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1Abstract—Sliding Mode Control (SMC) and Second Order 
Sliding Mode (2-SMC) are robust techniques that are used in 
many applications including aerospace control.  In order to be 
certified for practical applications, a control design must 
demonstrate not only stability in the ideal case, but stability 
when subjected to dynamic perturbation i.e. stability margins.  
In Linear Time Invariant (LTI) systems the mostly accepted 
stability measures are phase margin and gain margin.  
However, these margins cannot be strictly computed for 
nonlinear systems; in particular, they cannot be computed for 
SMC and 2-SMC controllers, and this has delayed acceptance 
of such techniques in practical applications.  This paper is 
intended to open a discussion of how stability margins 
compatible with tradition and with modern nonlinear methods 
might be defined in SMC and 2-SMC systems. 

I.  INTRODUCTION 
o
p

ntrol systems must function as intended in the 
resence of perturbations that are unknown and 

uncharacterizable.  Achieving stability of control is not 
enough. Stability margins [1] give a measure how stable a 
control system is. With several important caveats, a well-
designed feedback control system is robust to additive 
disturbance. Gain margin [1], [2] which has a clear meaning 
for both linear and nonlinear controllers, describes 
robustness to multiplicative disturbance.  It is the evaluation 
of sensitivity to dynamic disturbance where trouble occurs 
[2], [3]. 

The predominant measure of sensitivity to dynamic 
disturbance is called “phase margin” [1]-[4].  It is well-
known that phase margin is derived from the characteristic 
equation of the closed-loop system.  Unfortunately, the 
corresponding characteristic equation strictly exists only for 
linear systems [1]-[4] and thus phase margin cannot be 
computed, in the customary manner, for nonlinear systems 
[5] including systems with sliding mode control (SMC) [6], 
[7] and higher order sliding mode control (HOSM) [8]-[10]. 
The result is that innovative control techniques cannot meet 
established criteria, and are not considered viable 
alternatives. 

Several justifiable algorithms exist for evaluating the 
stability of an equilibrium point in nonlinear systems 
subjected to dynamic/parametric disturbance.  Piecewise 
linearization [1], [2] can be applied to so-called “soft” 
nonlinearities, although the effort involved may be 
considerable if the number of stability points is very large.  
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Lyapunov’s exponents [11], [12] and small gain theory [5] 
can be applied to a wide class of nonlinear systems for 
identifying the stability margins but often results in an 
unrealistically conservative approximation.   

SMC [6], [7] second order sliding mode (2-SMC) [8] 
and HOSM [9], [10] control are obvious choices for 
controlling systems with bounded matched 
disturbances/uncertainties. The main advantages of the 
HOSM/2-SMC [8], [9], [13]-[16] over the classical SMC 
include a higher accuracy of the sliding variable 
stabilization and the possibility of generating continuous 
control laws (super-twisting or twisting, sub-optimal, 
prescribed control law as a filter). It is worth noting that the 
one of the main motivation for the development of 2-SMC 
control algorithms was eliminating chattering, which 
always is the major drawback of the classical SMC [6], [7]. 
A price for achieving the robustness/insensitivity to the 
matched bounded disturbances/uncertainties in systems 
with SMC/HOSM control is introduction of a limit cycle [5] 
into the control system with (theoretically) infinity 
frequency and zero amplitude with respect to the system’s 
output called a sliding variable. It is well known [5] that the 
stable limit cycles are attractive (asymptotically stable) in 
some domain and this explains the robustness of sliding 
modes. The sliding mode itself can be treated as an 
equilibrium point, which stability is enforced by meeting 
the sliding mode existence condition [6], [7] that can be 
interpreted as the existence condition for an aforementioned 
limit cycle.  

Therefore, looking for the stability margins in systems 
with SMC/HOSM [6], [7], [8]-[10] control we should take 
into account that the equilibrium point, which stability 
margin we intend to identify, is a limit cycle that can exist 
in nonlinear systems only [5]. 

Perhaps most promising techniques that reconcile the 
linear and nonlinear systems stability analysis are the locus 
of a perturbed relay system (LPRS) [13], [16] and 
describing function technique (DF) [5], [13]. These 
techniques give frequency domain analysis of existence and 
stability of limit cycles in nonlinear systems. In this paper, 
the DF technique is used (due to its simplicity) for 
identifying the stability margins in systems with SMC/2-
SMC control. However, we have to acknowledge that DF 
technique gives only approximate limit cycle analyses and 
the stability margin identification [5]. 

The structure of the paper is as follows. Stability 
margins in systems with classical sliding mode control are 
studied in Section II. Stability margins for 2-SMC super-
twisting control algorithm are discussed in Section III. 
Section IV demonstrates via examples. The conclusions are 
presented in Section V. 
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II. STABILITY MARIN IN SYSTEMS WITH CLASSICAL SMC 

A. Problem Formulation 
Consider an uncertain linear time invariant single input-
single output system  

( ( , )),x Ax b u f x t Cxσ= + + =   (1) 

where  is a state vector,  is a control 
function, 

nx∈
,A

u∈
C and b  are the matrix and the vector of 

appropriate dimensions, σ ∈  is a sliding variable. 
It is assumed that 
(A1) the pair (  is completely controllable,  

 
 

),A b
(A2) the sliding variable σ ∈  is properly designed so 
that its dynamics  

( ) ( )( , ) , det 0, 0CAx Cb u f x t Cb Cbσ = + + ≠ >  (2) 
are of relative degree 1, 
(A3) system’s dynamics (1) are stable in the sliding 
mode 0σ = .  
(A4) the function ( , )f x t  is bounded, i.e. 

1( , )f x t L≤ , and system’s (1) dynamics are considered in 

a domain so that ( , ) 0f x t L >CAx+ ≤ . 
(A5) Without loss of generality, assume that 1Cb =  
Then the control function [6], [7] 

( ), , 0m mu U sign U Lσ ρ ρ= − = + >   (2a) 
drives 0σ →  in finite time  that is estimated as rt

(0) /rt σ ρ≤   (3) 
and keeps 0σ =  thereafter.  
It is worth noting that in the sliding mode 0σ =   
(a) there exists a limit cycle in system (1), (2), in 

which the sliding variable σ  exhibits self sustained 
oscillations with zero amplitude and infinity frequency. 

(b) system’s (1)-(3) dynamics are insensitive to the 
bounded disturbance ( , )f x t . 

The problem is to define and identify the stability margins 
for system (1), (2), i.e. what dynamical perturbations 
system (1), (2) can sustain prior to destruction of the 
aforementioned limit cycle. 

B. Methodology 
Firstly, let us perform a limit cycle analysis in system (1) 

(2) using the DF technique. For this purpose the block-
diagram of the unperturbed system is presented in Fig. 1, 
where the transfer function  is computed as ( )G s

1( )( ) ( )
( )
sG s C sI A b

u s
σ −= = −   (4) 

Assume that there exists periodic motion (self-sustained 
oscillations or a limit cycle) with the amplitude  and the 
oscillation frequency 

cA

cω  

sin( )c cA tσ ω− =   (5) 

in system with classical SMC of Fig. 1. 

 
Fig. 1 Block-diagram of system with SMC 

Then, in accordance with the DF technique, the amplitude 
 and the oscillation frequency cA cω  have to satisfy 

harmonic balance equation [5], [16], [17]. 
( ) 1/ ( , )G j N Aω ω= −   (6) 

where the describing function ( , )N A ω  of the relay 
nonlinearity can be easily identified as  

( )( , ) 4 /mN A U Aω π=   (7) 
Since the transfer function (4) is of relative degree one,  

0
lim arg ( ) / 2, limarg ( ) 0G j G j
ω ω

ω π
→∞ →

ω= − =   (8) 

Taking into account eq. (8) we assume that the vector C  in 
eq. (1) is selected so that the transfer function (4) satisfies 
the strict passivity condition  

arg ( ) [0, )
2

G j πω ω< ∀ ∈ ∞   (9) 

Then there exists a unique stable limit cycle with the 
parameters [17] 

0,cA ω= →∞   (10) 
This fact is illustrated in Fig. 2. For clarity, only half of the 
Nyquist plot is shown in Fig. 2.   
Definition 1. System (1)-(3) is understood to be finite time 
(asymptotically) stable if it exhibits a stable limit cycle with 
the parameters in eq. (10) that is reached in finite time (as 
time increases). 

Traditionally, stability margin is a measure of the 
system’s equilibrium point (here a limit cycle) stability. 

It is worth noting that the DF technique [5] tells nothing 
about reaching time for the limit cycle. Further analysis of 
stability of the limit cycle in system (1)-(3) shows that in 
the case of the 1st order lag parasitic dynamics (Fig. 3) the 
aforementioned limit cycle can be reached only 
asymptotically. 
Definition 2. We define the ideal phase margin (IPM) in 
SMC system (1)-(3) as the phase angle that the frequency 
response ( )G jω  would have to gain in order to start 
crossing the negative part of the real axis to the left from 
the origin.  At marginal stability, the solution of eqs. (6), (7) 
becomes 

0,c cA ε ω= > = Ω < ∞   (11) 

Apparently, based on Definition 2 and Fig. 2, in system 
with classical SMC (1), (2) and properly selected vector C  
the ideal phase margin is  

/ 2IPM π=   (12) 
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Fig. 2 Limit cycle analysis in SMC system 

Remark 1. Apparently, in practical SMC systems the ideal 
limit cycle in eq. (1)-(4) can barely exist due to different 
imperfections in switching element, including hysteresis, 
parasitic dynamics, and time delay. Therefore, it makes 
sense to give a definition of the practical phase margin in 
SMC system (1)-(3). If the limit cycle in a perturbed 
system,  described by the amplitude  and the 
corresponding oscillation frequency 

0cA >

cω < ∞ , is 
“acceptable”, we call the compensated system stable.  If it 
is not acceptable, we declare the system practically 
unstable. 
Definition 3. We define the practical phase margin (PPM) 
in SMC system (1)-(3) as the phase angle that the frequency 
response ( )G jω  would have to gain in order to cross the 
negative part of the real axis to the left from the origin, 
whereby the solution of eqs. (6), (7) becomes 

 
 

* *0, 0c cA ε ε ω= ≤ > = Ω ≥Ω >   (13) 

where *ε  is a maximal practically acceptable amplitude 
and  is the minimal acceptable frequency of the self 
sustained oscillations. 

*Ω

PPM can be determined (see example problems) by 
successive addition of phase to the frequency response 
curve of the unperturbed system until the Nyquist criterion 
indicates marginal stability or the extended Nyquist method 
predicts a limit cycle with marginally acceptable properties. 

Apparently, based on Definition 3 and Fig. 2, in system 
with classical SMC (1)-(3) and properly selected vector C  
the practical phase margin is  

2
PPM π

>   (14) 

C. Parasitic cascade dynamics 
The ideal and practical phase margins can be also defined 
in terms of parasitic cascade dynamics. In this work we 

consider the 1st order, 0

0

( )pG s
s
ω
ω

=
+

, 2nd order, 

2
0

2
0 0

( )
1.4pG s

s s
ω

2ω ω
=

+ +
, and time-delay 

0/( ) s
pG s e ω−=  cascade parasitic dynamics. All of them are 

parameterized in terms of the parameter 0ω .   
Definition 4. We define the ideal phase margin (IPM) in 
SMC system (1)-(3) as the 1st order, 2nd order, or time-
delay cascade parasitic dynamics, which system (1)-(3) can 
tolerate until a loss of stability in a sense of Definition 1. 
Definition 5. We define the practical phase margin (PPM) 
in SMC system (1)-(3) as the 1st order, 2nd order, or time-
delay cascade parasitic dynamics with 0 00 ω ω< ≤ , 
which system (1)-(3) can tolerate while exhibiting an 
acceptable limit cycle with the parameters given in eq. (13). 

It is clear, based on Figs. 2 and 3, that SMC system (1)-
(3) can tolerate any strictly passive lag parasitic cascade 
dynamics of relative degree 1 [17].  

 
Fig. 3 Limit cycle analysis in SMC system with 1st order parasitic 

dynamics 0

0

ω
ω

( )pG s
s

=
+

 

This fact does not contradict to eq. (12), since  
lim ar
ω

g ( ) / 2pG jω π
→∞

= −   (15) 

for the 1st order lag parasitic dynamics given by  
0

0
0

( )pG s 0
s
ω

= ω
ω

∀ >
+

  (16) 

It means that in this case IPM is 1st order lag cascade 
parasitic dynamics given in eq. (16). 

It becomes clear, based on Fig. 3, that any 2nd order 
parasitic dynamics given by a transfer function 

2
0

2
0 0

21.4
ω( )pG s

s sω ω+ +
=

IPM

 destroy the ideal limit cycle in 

eq. (10), and 0= . This fact is illustrated in Fig. 4.  
However, given parameters of the acceptable limit cycle 

in eq. (13) the PPM can be identified in terms of parameters 
0ω  of tolerable 2nd order parasitic dynamics given by a 

transfer function 
2
0

2 2
0 01.4s s

ω( )pG s
ω ω

=
+ +

  (17) 

that satisfy the harmonic balance equation 

4606



( )( ) ( ) 1/ ( , ), ( , ) 4 /p mG j G j N A N A U Aω ω ω ω=− = π
*

 (18) 

with .  * 0, 0c cA A ε ε ω ω= = ≤ > = = Ω ≥ Ω >

 

 
 

Fig. 4 Limit cycle analysis in SMC system with 2nd order parasitic 
dynamics 

Also, it becomes clear from Figs. 2 and 3 that any gain 
increase or decrease of the gain of the transfer function (4), 
even augmented by 1st order cascade parasitic dynamics, 
will not affect the existence of the ideal limit cycle.  

However, the ideal gain margin can be introduced 
directly based on the sliding mode (ideal limit cycle with 
parameters in eq. (10)) existence condition 

σσ ρ σ≤ −   (19) 
taking into account the bounded disturbance 

( , )f x t CAx L+ ≤ . This condition will be  

mU L U Lmρ≥ + → >   (20) 
Therefore, the following definition of the gain margin in 
SMC system (1),(2) is proposed 
Definition 6. We define the ideal gain margin (GM) in 
SMC system (1)-(3) as the possible decrease of the control 
amplitude  until the sliding mode (limit cycle) existence 
condition (13) starts violating. This is 

mU

/mGM U L=   (21) 
 The practical gain margin (PGM) can be also 
introduced in terms of tolerable parasitic cascade 
dynamics. For instance, if the parasitic dynamics is 
characterized by a transfer function of relative degree 2  

2
0

2 2
0 0

( ) , 1
1.4pG s k k

s s
ω
ω ω

= ≥
+ +

  (22) 

and given a value of the control (3) amplitude mU , the 
practical gain margin (PGM), is defined as the possible 
increase of the gain  until the parameters of resulting 
limit cycle stop satisfying the conditions (13).   

1k ≥

III. STABILITY MARINS IN SYSTEMS WITH SUPER-TWISTING 
(2-SMC) SLIDING MODE CONTROL 

The super-twisting algorithm [8] is one of the popular 2-
SMC algorithms. It is used for the sliding variable 

dynamics of relative degree 1 given by eq. (2). Assume for 
simplicity 1Cb = , and  

2( , ) , ( , ) ( , )F x t L F x t CAx f x t≤ = +   (23) 

The continuous super-twisting control is designed as [8] 
( )

( )

1/ 2| | sign ,

sign

u

z

λ σ σ

α σ

⎧ z= −⎪
⎨

=⎪⎩

−

0

  (24) 

and drives ,σ σ →  in the presence of bounded 
disturbance (23). Parameters λ  and α  are defined as [8] 

21.1 , 1.5Lα λ= = 2L   (25) 
In this section the limit cycle analysis and stability margins 
are studied in the 2-SMC system given by (1)-(3), (23)-
(25). The block-diagram of this system is given in Fig. 5. 

The limit cycle analysis is performed in accordance with 
the works [13], [16]. The describing function of a nonlinear 
dynamics block in Fig. 5 is identified [13], [16]: 
 

4 1( , ) 1.1128N A
A j A
α λω

π ω
= ⋅ +  (25a) 

 
Fig. 5 Block-diagram if system with super-twisting control 

The negative reciprocal of the DF in eq. (23) is given by 
the following formula [13], [16]: 

2

2

2 2

0.8986 1.02821
1( , ) 1 1.3092

A j

N A
A

α
λ λ ω

αω
λ ω

+ ⋅
− = −

+
 (25b) 

The function 1/ ( , )N A ω−  in eq. (25b) is a function of two 
variables: the amplitude  and the frequency A ω . It can be 
depicted as a family of plots representing the amplitude 
dependence, with each of those plots corresponding to a 
certain frequency. Also, it is shown [13], [16] that for 

constω =  

( )
0

lim arg 1/ ( , ) / 2
A

N A ω π
→
⎡ ⎤− =⎣ ⎦ −  (25c) 

The plots of function 1/ ( , )N A ω−  and the 1/2 Nyquist 
plot ( )G jω  are depicted in Fig. 6. Based on Fig. 6, it is 
clear that the unique limit cycle exists with the parameters 
in eq. (10) in 2-SMC system given by (1)-(3), (23)-(25). 
Remark 2. The Definitions 1-5 are valid for the 2-SMC 
systems given by eqs. (1), (2), and (23)-(25a). 

In accordance with Definition 2, ideal phase margin 
does not exists for this 2-SMC system, since any additional 
phase shift added to ( )G jω  destroys ideal limit cycle (10). 
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However, in accordance with Definition 3, the practical 
phase margin can exist. 

 

 
 

Fig. 6 Limit cycle analysis in 2-SMC system 

In accordance with Definition 3, the following two-fold 
algorithms are proposed for computing PPM  
Algorithm 1 (illustrated in Fig. 7) 
Step 1. Let’s assume that the frequency of the self-
sustained oscillations of the practically acceptable limit 
cycle is given 

2 0cω ω= >   (26) 
Step 2. Then the PPM is the maximum phase shift of the 
Nyquist plot (G j )ω  so that it crosses the plot 

21/ ( , )N A ω−  corresponding to the frequency 2ω ω= . 
Step 3. The corresponding value of the amplitude of the 
oscillations can be read as 2( )cA G jω= .  

 
Fig. 7 Practical Phase Margin in 2-SMC system 

Algorithm 2 
Step 1. Let’s assume that the amplitude of the self-
sustained oscillations of the practically acceptable limit 
cycle is given  0cA A= >
Step2. Read the corresponding value of the frequency of 
the self-sustained oscillations from the Nyquist plot 

( )G jω  at ( ) cG j Aω =  
Step 3. Then the PPM is the maximum phase shift of the 
Nyquist plot ( )G jω  so that it crosses the plot 

1/ ( , )cN A ω−  corresponding to the frequency cω ω= .  

Graphical illustration of this algorithm is similar to the plot 
in Fig. 7. 
Remark 3. The solutions can be obtained analytically, 
solving the harmonic balance equations 

[ ]
[ ]

0,

0,

Re 1/ ( , ) Re ( ) ( )

Im 1/ ( , ) Im ( ) ( )

c p

c p

N A G j G

N A G j G j

jω ω ϖ ω

ω ω ϖ ω

⎡ ⎤− = ⎣ ⎦
⎡ ⎤− = ⎣ ⎦

 (27) 

Remark 4. The PPM and PGM in 2-SMC systems can be 
computed in terms of parameters of tolerable cascade 
parasitic dynamics in a sense of Definitions 4 and 5 similar 
to as in Section II. 

IV.  EXAMPLES  
Use describing function technique to estimate ideal and 

practical gain and phase margins for the following classical 
SMC system: 

2 ( ), 2 ,x x x u t x x Lϕ σ ϕ 3+ + + = = + ≤ <  (28) 
In the manner of section II, assume that there exist a limit 
cycle in (5). The problem is to identify IPM and PPM in 
system (28) driven by SMC and 2-SMC. 

A. Example 1: Stability margins in SMC system 

Traditional SMC is given by 
3 (u sign )σ= −   (29) 

The dynamically perturbed open-loop transfer functions 
are thus, respectively: 

(a) 
( ) ( )

0
2

0

2
2 1

s
ss s
ω
ω

+
++ +

   (30a) 

(b) 
( ) ( )

2
0

2 2
0 0

2
2 1 1.4

s
s s s s

ω
ω ω

+
+ + + + 2

 (30b) 

(c) 
( )

0/
2

1
2 1

se
s s

ω−

+ +
   (30c) 

(d) 
( )2

1
2 1

je
s s

θ−

+ +
   (30d) 

Suppose that a practical limit cycle (in the feedback 
variable σ ) with amplitude  is acceptable. This 
translates to 

0.02cA =
1/ ( )N A1/ ( , ) 0.0052N A ω− = − = − . The 

extended ½ Nyquist plots near the origin are shown in Fig. 
8, and the results of the predicted IPM and PPM are 
summarized in Table 1. Simulation results are not plotted 
for reasons of brevity, but agree well with describing 
function estimates. 

B. Example 2: Stability margins in 2-SMC system 
For the second example, we repeat the problem, but 

using the 2-SMC (supertwist) control (24) in place of 
traditional SMC.  We use gains: 1.1(3) 3.3,α = =  

1.5 3 2.6λ = = . Retaining the limit cycle amplitude 
tolerance at 0.02cA = , and substituting these into (24) 

yields: ( ) ( )2.74 / 105.5ω+ ⋅ +1/ 0.0489 3jω−( , )cN A ω ω− = . 
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Fig. 8  SMC: Extended Nyquist Plot near the Origin 

Extended Nyquist
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Fig. 9  2-SMC: Extended Nyquist Plot near Origin for added 

phase and time delay 

Table 1: Phase Margin Results from Example #1 
 1st Order 2nd Order Time Delay 

cA  0 .02 .02 

Simulated  cA 0 .02 .021 

cω  ∞  140 1/sec  191 1/sec  

Simulated cω  1000 1/s  137 1/sec 209 1/sec 

Min. 0ω  ∞  137 1/sec 122 1/sec 

IPM 1.57 0 0 

PPM >1.57 >1.57 >1.57 

PPM from (30d) is 1.62 1/sec 

Figure 9 shows the extended Nyquist plots for the 
perturbed systems with time delay and added phase such 
that this limit cycle amplitude is estimated to occur. The 
cases with the 1st and 2nd-order parasitic dynamics were also 
considered. The results are summarized in Table 2. 

Remark 5: It appears that, with the possible exception of 
1st-order dynamics, PPM is insensitive to the 
characterization of the parasitic dynamics.  

V. CONCLUSIONS 
A new concept of stability margins is introduced for 

classical SMC and 2-SMC systems. The corresponding 
ideal and practical phase and gain margins are introduced. 
They characterize the conditional stability/existence of limit 

cycles in classical SMC and 2-SMC (super-twisting 
control) systems. These newly introduced stability margins 
will help to certify classical and 2-SMC algorithms in 
different applications, especially in flight guidance and 
control systems [18].  

Table 2: Phase Margin Results from Example #2 
 1st Order 2nd Order Time Delay 

cA  .02 .02 .02 

Sim. A .024 .022 .022 

cω  14.6 1/sec 20.7 1/sec 22.5 1/sec 

Sim. ω 14.9 1/sec 20.1 1/sec) 22.2 1/sec 

Min. 0ω  10.4 1/sec) 29.1 1/sec 19.8 1/sec 

IPM 0 0 0 

PPM .903 1.11 1.14 

PPM from (30d) is 1.14  
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