
dataset. 
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a) If some information about the 
process is available 

b) If the covariance`s are not zero 

Fig. 4. Overview of the different calculation methods (PCi means the 
scores corresponding to the ith principal component) 

The new combined variable is used now instead of the 
grouped variables. Now the T² value is calculated by (13) 
from this new grouped variable and from the so far non-
grouped, remaining mmm ~ˆ −=  variables that means 

altogether from 1ˆ1~ +=+−=∗ mmmm  variables. 
∗−∗∗∗ = kkkT TΛT 12  (13) 

An overview of the whole transformation is shown in Fig. 
4. Since m* < m the control limit UCL* becomes smaller as if 
T² would have been calculated from all the variables 
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according to (1) or (7a). Therefore smaller deviations can be 
detected. 

UCLUCL mm =<= 2
;

2
*;* αα χχ  (14) 

B. Example 

In Fig. 5a the measured data of four independent normally 
distributed variables are plotted. It can be seen that there is 
no value outside the control limits (dashed lines). All control 
limits are calculated for a significance level 

0027.01 =−= Pα . The calculated T² values are drawn in Fig. 
5b. Neither of the plots shows any abnormal condition. 

 
a) Shewhart control charts of the variables 

 
b) T2 plot of the four variables 

Fig. 5. Normal state without any failure 

In a second example Fig. 6a shows almost the same data 
as in Fig. 5a. Each variable is once disturbed with a value of 
4.03 times the standard deviation from the mean value. At 
the same time the non-disturbed variables are equal to their 
mean value. Therefore the disturbance is similar to the 
Mahalanobis distance D. All four values are above the upper 
control limits and are marked by circles. The remaining 
values are identical to those in Fig. 5 and lie within the 
control limits. The T² values calculated according to (1) are 
plotted in Fig. 6b. The disturbed values are marked again by 
circles. As it can be seen, they are located exactly on the 
control limit (dashed line) in all four cases. The control limit 
has a value of UCL = 16.25. That means all Mahalanobis 
distance Dk less than 4.03 are below the control limits. 
Therefore always a normal state is detected. In Fig. 6c a new 
T2 value is shown. For this calculation the first two of the 
four variables are grouped to a new, normally distributed 
variable. The T² value is calculated by (1) from the new 
variable and the remaining non-grouped variables (variable 
3 and 4). It can be seen, that the disturbances in the grouped 
variables at k = 10 and k = 20 with a T² value of 13.18 are 
not detected. Only the disturbances in the non-grouped 
variables at k = 30 and k = 40 with a T² value of 16.25 are 
above the control limit, with a value of UCL = 14.16. 
Therefore the last two disturbances are detected as abnormal 
states. 

In a third example variable 1 and 2 have a Mahalanobis 
distance of D = 4.16 and the variables 3 and 4 of D = 3.76. 
All new T² values with grouped variables are equal to the 

 
a) Shewhart control charts of the variables 

 
b) T2 plot of four variables (T2 according to (1)) 

 
c) modified T2 plot of four variables 

Fig. 6. Four variables with always a single failure 

control limit UCL* = 14.16. If the T² value is calculated by 
(1) without grouped variables, then the last two disturbances 
at k = 30 and k = 40 are below the control limit with a T² 
value of 14.16. The first two disturbances at k = 10 and k = 
20 are above the control limit UCL = 16.25 with a T² value 
of 17.28. By comparing the examples the following points 
can be found: 

• The residual subspace should be grouped. 
• The sensitivity for detecting disturbances in the grouped 

variables is decreased. 
• The sensitivity for detecting disturbances in the non-

grouped variables is increased. 
• A bad sensitivity for the residual subspace is better than 

calculation of T² value without considering it. 

C. Using the new method 

In the above section the principle of the new method was 
explained. The question remains: How too chose the 
grouped variables. As shown in Fig. 4 there are two 
possibilities; the first one to use principal components (Fig. 
4b) and the second one to use the measured variables (Fig. 
4a). In the first case some common known procedures like 
Kaiser criterion can be used to define the PC’s for the 
residual subspace. By using the presented new method the 
PC’s of the residual subspace have to be grouped. In the 
second case it is possible to use physical information about 
the process and the measured data. For example some 
measurements of machine are observed. Then it is possible 
to separate variables which indicate faults with a high risk 
and some with a lower risk. A variable which indicates a 
fault with high risk could be an acceleration measurement, 
because the disturbance increases very fast. A variable with 
lower risk could be the oil temperature, because the 
disturbance increases slower than the unbalance. The 
variables with lower risk can be grouped into the residual 
subspace in the new method. If there is some covariance 
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between the grouped and ungrouped data, and the new 
method without PCA (Fig. 4a) is used, it is important to 
know that in this case the information about covariance 
between oil temperature (grouped data)  and unbalance 
(ungrouped data) gets lost. In the above example u1 and u2 
respectively PC3 and PC4 are grouped. If a second T² value 
is calculated from the grouped and transformed variable 

ND*~
 and the PC’s which are not used until now, no 

information is lost (4 independent variables with covariance 
equal to zero). If an abnormal state is detected, a reverse 
calculation can be done and the reason for the disturbance 
can be identified. Thereby disturbances in the ungrouped 

variables or principal components ( kkkT uT  ˆ*2 ) and 

also in the grouped variables or grouped principal 

components ( kkkkk
N

kk TTDDT uT  ∗∗ ~~~~~ *2*2*2 ) 

can be identified. 

D. Test of the new method 

The new method was tested for both uncorrelated and 
correlated data. Here only two examples are shown, how the 
fault detection sensitivity is increasing for the not grouped 
variables. For the ungrouped variables (□) Fig. 7 shows the 
difference ΔD between the smallest detectable disturbance 
calculated by (1) and the new method. For the grouped 
variables (●) the difference between the new method and the 
calculation with (1) is shown. 

 
a) Reduction with m~  = 4 variables 

 
b) Reduction with m~  = 7 variables  

Fig. 7 Fault detection sensitivity for m variables uncorrelated on the 
left side and m correlated variables on the right side. 

By comparing the simulated results the following points 
can be marked out: 

• By increasing amount of variables m the difference 
between the sensitivities in the cases covariance’s are 
zero (left side in Fig. 7) and any covariance (right side in 
Fig. 7) decrease. 

• The sensitivity for smaller amounts of variables m is 
higher than for many variables, see ΔD. It is easy to see 
that the difference ΔD corresponds to the difference 
between the UCL for m variables and UCL* for m* 
variables. The sloop of the χ²(α,m) value defined by (3) 
in Fig. 1 is for smaller m greater than for more variables. 

• The sensitivity increases with the number of grouped 
variables m~ , see ΔD. Here the same arguments like 
before can be used. By increasing mmm ˆ~ −=  variables 
the difference between UCL and UCL* increases as 
well.  

• The theoretical assumptions are confirmed by the 
simulations. 

 

III. APPLICATION FOR A GAS ANALYZER 

A. Description of the test plant 

CO2 concentration is measured by the gas analyzer 
AO2000 of ABB. Fig. 8 shows the principal workflow of 
the test system. The gas is pumped to the detector after 
drying and absorbing CO2. The treatment was necessary as 
the zero point has to be measured by zero (neutral) gas. 

It is usual that such a gas analyzer is calibrated once in a 
week in the industry. In this experiment the calibration was 
made in every hour. The zero point was measured by air in 
the room which was prior dried and free of CO2 because of 
the absorber. The end point was measured with a cuvette 
filled with gas with known concentration. The calibration 
sequence is shown in Fig. 8. If the measured concentrations 
do not coincide with the known concentration of the 
calibration gas then the analyzer is recalibrated. These 
calibration values characterize the quality of the analyzer. 
Changes in the quality parameter of the gas analyzer are 
stored as absolute calibration offsets, which mean offsets to 
an initial value. The changes are scaled as a percentage of 
the measurement range MR%. 

Air drying
CO2

absorber

PT
1

FT
1

Flow cell

TT
1

QT
1

Inflow Outflow

 

 
Fig. 8. The test system and the steps of a calibration circuit 

The detector unit is tempered in order to keep consistent 
results. If the cover was opened for maintenance work, a 
temperature drop could be observed even the case was 
closed quickly. The flow is measured in order to detect 
pump failures and absorber blocking. There are two 
calibration parameters with primary priority:  

• zero point offset,  
• end point offset  

and the three parameters of secondary priority: 
• gas flow,  
• detector temperature,  
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• air pressure in the laboratory 
Altogether 5 system parameters are measured and 

monitored which characterize the analyzer quality. 

B. Off-line analysis of the measured data 

Fig. 9a and b shows typical measurements over 25 
samples. At the beginning normal variations caused from 
changes in temperature, pressure and the CO2 absorber unit 
can be seen. The set value (mean value of the training data) 
is labeled with the solid horizontal line and the Shewhart 
control chart limits for a probability of P = 99.73% are 
marked by the dashed lines. From sample k = 550 a drift can 
be seen. It is caused by students in the same room. Thereby 
the CO2 level in the room increased and the room 
temperature changed. 

540 545 550 555 560 565
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a) Observed zero point drift          b) Observed range drift 

 
c) 3 T² values calculated with different methods 

Fig. 9. Typical measurements of a gas analyzer in the experimental 
setup 

In Fig. 9c three different T² values for the same time 
period are shown. The first row of T² values which is 
marked by solid circles ● is calculated by (1) from the two 
primary quality parameters, zero point and range. The 
corresponding control level is marked by the dot-dashed 
line. In the observed time period no abnormal condition is 
detected but an increasing T² value can be monitored. If the 
secondary quality parameters are not used the abnormal 
condition is not detected even after 12 samples. For the T² 
values which are marked with X also the secondary quality 
parameters (temperature, pressure and flow) are used for the 
calculation by (1). The corresponding control level is 
marked by the solid line. It can be seen, that the abnormal 
condition is detected at k = 561. So we can conclude, the 
time difference between the first student enter the laboratory 
at k = 554 and the detection of the abnormal condition 
(student in the laboratory) is Δk = 9 samples. For the T² 
values which are marked with ○ all five quality parameters 
are used. The secondary quality parameters are grouped and 
transformed to a new Gaussian distributed variable with the 
new method presented in this paper. The corresponding 
control level is marked by the dashed line. Now the 
abnormal condition is detected at k = 560, this means after 
Δk = 8 samples which is smaller than the second row (X). If 
the sloop of the drift would be smaller than in the above 

example then the new method would be more advantageous. 

IV. CONCLUSION 

A new method was introduced for reducing the dimension 
of the Hotelling's statistic in order to detect smaller failures. 
The basic idea is to group some variables into a combined 
variable and to calculate the T2 value from this variable and 
from the remaining variables. As the new calculated variable 
has non Gaussian distribution a proper transformation was 
applied to ensure a Gaussian distribution of the calculated 
variable. It was shown that those variables or PC’s have to 
be grouped which build the residual subspace or produce 
faults with lower risk. Comprehensive simulations 
confirmed the presented method. In an off-line analysis the 
advantages of the new method where shown exemplary. In 
the presented application sensor fault of a gas analyzer was 
detected. Additional practical examples are published in [4]. 
As explained this new alternative method is different to the 
observation with sub-grouped data and to multi-block PCA 
and to the known combined indices based on PCA. A 
comparative sensitivity analysis of all these methods is 
planned as a next step. Of course the new method can be 
applied together with some other methods like T² statistic 
with sub grouped data and can improve their efficiency.  
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