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Abstract— In this paper the following problem is studied:
design an input signal with the property that the estimated
model based on this signal satisfies a given performance level
with a prescribed probability. This problem is mathematically
translated into a chance constrained optimization problem,
which is typically non convex. To solve it, several convex
approximations are proposed and compared.

I. INTRODUCTION

Experiment design is one of the core issues in system
identification. In the last decade this topic has seen a revival,
see, e.g., the overviews [9, 14, 15, 21, 24]. Contributions
include convexification [17], robust design [25], adaptive
design [8], least-costly design [3], MIMO systems [18], and
closed vs open loop experiments [1].

Deriving from [10] much effort has been devoted to
applications oriented experiment design, in particular control
oriented experiment design [2, 6, 13]. Recently a conceptual
framework for applications oriented experiment design was
proposed in [15]. The framework hinges on introducing a
function Vapp which quantifies the degradation in perfor-
mance when a model that differs from the true system is used
in the design of the application. Thus Vapp has its minimum
at the true system and without loss of generality we may
assume that the minimum is 0. The archetypical example is
model based control design, where the controller is based on
a model. Here Vapp(G) could be some norm of the difference
in the output response when the model G and when the true
system is used in the design of the controller. A model G is
deemed to give acceptable performance if the performance
degradation is below a certain bound, i.e. Vapp(G) ≤ 1/

for some 
 > 0. The set of acceptable models is the set

ℰapp =
{
G : Vapp(G) ≤

1




}
.

The system identification objective is then reduced to pro-
duce a model that belongs to ℰapp. In this perspective, a
natural experiment design objective inspired by least-costly
identification is as follows:

min
Experiment

Experimental effort

s.t. Ĝ ∈ ℰapp,
(1)

where Ĝ is the identified model. Various measures of the
experimental effort can be used; input or output power, and
experimental length are just a few examples. There is also a
wide range of possible design variables, see [17].

In this contribution we will study (1) for parametric
model identification. Thus the model is represented by a
parameter vector � ∈ ℝn. We will also adopt a stochastic
framework whereby the parameter estimate is assumed to be
(approximately) normal distributed for the sample sizes in
question, i.e.

�̂ ∼ N(�0, P ), (2)

where �0 is the true model parameter, c.f. the prediction
error framework [20]. Note that the covariance matrix P will
depend on the experimental conditions.

Under (2) the constraint in (1) can never be guaranteed.
In fact it can only be ensured with a certain probability. We
thus have to relax (1) to

min
Experiment

Experimental effort

s.t. P�̂

{
�̂ ∈ ℰapp

}
≥ 1− "

(3)

for some small " > 0. Above P�̂ {X} is the probability of
the event X over the probability space corresponding to �̂.

In general (3) is computationally intractable and non-
convex so further relaxations are required. The starting point
for the considerations in this paper is the second order
approximation

Vapp(�) ≈ Vapp(�0) + V ′app(�0)(� − �0)

+
1

2
(� − �0)TV ′′app(�0)(� − �0)

=
1

2
(� − �0)TV ′′app(�0)(� − �0). (4)

In the context of (3), this approximation is motivated for

 sufficiently large, i.e. when there are sufficiently high
demands on keeping the performance degradation low.

Notice that Vapp and its derivatives implicitly depend on
the true system, which is unknown prior to the experiment;
this issue will not be studied in this paper, but the interested
reader can check [25, 7] and the references therein for several
approaches to deal with this dependence. In the sequel, to
simplify notation, the dependence of Vapp and its derivatives
on �0 will be suppressed.

Inserting (4) in the constraint in (3) gives the approximate
constraint

P�̂

{
1

2
(�̂ − �0)TV ′′app(�̂ − �0) ≥

1




}
≤ ". (5)

Unfortunately, it is still very difficult to evaluate the proba-
bility in question in (5) and further relaxations are necessary
to obtain a tractable problem. In [15] a relaxation based on
a standard confidence ellipsoid for �̂ is used (see Section
II-A for details). This leads to a semi-definite program. The
objective of this paper is to improve on this relaxation of the
chance constraint (5), while still maintaining attractive com-
putational properties. Our approach employs an optimized
Chernoff bound, adapted from the robust convex optimiza-
tion literature. The relaxation is introduced in Section II. A
numerical study is presented in Section III and conclusions
are provided in Section IV.

II. APPROXIMATIONS

In this section, several convex approximations of (5) are
considered. The first one comes from [16], while the others
are based on results from [22, 23].
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A. Confidence Ellipsoids

A first attempt to relax (5) consists in noting that �̂ ∼
N(�0, P ) implies that (�̂− �0)TP−1(�̂− �0) ∼ �2

n. This, in
turn, means that the event (�̂ − �0)TP−1(�̂ − �0) ≥ �2

n(")
occurs1 with probability "; notice that this event corresponds
to the exterior of the standard confidence ellipsoid for �̂.
Therefore, a sufficient condition for (5) to hold is to ensure
that

1

2
(�̂−�0)TV ′′app(�̂−�0) ≤

1



, for every �̂ ∈ ℝn such that

(�̂ − �0)TP−1(�̂ − �0) ≤ �2
n("), (6)

or, letting �̃ := �̂ − �0,[
�̃
1

]T [ − 1
2V
′′
app 0

0 1



] [
�̃
1

]
≥ 0, for every �̃ ∈ ℝn

such that
[
�̃
1

]T [ −P−1 0
0 �2

n(")

] [
�̃
1

]
≥ 0. (7)

This constraint can be simplified by applying the S-procedure
[4], which states that (7) is equivalent to the existence of a
t ≥ 0 such that[

− 1
2V
′′
app 0

0 1



]
− t
[
−P−1 0

0 �2
n(")

]
≥ 0. (8)

This condition is composed of two inequalities. The second
one is satisfied if and only if t ≤ [
�2

n(")]
−1. On the other

hand, the first inequality is more strict as t decreases, so we
can take t = [
�2

n(")]
−1. This means that (8) is equivalent

to

−1

2
V ′′app +

1


�2
n(")

P−1 ≥ 0,

or


�2
n(")

2
V ′′app ≤ P−1. (9)

Notice that (9) is a convex (actually, a linear matrix inequal-
ity (LMI)) constraint in P−1. As P−1 is typically an affine
function of the input spectrum �u [17], constraint (9) can be
directly used as part of a semidefinite program for optimal
input design. The reader is referred e.g. to [17] for further
implementation details.

B. Markov Bounds for Finite-Order Models

A second technique to approximate (5) is to use Markov’s
bound. This gives

P�̂

{
1

2
(�̂ − �0)TV ′′app(�̂ − �0) ≥

1




}
≤ 
E�̂

{
1

2
(�̂ − �0)TV ′′app(�̂ − �0)

}
=



2
Tr [V ′′appE�̂{(�̂ − �0)(�̂ − �0)

T }] (10)

=



2
Tr [V ′′appP ].

1�2
n(") is the " percentile of a �2 distribution with n degrees of freedom

(denoted as �2
n), i.e., Px{x ≥ �2

n(")} = " if x ∼ �2
n.

The first line follows from Markov’s inequality: If x is a
nonnegative random variable and T ≥ 0 is a constant, then

E{x} =
∫ ∞
0

x dP(x) ≥
∫ ∞
T

x dP(x) ≥ T
∫ ∞
T

dP(x)

= TP{x ≥ T}. (11)

Bound (10) suggests that (5) will be satisfied if the following
constraint holds:




2
Tr [V ′′appP ] ≤ ". (12)

This condition can also be written as an LMI in P−1, by
using Schur complements [4]:

Tr [M ] ≤ 2"



,

[
M V

′′1/2
app

V
′′T/2
app P−1

]
≥ 0. (13)

Here, M ∈ ℝn×n is an auxiliary (free) matrix, and V ′′app =

V
′′T/2
app V

′′1/2
app .

C. Markov Bounds for High-Order Models
This is an approach developed by Ljung and collaborators

during the 1980’s, [19]. To simplify the description of this
technique, let us assume that the model structure is of a Finite
Impulse Response (FIR) type, e.g.,

yt = �1ut−1 + ⋅ ⋅ ⋅+ �nut−n + et,

where {et} is a Gaussian white noise sequence of zero
mean and variance �2. Furthermore, we will assume that
the performance degradation function has the form

Vapp(�) =
1

4�

∫ �

−�

∣∣∣G(ej!, �̂)−G(ej!, �0)∣∣∣2 C(ej!)d!,
(14)

where G(q, �) := �1q
−1 + ⋅ ⋅ ⋅ + �nq

−n, and C : T → ℝ+
0

(T := {z ∈ ℂ : ∣z∣ = 1}) is an arbitrary non-negative con-
tinuous weighting function. Notice that Vapp(�) is quadratic
in �, hence Vapp(�) = (1/2)(�̂ − �0)

TV ′′app(�̂ − �0). In
addition, if n is large enough, Ljung and collaborators [19]
showed that

Var {G(ej!, �̂)} ≈ n�2

N�u(!)
,

where �u is the spectrum of the input u, and N is the number
of samples used to compute �̂. Now, following the same path
as in Section II-B, we have that

P�̂

{
Vapp(�̂) ≥

1




}
≤ 
E�̂{Vapp(�̂)}

=



2�

∫ �

−�
E�̂

{∣∣∣G(ej!, �̂)−G(ej!, �0)∣∣∣2}C(ej!)d!
≈ n
�2

2�N

∫ �

−�

C(ej!)

�u(!)
d!.

Therefore, constraint (5) is satisfied if the following condition
holds:

n
�2

2�N

∫ �

−�

C(ej!)

�u(!)
d! ≤ ".
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This condition is a large-n approximation of (12), and it can
be used, as shown e.g. in [20], to find explicit expressions
for some optimal input design problems. For example, the
input of minimum energy that satisfies this condition has a
spectrum proportional to

√
C(ej!) [20, Equation (13.79)].

D. Chernoff Relaxations

Yet another way to relax constraint (5) is to replace it by
a Chernoff or Bernstein type of bound, as done in [22]. To
this end, we can perform the following steps:

P�̂

{
1

2
(�̂ − �0)TV ′′app(�̂ − �0) ≥

1




}
= Px

{
xTPT/2V ′′appP

1/2x ≥ 2




}
= Px̃

{
n∑
i=1

�i(P
T/2V ′′appP

1/2)x̃2i ≥
2




}

= Px̃

{
n∑
i=1

1

t
�i(P

T/2V ′′appP
1/2)x̃2i −

2


t
≥ 0

}
(15)

= Px̃

{
exp

[
n∑
i=1

1

t
�i(P

T/2V ′′appP
1/2)x̃2i −

2


t

]
≥ 1

}

≤ Ex̃

{
exp

[
n∑
i=1

1

t
�i(P

T/2V ′′appP
1/2)x̃2i −

2


t

]}
,

where x := P 1/2(�̂ − �0) ∼ N(0, I), with P = PT/2P 1/2;
x̃ ∼ N(0, I) is another Gaussian random vector (correspond-
ing to a suitable rotation of x); t ≥ 0 is an arbitrary constant.
The last line in (15) follows from Markov’s inequality (11).

On the other hand, if y ∼ N(0, 1) and t is a real constant,
then

E{exp(tx2)} = 1√
2�

∫ ∞
−∞

exp(tx2) exp

(
−1

2
x2
)
dx

=
1√
2�

∫ ∞
−∞

exp

[
−1

2
(1− 2t)x2

]
dx

=
1√

1− 2t
(16)

for t ∈ (−∞, 1/2).
Combining (15) and (16) gives

P�̂

{
1

2
(�̂ − �0)TV ′′app(�̂ − �0) ≥

1




}
≤ exp

(
− 2


t

) n∏
i=1

1√
1− 2

t�i(P
T/2V ′′appP

1/2)
(17)

= exp

(
− 2


t

)
1√

det
(
I − 2

tP
T/2V ′′appP

1/2
) ,

where t is allowed to take any value in
(2�max(P

T/2V ′′appP
1/2),∞). Therefore, from (17) we

have that a sufficient condition for (5) to hold is that

exp

(
− 2


t

)
1√

det
(
I − 2

tP
T/2V ′′appP

1/2
) ≤ ". (18)
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Fig. 1. Confidence ellipses (i.e., contour lines of the probability density
function of �̂) obtained using approaches A, B, C, and D, for a second
order FIR system and performance degradation (14). The ellipse given by
the confidence ellipsoids approach (A) coincides with the application ellipse.

In order to write (18) as a tractable convex constraint, we
can take the logarithm of this expression and multiply it by
t, yielding

− 2



− t

2
ln det

(
I − 2

t
PT/2V ′′appP

1/2

)
≤ t ln ",

for some t > 2�max(P
T/2V ′′appP

1/2).

This constraint can be further simplified by using Schur
complements [4] (and replacing t by 2t), to obtain

− t ln "2 − t ln det
(
I − 1

t
M

)
≤ 2



, (19)[

M V
′′1/2
app

V
′′T/2
app P−1

]
≥ 0,

[
tI V

′′1/2
app

V
′′T/2
app P−1

]
≥ 0.

Remark 2.1: Notice that the first equation in (19) is a
convex constraint jointly in t and M , even though it cannot
be written as a linear matrix inequality. However, some
convex optimization packages such as CVX can handle these
types of constraints for a fixed t > 0 [11, 26]. Therefore, one
possibility is to optimize for t by a line search.

Remark 2.2: Note that all of the proposed relaxations
(except for the one presented in Section II-C, which depends
on �u) are convex constraints in P−1, hence they can be used
in principle to design optimal input signals in the frequency
domain, providing a reasonable tractable approximation to
the chance constraint (5). However, it is important to note
that the resulting probability of violation of (5) could be
much less than " (because these relaxations are conservative);
this means that in practice it could be worth to try several
values of " until the resulting probability of violation of (5)
gets close to its maximum acceptable value (see Section 5
of [22]).

III. NUMERICAL EXAMPLES

In this section, the approximations, described in Section
II, are compared with respect to the input energy that they
require in order to identify the unknown system under the
chance constraint (5). The effect of an increasing model
order is also studied. In all the examples, re-tuning of " (c.f.
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Method n = 4 n = 8 n = 12 n = 16 n = 20

A 0.939 1.421 1.854 2.264 2.650

B 0.924 1.364 1.759 2.150 2.468

C 0.900 1.326 1.705 2.031 2.411

D 0.883 1.320 1.694 2.023 2.353

TABLE I
INPUT ENERGIES REQUIRED BY APPROACHES A, B, C AND D. THE

WEIGHTING FUNCTION C(ej!) IS GIVEN BY (20).

Remark 2.2) is performed. To simplify the description, we
will refer to the approaches by their respective sections (i.e.,
A, B, C or D).

Let us first consider the quadratic performance degrada-
tion function Vapp(�) given by eq. (14). The continuous
weighting function C is chosen to be rational and to roughly
represent a bandpass filter:

C(ej!) =
(ej! − 0.9)(e−j! − 0.9)

(e2j! − 1.2ej! + 0.52)(e−2j! − 1.2e−j! + 0.52)
.

(20)

It is straightforward to check that V ′′app in this case is a
2 × 2 Toeplitz matrix. In Fig. 1, the estimation ellipses for
approaches A, B, C and D of the last section are presented,
when the unknown system is FIR of order 2 (whose true
parameters are �1 = 2 and �2 = 1). The level of the ellipses
has been chosen such that the ellipse of approach A coincides
with the application ellipse. The value of " for the chance
constraint in (3) is chosen to be " = 0.01. We can see
from the figure that the ellipses are relatively aligned with
each other. In particular, the confidence ellipsoids approach,
A, delivers an ellipse which perfectly coincides with the
application ellipse. This implies that no re-tuning of " was
needed for such approach (c.f. Remark 2.2), because ℰapp
then corresponds to a confidence ellipse for �̂ (of confidence
level "), hence P�̂{�̂ ∈ ℰapp} = " (by definition of a
confidence region). After approach A, the best fit to the
application ellipse is given by the Chernoff relaxation, D.
The input energy, r0, required by the the approximations A,
B, C, and D, is 0.651, 0.675, 0.628 and 0.606, respectively.
Therefore, the Chernoff approach, D, gives the best input (in
terms of experimental effort), even though the costs of the
remaining approaches are not much higher.

Table I completes the picture about the approximations
considered in this paper, where the results of simulations
based on FIR models with increasing number of parameters n
are shown2 (considering (14) and (20)). We observe that, for
this particular choice of the weighting function, the Chernoff
approach, D, seems to give always the best results, although
all methods deliver more or less the same performance, even
for relatively large model orders.

It is interesting to notice that, even though approach A
gives, for Toeplitz V ′′app matrices, estimation ellipses that per-
fectly match the application ellipses, its performance is not
so good in comparison to the other approaches. The reason

2Notice that for FIR model structures and the performance criterion (14),
(20), the optimal input does not depend on �o, hence as n is increased, it
is irrelevant for this problem whether the true system is kept the same or if
it is allowed to change, as long as it belongs to the model structure.

Method n = 4 n = 6 n = 10 n = 15 n = 25

A 2.420 4.765 10.722 22.86 54.695

B 2.400 4.090 7.552 13.928 25.709

D 2.147 3.649 6.604 12.523 22.850

TABLE II
INPUT ENERGIES REQUIRED BY APPROACHES A, B AND D. THE MATRIX

V ′′
app IS CHOSEN TOEPLITZ AND POSITIVE-SEMIDEFINITE, BUT

OTHERWISE RANDOM.

for this is that the probability that �̂ lies outside its estimation
ellipsoid is not zero (since Gaussian distributions on, say, ℝn
have support over their entire domain). Therefore, in order
to satisfy the required performance level with probability at
least 1 − ", it is not necessary that the estimation ellipsoid
lies in the application ellipsoid; this latter condition is thus
only sufficient to satisfy the chance constraint. This means
that approaches B, C and D somehow manage to satisfy
the chance constraint at a lower cost than approach A by
distributing the input energy in a “smarter” way, so that the
probability of �̂ lying inside the application ellipse is 1− ".

Another remarkable observation from Table I is that ap-
proach C seems to give better results than approach B, even
though the former is based on asymptotic (in n) variance
expressions, while the latter relies of finite n formulas for
the covariance of G. This suggests that the high model order
approximation for the variance partially compensates for the
slackness of the Markov inequality used for approach C.
However, we have currently no detailed explanation for this
phenomenon.

The superiority of the Chernoff approach, D, with respect
to the others, at least for large n, can be informally argued
from results from the theory of large deviations [5], accord-
ing to which, as the number of parameters n increases, the
left side of (5) should converge (under suitable conditions) to
the Chernoff bound. Even though this is only a plausibility
argument, Table I exhibits such behavior. To provide further
evidence for the superiority of the Chernoff approach for
large n, a new simulation study is performed, whose results
are shown in Table II. In this table, we present the input
energy required for approaches A, B, and D as the number
of parameters n increases, while the matrix V ′′app is chosen to
be Toeplitz and positive semidefinite, but otherwise random3.
The numerical results in this table show that as n increases,
the Chernoff approximation prevails over approximations A
and B. Approximation A worsens quickly as n increases,
while the gap between the performances of B and D increases
slowly but steadily with the number of parameters.

In order to see how the proposed approaches behave for
non-Toeplitz Hessians V ′′app, in Fig. 2 we present a second
order example with a randomly selected positive definite non-
Toeplitz application Hessian matrix V ′′app. We observe here
that all methods behave approximately in the same fashion,
since their ellipsoids coincide. Fig. 2 is an example of an

3In principle, approach C could be applied to this case by finding
a spectrum C(ej!) ≥ 0 whose associated covariance matrix is V ′′

app.
However, the choice is in general non-unique, and different choices of
this spectrum can give different optimal inputs, whose energies can differ.
Therefore, we have preferred not to apply approach C to this situation.
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Fig. 2. Ellipses for A., B., D. approximations. Order-2 FIR system, V ′′
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given by (21).
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Fig. 3. Violation probability as a function of the quality level, 
, for the
different solutions.

identification problem where the model structure imposes a
heavy constraint on the optimal input design problem, since
P−1 is restricted to be a Toeplitz matrix (this constrains
the class of estimation ellipsoids which can be obtained by
manipulating the input signal). In this case, the relaxations
A, B and D cannot generate estimation ellipsoids sufficiently
aligned with the application ellipsoid. The V ′′app used is

V ′′app =

[
1 0.1
0.1 0.04

]
(21)

while the achieved input energies are 0.342, 0.337 and 0.336
for methods A, B and D, respectively.

Observing Figs. 1 and 2, one may conclude that all the
approaches have more or less the same performance either
for Toeplitz or non-Toeplitz application Hessian matrices
when the number of parameters is small.

As a final example, to illustrate the geometry of some of
the approximations, consider a model with n = 2, where

V ′′app =

[
 1 0
0  2

]
, P−1 =

[
�1 0
0 �2

]
,

where the experimental effort is the total power �1 + �2.
In order to enable a fair comparison between methods,
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Fig. 4. Level curves of the true probability, for the diagonal n = 2 example,
as a function of �k =  k/2�k for 
 = 1.

consider the converse of (3), i.e., to maximize 
 given a
fixed power budget �1 + �2 =: Pmax ≤ 1. It is easy to
show that approach A gives the solution �k =  k/( 1+ 2)
and approach B gives �k =

√
 k/(

√
 1 +

√
 2). In this

case, the converse of problem (3) can be solved numerically
(i.e. without the approximations of Section II), computing
the exact probabilities using the method of Helstrom and
Rice [12], and employing non-linear optimization (fmincon
in Matlab) to find the optimal choice of �k minimizing "
for each value of 
. The resulting probabilities for varying

 are plotted in Fig. 3. Method D lies very close to the
optimal approach (based on numerical optimization). For
violation levels " of the order of 0.01 or less, method B
clearly outperforms method A. However, for violation levels
below 10−4 method B clearly outperforms method A. A hint
on why this is the case is provided in Figs. 4 and 5 which
show the level curves of the true probability as a function
of �k =  k/2�k for 
 = 1. Fig. 4 shows that the problem
is non-convex in general, but convex for small (i.e., useful)
". For " of the order of 0.1, the level curves are reasonably
well approximated by a straight diagonal line, corresponding
to the level curve of approximation A. However, as Fig. 5
reveals, for very low levels of ", the error probability is
instead dominated by the largest �k, which is closer to what
the Markov approximation delivers (i.e., method B).

IV. CONCLUSIONS

In this paper, we have studied the problem of designing an
input signal of minimal energy such that the estimated model
based on this signal can satisfy a given performance level
with a prescribed probability. In order to solve this problem,
several approaches have been proposed and compared.

Based on simulation studies, we have found that the
method based on Chernoff bounds seems to be comparably
better than the other ones when the number of parameters is
large. For models of small dimension, all of the proposed
techniques have performances within the same order of
magnitude, even though the Chernoff approach is (at least
slightly) superior in most of the cases we have studied.
However, we have also seen that the relative performance
of some of the methods depend on the acceptable level of
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Fig. 5. Level curves of the true probability, for the diagonal n = 2 example,
as a function of �k =  k/2�k for 
 = 1.

the violation probability ".
Under the light of our results we see that a theoretical

analysis of the methods suggested here is an important future
research direction, because in many situations, the standard
input design techniques can be outperformed by the Chernoff
approach, thus leading to suboptimal inputs for identification
purposes.

We should also highlight the importance of re-tuning the
probability bound ", since in many cases the relaxation
techniques used are quite conservative, suggesting an ex-
perimental effort significantly higher than what is actually
required to achieve the desired probabilistic bound.
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