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Abstract— The problem of controlling the state of a system,

from a given initial condition, during a fixed time interval

minimizing at the same time a criterion of optimality is

commonly referred to as finite-horizon optimal control problem.

It is well-known that one of the standard solutions to the finite-

horizon optimal control problem relies upon the solution of the

Hamilton-Jacobi-Bellman (HJB) partial differential equation,

which may be difficult or impossible to obtain in closed-form.

Herein we propose a methodology to avoid the explicit solution

of such HJB pde for input-affine nonlinear systems by means

of a dynamic extension. This results in a dynamic time-varying

state feedback yielding an approximate solution to the finite-

horizon optimal control problem.

I. INTRODUCTION

The problem of controlling the state of a system during

a desired time interval, which is generally decided a priori,

and to minimize, along the resulting trajectory of the system,

a criterion of optimality is crucial in control system applica-

tions [4]. The problem informally defined above is commonly

referred to as finite-horizon optimal control problem.

Two different approaches are available in the literature to

solve the problem, namely the Minimum Principle and the

Dynamic Programming approach [1], [3], [5], [6], [10], [11].

The former hinges upon the definition of the Hamiltonian

associated to the optimal control problem that must be

minimized by the optimal control law. The latter is based

on the principle of optimality [2], which formalizes the

intuitive requirement that a truncation of the optimal control

law must be optimal with respect to the resulting truncated

problem. Obviously, each approach has its own advantages

and drawbacks.

The solution relying on the Minimum Principle – which

provides only necessary conditions for optimality – yields

in general an open-loop control law defined in terms of an

adjoint state, or costate, satisfying an ordinary differential

This work is partially supported by the Austrian Center of Competence

in Mechatronics (ACCM), by the EPSRC Programme Grant Control for

Energy and Sustainability EP/G066477 and by the MIUR under PRIN

Project Advanced Methods for Feedback Control of Uncertain Nonlinear

Systems.

M. Sassano is with the Department of Electrical and Electronic En-

gineering, Imperial College London, London SW7 2AZ, UK (Email:

mario.sassano08@imperial.ac.uk).

A. Astolfi is with the Department of Electrical and Electronic En-

gineering, Imperial College London, London SW7 2AZ, UK and with

the Dipartimento di Informatica, Sistemi e Produzione, Università di
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equation with a boundary condition imposed on the value of

the costate at the terminal time. Therefore, determining the

trajectories of the state and the costate consists in finding the

solution of a two-point boundary value problem.

The Dynamic Programming approach, on the other hand,

provides necessary and sufficient conditions for optimality

and the resulting control policy is a memoryless time-varying

feedback. This methodology hinges upon the solution of the

Hamilton-Jacobi-Bellman partial differential equation, which

may be in general difficult or impossible to compute in

closed-form.

The main contribution of this paper is a method to

construct dynamically, i.e. by means of a dynamic extension,

an exact solution of a (modified) HJB pde for input-affine

nonlinear systems without actually solving any partial differ-

ential equation. The extended closed-loop system is a system

of ordinary differential equations with two-point boundary

conditions. However, differently from the Minimum Princi-

ple, if an approximate solution is sought then the solution of

the two-point boundary value problem can be avoided and

the cost of this approximation can be explicitly quantified.

The rest of the paper is organized as follows. In Section II

the definition of the problem is given and the basic nota-

tion is introduced. A notion of solution of the Hamilton-

Jacobi-Bellman partial differential equation is provided in

Section III. The design of a dynamic time-varying state

feedback that approximates the solution of the finite-horizon

optimal control problem is presented in Section IV. The

paper is completed by a numerical example and by some

conclusions in Sections V and VI, respectively.

II. DEFINITION OF THE PROBLEM

Consider a nonlinear system described by equations of the

form

ẋ = f(x) + g(x)u , (1)

where x(t) ∈ R
n is the state of the system while u(t) ∈ R

m

denotes the control input. The mappings f : R
n → R

n

and g : R
n → R

n×m are assumed to be sufficiently

smooth. The finite-horizon optimal control problem consists

in determining a control input u that minimizes the cost

functional1

J(x(0), u) ,
1

2

∫ T

0

(q(x)+u⊤u)dt+
1

2
x(T )⊤Kx(T ) , (2)

1For simplicity we consider only a quadratic terminal cost.
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where T > 0 is the fixed terminal time, q : R
n → R+

is the running cost imposed on the state of the system,

K = K⊤ ≥ 0 penalizes the value of the state

of the system at the terminal time, and subject to the

dynamic constraint (1) and the initial condition x(0) = x0.

The Dynamic Programming solution of the fixed terminal

time, free-endpoint optimal control problem hinges upon the

solution, V (x, t) : Rn × R → R, of the Hamilton-Jacobi-

Bellman partial differential equation2

Vt + Vxf(x) +
1

2
q(x) −

1

2
Vxg(x)g(x)

⊤V ⊤
x = 0 , (3)

together with the boundary condition

V (x, T ) =
1

2
x⊤Kx , (4)

for all x ∈ R
n. The solution of the HJB equation (3), if it

exists, is the value function of the optimal control problem,

i.e. it is a function that associates to every initial state x0

the optimal cost, namely

V (x0, 0) = min
u

1

2

{

∫ T

0

(q(x) + u⊤u)dt+ x(T )⊤Kx(T )

}

.

(5)

Problem 1: Consider system (1) and the cost (2). The

regional dynamic finite-horizon optimal control problem con-

sists in determining an integer ñ ≥ 0, a dynamic control law

described by the equations

ζ̇ = α(x, ζ, t) ,

u = β(x, ζ, t) ,
(6)

with α : Rn ×R
ñ ×R → R

ñ, β : Rn ×R
ñ ×R → R

m, and

a set Ω̄ ⊂ R
n × R

ñ containing the origin of Rn × R
ñ such

that the closed-loop system

ẋ = f(x) + g(x)β(x, ζ, t) ,

ζ̇ = α(x, ζ, t) ,
(7)

is such that

J((x0, ζ0), β) ≤ J((x0, ζ0), ū) , (8)

for any ū and any (x0, ζ0) such that the trajectory of the

system (7) remain in Ω̄ for all t ∈ [0, T ].

Herein an approximate solution of the regional dynamic

finite-horizon optimal control problem is determined, as

described in the following statement.

Problem 2: Consider system (1) and the cost (2). The

approximate regional dynamic finite-horizon optimal control

problem consists in determining an integer ñ ≥ 0, a dynamic

control law described by (6), a set Ω̄ ⊂ R
n ×R

ñ containing

the origin of Rn×R
ñ and functions ρ1 : Rn×R

ñ×R → R+

2The notation Vx denotes the partial derivative of the scalar function V

with respect to the variable x.

and ρ2 : Rn × R
ñ → R+ such that the regional dynamic

finite-horizon optimal control problem is solved with respect

to the running cost

L(x, ζ, u) , q(x) + ρ1(x, ζ, t) + u⊤u , (9)

and the terminal cost

T (x(T ), ζ(T )) ,
1

2
x(T )⊤Kx(T ) + ρ2(x(T ), ζ(T )) . (10)

Finally recall that in the linear-quadratic case, i.e. the

underlying system is

ẋ = Ax+Bu , (11)

and the running cost on the state is q(x) = xTQx, the solu-

tion of the finite-horizon optimal control problem is a linear

time-varying state feedback of the form u = −B⊤P̄ (t)x,

where P̄ (t) is the (symmetric positive semidefinite) solution

of the differential Riccati equation

˙̄P (t) + P̄ (t)A+A⊤P̄ (t)− P̄ (t)BB⊤P̄ (t) +Q = 0 , (12)

with the boundary condition P̄ (T ) = K .

III. ALGEBRAIC SOLUTION AND VALUE FUNCTION

In this section a notion of solution of the Hamilton-Jacobi-

Bellman equation (3) is presented, see [7], [8], [9] for a

similar approach in the case T = +∞. To this end, consider

the augmented system

ż = F (z) +G(z)u , (13)

with z(t) = (x(t)⊤, τ(t))⊤ ∈ R
n+1, F (z) = (f(x)⊤, 1)⊤

and G(z) = (g(x)⊤, 0)⊤. Note that the partial differential

equation (3) can be rewritten as

VzF (z) +
1

2
q(x)−

1

2
VzG(z)G(z)

⊤V ⊤
z = 0 . (14)

Following [8] and [9], consider the HJB equation (14) and

suppose that it can be solved algebraically, as detailed in the

following definition.

Definition 1: Let Σ : R
n × R → R

n×n, with

x⊤ Σ(x, τ) x > 0, for all (x, τ) ∈ R
n \ {0} × R, and

σ : Rn × R → R+. A continuously differentiable mapping

P (x, τ) = [p(x, τ)⊤, r(x, τ)]⊤ , p : R
n+1 → R

1×n,

r : Rn+1 → R, is an algebraic P̄ solution of (3) if

p(x, τ)f(x) + r(x, τ) −
1

2
p(x, τ)g(x)g(x)⊤p(x, τ)⊤

+
1

2
q(x) + x⊤Σ(x, τ)x + τ2σ(x, τ) = 0 ,

(15)

and p(0, τ) = 0, r(0, τ) = 0,

∂p⊤

∂τ

∣

∣

∣

(0,τ)
= 0 ,

∂r

∂τ

∣

∣

∣

(0,τ)
= 0 ,

∂p⊤

∂x

∣

∣

∣

(0,τ)
= P̄ (τ) ,

∂2r

∂x2

∣

∣

∣

(0,τ)
= ˙̄P (τ) ,
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where P̄ (τ) is the solution of the differential Riccati equa-

tion (12) together with the boundary condition P̄ (T ) = K .
⋄

Obviously, since an arbitrary mapping that solves the equa-

tion (15) is selected, the mapping P (x, τ) may not be a

gradient vector.

Using an algebraic P̄ solution of the equation (15), define

the function

V (x, τ, ξ, s) = p(ξ, s)x+ r(ξ, s)τ

+
1

2
‖x− ξ‖2R(s) +

1

2
b‖τ − s‖2 ,

(16)

where ξ ∈ R
n, s ∈ R, b > 0 and ‖v‖2R(s) denotes the

Euclidean norm of the vector v weighed by the positive

definite matrix R(s), i.e. ‖v‖2
R(s) = v⊤R(s)v.

IV. MAIN RESULTS

We first present the main ideas of the proposed approach

in the case of linear systems. To this end consider the

system (11) and the cost (2) with q(x) = x⊤Qx. From the

definition of algebraic P̄ solution of the equation (14), we

expect p to approximate (in the sense defined in (15)) the

partial derivative of the value function with respect to the

state x whereas r represents the partial derivative of V with

respect to time. Therefore, in the linear case an algebraic P̄

solution is given by

P (x, τ) = [x⊤P̄ (τ),
1

2
x⊤ ˙̄P (τ)x] , (17)

which satisfies the condition (15) if and only if the differen-

tial Riccati equation (12) is satisfied by P̄ (τ). Then, define

the function

V (x, τ, ξ, s) = ξ⊤P̄ (s)x+
1

2
ξ⊤ ˙̄P (s)ξτ

1

2
‖x− ξ‖2R(s) +

1

2
b‖τ − s‖2 .

(18)

In the following result we show that the function (18) is

indeed a value function for the system (11) and the cost (2),

i.e. solves the Hamilton-Jacobi-Bellman partial differential

inequality associated to the extended system (7), namely

HJB , VzF +Vξ ξ̇+Vsṡ+
1

2
q−

1

2
VzGG

⊤V ⊤
z ≤ 0 , (19)

and satisfies the boundary condition

V (x, T, ξ(T ), s(T )) =
1

2
x⊤Kx . (20)

Proposition 1: Consider the linear system (11) and the

cost (2) with q(x) = x⊤Qx. Let P̄ (τ) = P̄ (τ)⊤ > 0 be

the solution of the differential Riccati equation (12) with the

boundary condition P̄ (T ) = K . Let R(τ) = P̄ (τ) for all

τ ∈ [0, T ]. Then there exists k̄ such that for all k ≥ k̄, V

as in (18) satisfies the partial differential equation (19) with

ṡ = 1 and ξ̇ = −kV ⊤
ξ . Furthermore, selecting s(0) = 0 and

ξ(0) = 0, yields V (x, T, 0, T ) = 1
2x

⊤Kx, i.e. the boundary

condition (20) is satisfied. Hence

ṡ = 1 ,

ξ̇ = −kV ⊤
ξ ,

u = −B⊤V ⊤
x = −B⊤P̄ (τ)x +B⊤(P̄ (τ) − P̄ (s))x ,

(21)

with s(0) = 0 and ξ(0) = 0, solves the regional dynamic

finite-horizon optimal control problem.

Consider now the nonlinear system (1) and the cost (2).

To begin with suppose that the matrix R in the function V ,

defined as in (16), is a constant symmetric positive definite

matrix.

To streamline the presentation and provide a concise

statement of the main result let

∆(x, ξ, s) = (R− Φ(x, ξ, s))Λ(ξ, s)⊤ , (22)

δ(x, ξ, s) = (R− Φ(x, ξ, s))λ(ξ, s)⊤ , (23)

with Λ(ξ, s) = Ψ(ξ, s)R−1, λ(ξ, s) = ψ(ξ, s)R−1, where

Φ(x, ξ, s) ∈ R
n×n is a continuous mapping such that

p(x, s)− p(ξ, s) = (x− ξ)⊤Φ(x, ξ, s)⊤

and Ψ(ξ, s) ∈ R
n×n and ψ(ξ, s) ∈ R

1×n are the Jacobian

matrices of the mappings p(ξ, s) and r(ξ, s), respectively,

with respect to ξ.

Moreover, Acl(x, τ) = F (x) − g(x)g(x)N(x, τ), with

N(x, τ) ∈ R
n×n such that p(x, τ) = x⊤N(x, τ)⊤. Finally

let ℓ(x, τ, s), H(x, ξ, s), Π(x, τ, s), W1(x, ξ, s), W2(x, s),

D1(x, ξ, s) and D2(x, s) be such that

r(x, s) − r(x, τ) = ℓ(x, τ, s)(s− τ) ,

r(ξ, s)− r(x, s) = (x− ξ)⊤H(x, ξ, s)(x − ξ) ,

p(x, s)− p(x, τ) = x⊤Π(x, τ, s) ,

∂p(ξ, s)

∂s
−
∂p(x, s)

∂s
=W1(x, ξ, s)(x − ξ) ,

∂p(x, s)

∂s
=W2(x, s)x ,

∂r(ξ, s)

∂s
−
∂r(x, s)

∂s
= D1(x, ξ, s)(x − ξ) ,

∂r(x, s)

∂s
= D2(x, s)x .

Remark 1: The vector field Acl(x, τ)x describes the

closed-loop nonlinear system when only the algebraic input,

namely u = −g(x)⊤p(x, τ), is applied. N

The following statement provides a solution to the ap-

proximate regional dynamic finite-horizon optimal control

problem considering the cost (2) subject to the dynamical

constraint (1).
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Proposition 2: Consider system (1) and the cost (2). Let

P (x, τ) be an algebraic P̄ solution of (14).

Let R = R⊤ ≥ sup
τ∈[0,T ]

P̄ (τ) and b > 0 be such that

[

L1 L2

LT
2 L3

]

<

[

Σ 0

0 σ

]

+
1

2

[

∆⊤

δ⊤

]

gg⊤
[

∆ δ
]

,

(24)

for all (x, τ, ξ, s) ∈ Ω ⊂ R
2(n+1), with

L1 = A⊤
cl(x, τ)Π

⊤ + γW2 + ΛY + Y ⊤Λ⊤ + ΛHΛ⊤ ,

L2 =
γ

2
D⊤

2 + Y ⊤λ⊤ + ΛHλ⊤ +
γ

2
ΛD⊤

1 ,

L3 = λHλ⊤ +
γ

2
D1λ

⊤ +
γ

2
λD1 ,

Y =
1

2
(R − Φ)⊤Acl(x, s) +

γ

2
W1 ,

and γ(x, τ, s) = 1− ℓ(x,τ,s)
b

.

Then there exists k̄ such that for all k ≥ k̄ the function

V (x, τ, ξ, s) defined in (16) satisfies the Hamilton-Jacobi-

Bellman inequality (19) for all (x, τ, ξ, s) ∈ Ω, with ξ̇ =

−kV ⊤
ξ and ṡ = γ(x, τ, s). Furthermore, selecting s(T ) = T

and ξ(T ) = 0, yields V (x, T, 0, T ) = 1
2x

TRx, hence

ṡ = γ(x, τ, s) ,

ξ̇ = −k(Ψ(ξ, s)⊤x− R(x− ξ) + ψ(ξ, s)⊤τ) ,

u = −g(x)⊤
[

p(x, τ)⊤ + (R − Φ)(x− ξ) + Π⊤x
]

(25)

with s(T ) = T , ξ(T ) = 0, solves the approximate re-

gional dynamic finite-horizon optimal control problem with

ρ1 = − HJB and ρ2 = 1
2x(T )

⊤(R −K)x(T ). Finally,

suppose that condition (24) is satisfied by R = K then the

additional cost on the final state is zero, i.e. ρ2 = 0.

Remark 2: Suppose that P (z)z > 0 for all z 6= 0 and

consider the limit of (2) as T tends to infinity. Let A =

{(x, τ, ξ, s) ∈ Ω : x = ξ = 0, s = τ}. Then V as in (16)

is zero on A, i.e. V |A = 0, and there exist R = R⊤ > 0,

b > 0 and a set Ω̃ ⊃ Ω such that V |Ω̃\A > 0. If R is such

that (19) is satisfied then V̇ ≤ 0, along the trajectories of the

closed-loop system (13)-(25), and the set A is stable for the

system (13)-(25).
N

Remark 3: The closed-loop system (13)-(25) is defined by

a system of 2(n+1) ordinary differential equations with two-

point boundary conditions, similar to the problem obtained

exploiting the arguments of the Minimum Principle. However

with the approach proposed herein, differently from the

Minimum Principle, if the solution of the two-point boundary

value problem is not precisely computed, i.e. ξ(T ) = ε1 6= 0

and s(T ) = ε2 6= T , then it can be guaranteed, by Remark 2,

that the resulting trajectories are not far away from the

optimal evolutions and moreover the additional cost is given

by

ρ2 = p(ε1, ε2)x(T ) + r(ε1, ε2)T +
1

2
b(T − ε2)

2

+
1

2
x(T )⊤(R−K)x(T ) +

1

2
ε⊤1 Rε1 − x(T )⊤Rε1 .

As a matter of fact, if an approximate solution of the problem

is sought, then the solution of the two-point boundary value

problem can be avoided selecting the initial condition of ξ

and s such that the quantity ρ2 is minimized. N

Remark 4: Since z = 0 is not an equilibrium point for

F (z) defined in (13), there are terms in the partial differential

equation (19), namely µ(x, τ, s) , r(x, s)− r(x, τ) + b(τ −

s) − b(τ − s)ṡ, that can not be written as a quadratic form

in x, (x − ξ) and τ . The choice ṡ = γ̄, with γ̄ constant, is

sufficient to guarantee that the term µ is smaller than zero.

In fact, let ṡ = γ̄, s(0) = (1− γ̄)T and note that s(t) ≥ τ(t)

and s(T ) = T . Let ℓ̄ > 0 be such that |r(x, s) − r(x, τ)| <

ℓ̄(s− τ) for all (x, τ, s) ∈ Ω, then γ̄ ≤ 1− ℓ̄
b

guarantees that

µ ≤ 0 for all (x, τ, s) ∈ Ω. In this case, the state variable

s can be substituted in the dynamic control law (25) by the

function of time s(t) = T + γ̄(t− T ). N

Remark 5: The control law (21), in the linear case, is

consistent with the conditions given in Proposition 2. In

fact, (21) can be obtained from (25) letting γ = γ̄ = 1,

hence s(0) = 0, and noting that, by the assumptions in

Proposition 1,

ξ̇ = −k
[

˙̄P (s)τ + P̄ (τ)
]

ξ ,

with an equilibrium point at ξ = 0, hence ξ(0) = 0 provides

a solution to the two-point boundary value problem defined

in Proposition 2. N

Remark 6: The left-hand side of the condition (24) is zero

at the origin. Assume additionally that Σ(0, 0) = Σ̄ > 0 and

σ(0, 0) = σ̄ > 0 in the definition of algebraic solution.

Then, by continuity of the left-hand side of inequality (24),

there exists a non-empty subset Ω̂ ⊂ R
2(n+1), containing

the origin, such that the condition (24) is satisfied for all

(x, τ, ξ, s) ∈ Ω̂. Therefore, the algebraic P̄ solution of (15),

with Σ(0, 0) = Σ̄ and σ(0, 0) = σ̄, solves the approximate

regional dynamic finite-horizon optimal control problem in

Ω̂. N

Remark 7: The gain k in the dynamics of ξ, namely the

second equation of (25), may be defined as a function of

(x, τ, ξ, s), i.e. k(x, τ, ξ, s), in order to reduce the additional

running cost ρ1, see [9] and the numerical example for more

details. N

1719



V. NUMERICAL EXAMPLE

To illustrate the results of the paper consider the system

ẋ1 = x2 ,

ẋ2 = x1x2 + u ,
(26)

with x(t) = (x1(t), x2(t))
⊤ ∈ R

2, u(t) ∈ R and the cost

J(x(0), u) =
1

2

∫ T

0

u(t)2dt+
1

2

[

x1(T )
2 + x2(T )

2
]

. (27)

Note that no running cost is imposed on the state of the

system, hence only the position of the state at the terminal

time is penalized, together with the control effort. Let

P̄ (τ) =

[

p̄11(τ) p̄12(τ)

p̄12(τ) p̄22(τ)

]

be the solution of the differential Riccati equation (12) with

the boundary condition P̄ (T ) = I2. Let

p(x, τ) = x⊤P̄ (τ) +Q(x, τ) ,

r(x, τ) = 1
2x

⊤ ˙̄P (τ)x ,
(28)

with Q = [Q1, Q2] ∈ R
1×2 and

Q1(x, τ) = −p̄12(τ)x
2
1 − p̄22(τ)x1x2 ,

Q2(x, τ) = −p̄12(τ)x1 − p̄22(τ)x2 + x1x2 +
√

χ(x1, x2, τ) ,

(29)

with

χ(x1, x2, τ) , p̄12(τ)
2x21 + 2p̄12(τ)p̄22(τ)x1x2 + p̄22(τ)

2x22

− 2p̄12(τ)x
2
1x2 − 2p̄22(τ)x1x

2
2 + x21x

2
2 + 2ϑx21 + 2ϑx22 .

Letting Σ = ϑI2, ϑ > 0, it can be shown that P (x, τ) =

[p(x, τ), r(x, τ)], with p and r defined in (28), is an alge-

braic P̄ solution for the system (26) as defined in (15).

The dynamic solution (25) proposed herein is compared

with the optimal solution of the linearized problem, namely

ul = −B⊤P̄ (τ)x. Note that the control law ul is designed

for the linear part of the system (26), which is described

by a double integrator, and performs poorly on the nonlinear

system (26). The following simulations show that the perfor-

mances of the control law ul may be improved determining

a solution of the algebraic equation (15), constructing the

augmented value function V as in (16) and obtaining the

dynamic control (25). To compare the performances of the

two control laws we introduce the ratio

η =
J(x(0), ud)

J(x(0), ul)
,

where J is defined in (27) and ud denotes the dynamic

control law (25). A ratio smaller than one implies that the

cost yielded by the dynamic control law is smaller than the

cost yielded by the linear control law ul.

In the first simulation we selcect (x1(0), x2(0)) = (32 ,
3
2 ),

R = αI2, with α > 1, γ̄ = 1 and the terminal time T = 1.
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Fig. 1. Top Graph: Time histories of the state of the system (26) in closed-

loop with the linear control law ul (dashed line) and with the dynamic

control law (25) (solid line). Upper Middle Graph: Time histories of the

state of the dynamic extension ξ, with ξ(0) such that ρ2 is minimized.

Lower Middle Graph: Time histories of the control action ul (dashed line)

and of the dynamic control law (25) (solid line). Bottom Graph: Time

histories of the elements of the matrix P̄ (t), solution of the differential

Riccati equation (12).

The gain k(x, τ, ξ, s) is selected as in Remark 7 and it is such

that the partial differential equation (19) and consequently

the additional cost ρ1 are identically zero. The top graph

of Figure 1 displays the time histories of the state of the

system (26) in closed-loop with the linear control law ul

(solution of the linearized problem) and with the dynamic

control law (25). The time histories of the control signals ul

and (25) are depicted in the lower middle graph of Figure 1.

Note that, considering ρ1 as defined in Proposition 2 and

ρ2 obtained as in Remark 3, the ratio η is equal to 0.4234.

The upper middle graph of Figure 1 shows the time histories

of the dynamic extension ξ with ξ(0) selected such that ρ2,

namely the additional cost on the terminal augmented state,

is minimized. Finally, the time histories of the elements of the

matrix P̄ (τ), solution of the differential Riccati equation (12)

are displayed in the bottom graph of Figure 1.

In the second simulation we consider several initial condi-

tions. Figure 2 displays the phase portraits of the system (26)

in closed-loop with the linear control law ul and with the

dynamic control law (25).

Figure 3 shows the time histories of the system (26) in

closed-loop with the the linear control law ul and with the

dynamic control law (25) for different terminal times, namely

T = 1, 1.5, 2, 2.5, and the initial condition (x1(0), x2(0)) =

(2, −2).

In a cheap control scenario we let K = cI , c > 1. Figure 4
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Fig. 2. Phase portraits of the system (26) in closed-loop with the linear

control law ul (dashed line) and with the dynamic control law (25) (solid

line). The values describe the ratio η of the cost of the dynamic control

law over the cost of the linear control law ul for the corresponding initial

condition.
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Fig. 3. Time histories of the system (26) in closed-loop with the linear

control law ul (dashed line) and with the dynamic control law (25) (solid

line) for different terminal times.

shows the trajectories of the system (26) from the initial

condition (x1(0), x2(0)) = (2, 2), with K = cI for different

values of c, in closed-loop with ul and with the dynamic

control law (25).

VI. CONCLUSIONS

The finite-horizon optimal control problem for input-

affine nonlinear systems is solved within the framework

of dynamic programming. It is shown that the computa-

tion of the solution of the Hamilton-Jacobi-Bellman partial

differential equation can be avoided provided an additional
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Fig. 4. Trajectories of the system (26), with K = cI for different values

of c, in closed-loop with ul (dashed line) and with the dynamic control

law (25) (solid line), respectively.

cost is paid. The methodology makes use of a dynamic

extension yielding a dynamic control law that solves the

approximate regional dynamic finite-horizon optimal control

problem. The closed-loop system is defined in terms of a

two-point boundary value problem. Finally, differently from

the Minimum Principle approach, if the solution of the two-

point boundary value problem is not exactly determined then

the error generated by the approximation can be explicitly

quantified and minimized.
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