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Abstract— This paper considers robust stability of uncertain
time-delay systems affected by structured uncertainties and
multiple constant delays. The objective is to compute the
maximum value τ the delays can reach without destabilizing
the system over the uncertainty domain. A suitable modeling of
the phase variations induced by the delays along the frequency
range first allows to obtain an equivalent µ-analysis problem,
where the bounds on some uncertain parameters depend on
frequency. An algorithm is then proposed to solve this specific
problem and to compute upper and lower bounds on τ . It is
finally shown that the gap between both bounds can be reduced
to any positive value in case of purely real uncertainties. The
computational efficiency of the method and its ability to analyze
large-scale systems are demonstrated on a numerical example,
which aims at computing the MIMO time-delay margin of a
high-fidelity parameter-dependent flexible aircraft model.

I. INTRODUCTION

Uncertain time-delay systems arise in many fields such as
engineering, biology, physics, operations research and eco-
nomics ([21]). They have notably received much attention in
the automatic control community during the last two decades
(see for instance [17] for a survey). Indeed, time-delays
and uncertainties appear in most control engineering prob-
lems, and the presence of sensors and actuators connected
in feedback loops is generally sufficient to induce some
non-negligible time-delay effects. Time-domain approaches,
which generally use Lyapunov-Krasovskii or Lyapunov-
Razumikhin functionals ([23], [13]), or the quadratic sep-
aration principle ([7]), have a predominant place in the
literature. But frequency domain approaches have also been
proposed. They are mainly based on the small-gain theorem,
and use for example the IQC ([9]) or the µ-analysis ([8])
framework. Research on time-delay systems is still very
active, with recent works from Niculescu, Olgar, Sipahi and
many others (see [12], [3] and references therein).

The main issue in many papers is to transform the time-
delay expression e−τs into a more regular form that can be
handled by the different analysis techniques. This point is
crucial, since whatever the approach used, the conservatism
of the analysis is mainly related to the modeling of the time-
delay effects. A first rough modeling consists in eliminating
the time-delay elements by covering their value sets with
unit disks, which leads to conservative results, since all
the phase information and some gain information are lost.
This step appears in a transparent form in the Small Gain
Theorem based approaches. Moreover, it is stated in [25]
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that the modeling strategy of most time-domain methods
(such as Lyapunov-based methods) is equivalent to this
covering by the unit disk. In the case of constant (i.e. time-
invariant) delays, different rational approximations have been
introduced, such as Padé approximations ([2]) or dynamic
transfer functions, using the H∞ framework ([8]). However,
most of these modelings introduce some conservatism, which
can be reduced by increasing the complexity of the function
representing the time-delay effects, to the detriment of the
computational cost. The Rekasius transformation is also
worth being mentioned as a mean to get rid of the exponential
term e−τs (see for example [10], [15]).

An original modeling of the time-delay effects is proposed
in this paper through the use of a quite simple static function
depending on a parameter whose variation range depends on
frequency. It fully exploits the phase properties of the delay
function, does not introduce any conservatism, and allows to
consider multiple delays. A non-standard µ-analysis problem
is obtained, whose particularity is that the variation range
of some uncertain parameters depends on frequency. Some
classical µ lower and upper bounds algorithms are then
slightly modified to take this into account, exploiting some
theoretical results developed in [22]. The proposed method-
ology benefits from the advantages of µ-analysis techniques,
which are known to efficiently handle large-scale systems
(see for instance [20]). Moreover, such techniques allow to
consider a wide class of structured uncertainties representing
for example unknown parameters and unmodeled dynamics.

A classical drawback of frequency domain robustness
analysis methods (such as µ-analysis) is that the derived
stability conditions hold only for a single frequency. An
infinite number of conditions must thus be checked in order
to guarantee robust stability over the whole frequency range.
This drawback is here encompassed by the computation of
some confidence frequency intervals, inside which the robust
stability condition remains valid. Hence, the method is able
to provide a rigorous guarantee of robust stability over the
whole frequency domain. Moreover, the conservatism of the
resulting algorithm, which is only due to the fact that µ
upper bounds are computed instead of the exact values, can
be mastered thanks to the use of an appropriate branch and
bound procedure.

The paper is organized as follows. The analysis problem is
stated in Section II. It is first reformulated in the µ-analysis
framework in Section III thanks to a suitable model trans-
formation, and then solved in Section IV. Three numerical
examples are finally provided in Section V.

Notations: ‖z‖ and ∠z denote the modulus and the phase
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angle of the complex scalar z respectively. σ(M) denotes
the maximum singular value of the complex matrix M .
In corresponds to the n × n identity matrix. Fu (M,∆),

where M =

[
M11 M12

M21 M22

]
, denotes the upper Linear

Fractional Transformation obtained by closing ∆ around the
upper channels of M : Fu (M,∆) = M22 + M21∆(I −
M11∆)−1M12.

II. PROBLEM STATEMENT

Consider the following uncertain time-delay system:

ẋ(t) = A0x(t) +

N∑
i=1

Aix(t− τi) (1)

The positive scalars τi, i = 1, . . . , N represent constant
delays, while Ai, i = 0, . . . , N are n × n constant and
uncertain matrices whose dependence to the uncertainty
matrix ∆u(s) is assumed to be rational. ∆u(s) is a block-
diagonal nu × nu LTI operator, which gathers all model
uncertainties. It is composed of real scalars (corresponding
to parametric uncertainties), as well as complex scalars
and unstructured transfer matrices (representing neglected
dynamics). Let ∆u be the set of all such structured operators
and let B∆u = {∆u(s) ∈∆u : σ(∆u(jω)) ≤ 1 ∀ω ∈ R+}.

It is assumed that the following necessary condition for
robust stability of system (1) holds.

Assumption 2.1: The system (1) is stable for all ∆u(s) ∈
B∆u in the absence of delays, i.e. for τi = 0, i = 1, . . . , N .

In this context, the stability problem considered in this
paper can be stated as follows:

Problem 2.1: Compute the maximum value τ of τ such
that the system (1) is stable ∀∆u(s) ∈ B∆u and ∀τi ≤ τ ,
i = 1, . . . , N .

III. MODEL TRANSFORMATION

Without loss of generality, system (1) can be transformed
into the standard interconnection structure M(s) −∆(s) of
Fig. 1. M(s) is a stable real-valued LTI plant representing
the system without uncertainties and ∆(s) is defined as:

∆(s) = diag
(
∆u(s), e−τ1s, . . . , e−τNs

)
(2)

The dependence of ∆(s) on the parameters τi in (2) is
non-rational. Thus, powerful robustness tools such as µ-
analysis cannot be applied, unless the effects of the delays
are modeled in a different way.

-

�∆(s)

M(s)

Fig. 1. Standard interconnection structure M(s)−∆(s).

Remember that the introduction of a delay generates a
phase variation whose value depends on the frequency ω.

0 10 20 30

−2*pi

−pi

0

xi

6
φ
(x

i)

 

 

Fig. 2. Phase of φ(xi).
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Fig. 3. Phase of Φ(αi).

More precisely, the system (1) is robust to the introduction
of a delay τi if it remains stable despite any phase variation
comprised between −τiω and 0. In this context, the idea is to
replace each exponential term e−jτiω by a rational expression
Φ(αi) such that ‖Φ(αi)‖ = 1 and ∠Φ(αi) ∈ [−τiω, 0] when
αi belongs to a suitable set parameterized by ω.

In this perspective, let us first introduce the function:

xi 7→ φ(xi) =
d(−xi)
d(xi)

where d(.) is a polynomial of order 2 defined by:

d(y) =

2∑
q=0

4(4− q)!
4!q!(2− q)!

jqyq

φ(xi) integrally describes the complex unit circle when xi
covers [0, +∞): its modulus ‖φ(xi)‖ is equal to 1 for all
xi ∈ R+, and its phase ∠φ(xi) is illustrated in Fig. 2.
Note that the polynomial d(.) is chosen such that φ( τisj )
corresponds exactly to the 2nd-order Padé approximation of
the delay function e−τis.

Let us then perform the following change of variable:

xi =
αi

1− αi
and define the function αi 7→ Φ(αi) such that Φ(αi) =
φ(xi). The phase ∠Φ(αi) now covers the whole set [−2π, 0]
when αi describes the finite interval [0, 1]. More precisely,
as shown in Fig. 3, ∠Φ(.) performs a bijection from the
interval [0, 1] to the phase interval [−2π, 0].

Let us finally introduce the frequency-dependent function
ω 7→ gτ (ω) defined by:{

∠Φ(gτ (ω)) = −τω if ω ∈ [0, 2π
τ ]

∠Φ(gτ (ω)) = −2π if ω > 2π
τ

(3)

Lemma 3.1: Problem 2.1 can be solved using either:
1) the interconnection M(jω)−∆(jω), where ∆(jω) is

obtained from (2) and τi ≤ τ , i = 1, . . . , N ,
2) the interconnection M(jω) − ∆̃(jω), where

∆̃(jω) = diag(∆u(jω),Φ(α1), . . . ,Φ(αN )) and
αi ∈ [0, gτ (ω)], i = 1, . . . , N .

Proof: The phase variation generated by the delay e−τis,
τi ∈ [0, τ ] covers exactly, at each frequency ω, the phase
range described by ∠Φ(αi) for αi ∈ [0, gτ (ω)]. �
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As its dependence with respect to αi is rational, Φ(αi)
can be rewritten as a Linear Fractional Representation (LFR).
Using for instance [14], a minimal representation (in terms
of size of the LFR ∆-matrix) is obtained and corresponds
to a static LFR with a 2 × 2 ∆-matrix (parameter αi is
repeated twice). Hence, Φ(αi) can be rewritten as Φ(αi) =
Fu(Φ̃, αiI2), where Φ̃ is a constant matrix. Problem 2.1 can
thus be solved using the interconnection P (jw) − ∆′(jw),
where P (s) is an LTI model obtained from M(s) and Φ̃,
and ∆′(jω) = diag (∆u(jω), α1I2, . . . , αNI2).

The initial problem has now been recast in the µ-analysis
framework. Note that no conservatism has been introduced
during the aforementioned model transformation. Moreover,
modeling complexity has been kept as low as possible
in order to reduce the computational load of the analysis
(especially in the case of multiple delays). The proposed
description of the time-delay effects can for instance be
compared to the one employed in [2], which corresponds to
a 5th-order parametrized Padé approximation (thus resulting
in an LFR with a 5 × 5 ∆-matrix), and which induces a
non-zero conservatism (about 0.4%).

IV. ROBUST STABILITY ANALYSIS

The robustness analysis problem formulated in Section III
is particular, since the variation range of the uncertain
parameters αi depends on the frequency. Consequently, it
slightly differs from a standard µ-analysis problem, but it
can be handled using an extension of the small-µ theorem to
systems with frequency-dependent uncertainty bounds ([22]):
robust stability is guaranteed for such systems if the classical
structured singular value condition is satisfied on the whole
frequency range, provided adequate bounds on the uncertain-
ties are considered at each frequency. The following lemma
is a direct application of this extension.

Lemma 4.1: Let W (ω) =

(
Inu

0
0 gτ (ω)I2N

)
. The

uncertain time-delay system (1) is stable ∀∆u(s) ∈ B∆u

and ∀τi ≤ τ , i = 1, . . . , N if:

µ∆′ (W (ω)P (jω)) ≤ 1 ∀ω ∈ R+ (4)

Problem 2.1 has thus been transformed, at each frequency,
into a standard µ-analysis problem, which can be classically
solved by computing (skew-)µ lower and upper bounds
(computing the exact value of µ is indeed NP-hard). Condi-
tion (4) is, however, conservative: the sign constraints αi ≥ 0
are not considered, which can lead to an under-evaluation of
τ . Two solutions are proposed in the sequel to overcome this
problem, depending on the nature of the computed µ bound.
Note that µ-analysis is not broached as such in this paper due
to space limitations, but a good introduction to this technique
can be found in [4].

A. Computation of a τ upper bound

A positive scalar τu is a τ upper bound if there exists
a value τi ≤ τu for some i = 1, . . . , N which brings
system (1) to instability. It does not provide any guarantee

about stability, but it is used to evaluate the accuracy of the
τ lower bound computed in Section IV-B.

Such a bound can be obtained by computing, for each
point ωk of a rough frequency grid, a matrix ∆′k =
diag (∆u,k, α1,kI2, . . . , αN,kI2) such that:

det (I − P (jωk)∆′k) = 0 (5)

where αk = max
i=1,...,N

αi,k is minimal, αi,k ≥ 0, i = 1, . . . , N

and ∆u,k is an admissible block-diagonal matrix such that
σ(∆u,k) ≤ 1. This is a skew-µ problem ([4]), but it cannot
be directly solved using existing algorithms (see for exam-
ple [19] and references therein). Indeed, these algorithms do
not allow to consider the sign constraints αi,k ≥ 0 associated
to the delays.

This problem can be tackled by setting αi = ξ2
i .

The interconnection P (jω) − ∆′(jω) can then be equiv-
alently rewritten as P̃ (jω) − ∆̃′(jω), where ∆̃′(jω) =
diag(∆u(jω), ξ1I4, . . . , ξNI4). Hence, for each frequency
ωk of the grid, a matrix ∆̃′k = diag(∆u,k, ξ1,kI4, . . . , ξN,kI4)

is computed such that det
(
I − P̃ (jωk)∆̃′k

)
= 0, where

ξk = max
i=1,...,N

ξi,k is minimal and ∆u,k is an admissible

block-diagonal matrix such that σ(∆u,k) ≤ 1. A combination
of delays (τi,k)i which destabilizes system (1) at ωk is then
determined by computing τi,k = −∠Φ(ξi,k

2)
ωk

, i = 1, . . . , N .
The τ upper bound τu is finally obtained as:

τu = min
k

(
max

i=1,...,N
τi,k

)
(6)

Remark 4.1: The change of variable αi ← ξ2
i does not

introduce any conservatism. Nevertheless, it increases the
number of repetitions of the parameters inside the uncertain
matrix: αi is repeated twice in ∆′(jω), whereas ξi is
repeated 4 times in ∆̃′(jω). This leads to an increase in the
computational time required to compute a τ upper bound,
which still remains much lower in most cases than the one
required to compute a τ lower bound in Section IV-B.

B. Computation of a τ lower bound

Several µ-upper bound computations will allow to de-
termine whether a given value τ l is a τ lower bound, i.e.
whether robust stability of system (1) can be guaranteed
∀τi ≤ τ l, i = 1, . . . , N .

As Lemma 4.1 does not consider the constraint on the sign
of the uncertain parameters αi, another theorem is derived
in order to overcome this problem. For this purpose, the
parameters αi are first normalized at each frequency ω ∈ R+

by performing the following change of variables:

αi =
gτ l

(ω)

2
(ζi + 1) (7)

Note that αi covers exactly the interval [0, gτ l
(ω)] when

the normalized parameters ζi vary between -1 and 1.
Let us then define Pω(jω) − ∆′′(jω), where ∆′′(jω) =
diag (∆u(jω), ζ1I2, . . . , ζNI2), the interconnection built
from P (jω)−∆′(jω) by incorporating the change of vari-
ables (7).

4957



Theorem 4.1: The uncertain time-delay system (1) is sta-
ble ∀∆u(s) ∈ B∆u and ∀τi ≤ τ l, i = 1, . . . , N iff:

µ∆′′ (Pω(jω)) ≤ 1 ∀ω ∈ R+ (8)

Proof: Using the representation of the time-delays effects
introduced in Section III and the small µ-theorem extended
to systems with frequency-dependent uncertainty bounds, the
two following statements are equivalent:

1) System (1) is stable ∀∆u(s) ∈ B∆u and ∀τi ≤ τ l,
i = 1 . . . N .

2) The interconnection P (jω)−∆′(jω) has no singularity
on the imaginary axis whatever the frequency ω ∈ R+,
i.e. det (I − P (jω)∆′(jω)) 6= 0 ∀∆u(s) ∈ B∆u,
∀αi ∈ [0, gτ l

(ω)], i = 1 . . . N and ∀ω ∈ R+.
From the definition of the structured singular value µ and the
change of variables (7), condition 2) is equivalent to (8). �

Computing the exact value of µ is NP-hard, so an upper
bound µ is usually determined instead using some efficient
polynomial-time algorithms ([24]). But the main drawback of
Theorem 4.1 is that an infinite number of constraints must
be satisfied in order to cover the whole frequency range.
Most of the times, condition (8) is thus only checked on a
finite frequency grid. Nevertheless, a critical frequency can
be missed and the lower bound τ l can be over-evaluated, i.e.
be larger than the real value of τ .

In the context of µ-analysis, various solutions exist to
overcome this problem (see for instance [6], [11]). More
recently, a numerically very efficient algorithm was presented
in [20]. Consider a standard interconnection M(jω)−∆(jω),
where ∆(jω) is an admissible block-diagonal matrix such
that σ(∆(jω)) ≤ 1 for all ω ∈ R+. Assume that this inter-
connection satisfies the constraint µ∆(M(jωk)) ≤ β < 1 for
a given frequency ωk. The key idea of the algorithm of [20]
is to compute a non-empty frequency segment IM (ωk) =
[ω−k , ω

+
k ] such that ωk ∈ IM (ωk) and:

µ∆(M(jω)) ≤ 1 ∀ω ∈ IM (ωk) (9)

This can be achieved by computing the eigenvalues of an
appropriate Hamiltonian matrix. An iterative procedure is
then implemented, which tries to determine a frequency grid
(ωk)k such that

⋃
k IM (ωk) covers the whole frequency

range. In case of success, it is guaranted that M(s) is robustly
stable and that no critical frequency has been missed.

Nevertheless, this algorithm only considers uncertain sys-
tems with frequency-independent uncertainty bounds. It must
thus be adapted to the case where the bounds on some
uncertainties depend on frequency. Indeed, it becomes nec-
essary to consider a frequency-dependent operator Pω(s) in
condition (9).

Proposition 4.1: The interconnection M(jω) − ∆(jω)
representing the uncertain time-delay system (1), where
∆(jω) is obtained from (2), satisfies:

det(I −M(jω)∆(jω)) 6= 0


∀∆u(s) ∈ B∆u

∀τi ≤ τ l
∀ω ∈ [ω−k , ω

+
k ]

(10)

if the interconnection Pω+
k

(jω)−∆′′(jω) satisfies:

µ∆′′(Pω+
k

(jω)) ≤ 1 ∀ω ∈ [ω−k , ω
+
k ] (11)

Pω+
k

(jω) is built such that the interconnection Pω+
k

(jω) −
∆′′(jω) is equivalent to the interconnection P (jω)−∆′(jω)
with the change of variables:

αi =
gτ l

(ω+
k )

2
(ζi + 1) (12)

Proof: Using change of variables (12), condition (11) is
equivalent to:

det(I−P (jω)∆′(jω)) 6= 0


∀∆u(s) ∈ B∆u

∀αi ∈ [0, gτ l
(ω+
k )]

∀ω ∈ [ω−k , ω
+
k ]

(13)

Because ω 7→ gτ l
(ω) is a strictly decreasing function,

condition (13) also holds ∀αi ∈ [0, gτ l
(ω)]. Noting that

αi ∈ [0, gτ l
(ω)] is equivalent to τi ∈ [0, τ l] for the

interconnection M(s)−∆(s) finally allows to claim that (13)
implies (10), which concludes the proof. �

A method is now proposed to determine an interval
[ω−k , ω

+
k ] as large as possible around a given frequency

ωk, inside which condition (11) holds. ωk being fixed, the
operator Pωk

(s) does not depend on frequency anymore.
Neither do the uncertainties ζi, which all take their values
inside the interval [−1, 1]. The algorithm of [20] can thus
be applied to compute IPωk

(ωk) = [ω−, ω+], which means
that µ∆′′(Pωk

(jω)) ≤ 1 ∀ω ∈ [ω−, ω+]. Condition (11) thus
holds with ω−k = ω− and ω+

k = ωk, since ωk ∈ [ω−, ω+].
The idea is now to increase as much as possible the

value of ω+
k . Indeed, ω+

k can be any frequency ω̃ ≥ ωk
such that ω̃ ∈ IPω̃

(ωk). An iterative procedure is proposed.
At each step, a test frequency ωt (initialized at ωk) is
slightly increased and the interval IPωt

(ωk) = [ω−t , ω
+
t ] is

computed, as long as the inequality ωt ≤ ω+
t remains true.

When the procedure stops, ω+
k is set to the last value of ωt

satisfying ωt ≤ ω+
t .

The aforementioned strategy is summarized in Algo-
rithm 4.1.

Algorithm 4.1: 1) Select a frequency ωk for which
condition (10) has not been checked yet. Set ωt ← ωk.

2) If µ∆′′(Pωt
(jωk)) > 1, stop. Otherwise, compute

IPωt
(ωk) = [ω−t , ω

+
t ]. Set ω−k ← ω−t and ω+

k ← ωt.
3) Repeat:

• Set ωt ← (1+ε)ωt, where ε is a small user-defined
positive constant.

• If µ∆′′(Pωt
(jωk)) < 1, compute IPωt

(ωk) =
[ω−t , ω

+
t ]. Otherwise, return to step 1.

• If ωt ≤ ω+
t , set ω+

k ← ωt. Otherwise, return to
step 1.

Algorithm 4.1 provides a set of frequency intervals [ω−k , ω
+
k ]

inside which det(I −M(jω)∆(jω)) 6= 0 ∀∆u(s) ∈ B∆u

and ∀τi ≤ τ l. If
⋃
k[ω−k , ω

+
k ] covers the whole frequency

range, then robust stability of the uncertain time-delay system
(1) is guaranteed for all τi ≤ τ l and τ l is a τ lower bound.
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C. Reduction of conservatism

Conservatism is defined in this paper as the relative gap η
between the lower bound τ l and the upper bound τu on τ :

η =
τu − τ l
τ l

(14)

Remember that the modeling of the time-delays effects
in Section III is non conservative, which means that the
conservatism of the proposed method is only due to the fact
that µ lower and upper bounds are computed instead of the
exact values.
η sometimes reaches unacceptable values, notably in the

presence of highly repeated real parametric uncertainties
in ∆u. A well-known technique to ensure that it remains
below a specified threshold ηtol is to use a branch and
bound algorithm ([1], [16]). The idea is to partition the
real parametric domain in more and more subsets until the
relative gap between the highest lower bound and the highest
upper bound computed on all subsets becomes less than ηtol.
This algorithm is known to converge for uncertain systems
with only real uncertainties ([16]), i.e. conservatism can be
reduced to an arbitrarily small value. However, it usually
exhibits an exponential growth of computational complexity
as a function of the number of real uncertainties. Specifying
a threshold ηtol thus allows to handle the tradeoff between
the accuracy of the bounds and the computational time.

Nevertheless, in order to alleviate the computational bur-
den, a strategy based on the progressive validation of the
frequency range is proposed here. Assume for example that
a subset DN and a frequency domain ΩN are considered at
step N of the branch and bound procedure. Algorithm 4.1
is applied to compute a frequency domain Ωv,N ⊂ ΩN such
that det (I −M(jω)∆) 6= 0 holds ∀∆u ∈ DN and ∀ω ∈
Ωv,N . During the next step, the analysis performed on each
subset of DN then only considers the frequencies ΩN\Ωv,N
which have not been validated at step N . Consequently, after
a few steps, the analysis is only restricted to very narrow
frequency intervals corresponding to critical frequencies.
This results in a drastic reduction of the computational load
induced by a classical branch and bound procedure.

V. NUMERICAL EXAMPLES

In order to illustrate the effectiveness of the method
described in Section IV, three numerical examples are pro-
vided. The implementation relies on some µ and skew-µ
algorithms of the Skew-µ Toolbox [5], and LFR objects are
generated using the LFR Toolbox [14]. The calculations are
performed with Matlab on a 3 GHz PC with 3 Go RAM.

A. Example 1

The first example is taken from [7]. The considered
uncertain time-delay system is described by:

ẋ(t) =

(
0 −0.12 + 0.42δ
1 −0.465− 0.035δ

)
x(t)

+

(
−0.1 −0.35

0 0.3

)
x(t− τ)

where the uncertain parameter δ ∈ R satisfies |δ| ≤ 1,
and both δ and τ are time-invariant. With ηtol = 0.01, the
computed bounds on τ are τ l = 0.8894 sec and τu = 0.8983
sec. The value of τ l is similar to the one obtained in [7].
Moreover, the value of τu shows that this result is almost
non-conservative, and the value of δ, which destabilizes the
system for τ = τu, is δ = 1.

B. Example 2

The uncertain time-delay system considered in the second
example is described by the following equation:

ẋ(t) =

(
−2 + 1.6δ1 0

0 −0.9 + 0.05δ2

)
x(t)

+

(
−1 + 0.1δ3 0
−1 −1 + 0.3δ4

)
x(t− τ)

where the uncertain parameters δi ∈ R, i = 1, . . . , 4 satisfy
|δi| ≤ 1, and both the δi and τ are time-invariant. Fig. 4
shows the values of τu and τ l for several values of ηtol, as
well as the associated computational times. The same value
τu = 1.904 sec is found whatever ηtol, and the values of the
δi, which destabilize the system for τ = τu, are δ1 = −1,
δ2 = −0.30, δ3 = 1 and δ4 = 0.54. As expected, τ l increases
as ηtol decreases. The computational time seems to grow
exponentially in the same time, but it remains quite low for
ηtol ≥ 0.03. The parameter ηtol thus allows to efficiently
handle the trade-off between accuracy and conservatism.
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Fig. 4. Example 2 - Upper and lower bounds τu and τ l on τ , and associated
CPU time, for different values of the conservatism ηtol.

Assume now that |δi| ≤ ε. τu increases as ε tends to 0, and
the value obtained for ε = 0 (no uncertainty) is τu = 6.1726
sec. This result is very close to the exact value of τ , which
can be computed analytically in this simple case and is equal
to τ = 6.1725 sec (see [7]). Moreover, noting that only real
parametric uncertainties are considered in this example, the
gap between τ l and τu can be reduced to any arbitrarily
small value. Consequently, the value of τ l asymptotically
tends to τ = 6.1725 sec when ε and ηtol tend to 0.

C. Example 3

The third example considers the longitudinal motion of a
civilian passenger aircraft. It is treated to demonstrate the
ability of the proposed algorithm to operate on large-scale
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systems and in presence of several time-delays. The open-
loop model of the aircraft includes actuators and sensors
models. It has one control input (the elevator deflection δp)
and two outputs (the pitch rate q and the vertical load factor
Nz at the center of gravity). It accurately describes both the
rigid and the flexible dynamics of the aircraft for a given
flight point and on a continuum of mass configurations (it
is parametrized by the center and the outer tanks filling
levels, the embarked payload and the position of the center of
gravity). It is written as an LFR Fu (Σ(s),∆Σ), where ∆Σ

is a block-diagonal matrix gathering all mass parameters.
The whole LFR generation process is thoroughly described
in [18]. A parameter dependent controller Fu (K(s),∆K) is
then designed to improve the rigid behavior of the aircraft
without destabilizing the flexible modes. The closed-loop
system is finally obtained as the feedback interconnection
of Σ(s) and K(s). Note that its order (35 states), as well as
the size of ∆u = diag(∆Σ,∆K) (170×170), are quite high.
Thus, LMI-based analysis techniques cannot be applied.

The objective consists in computing the MIMO time-
delay margin at the sensors output. For this purpose, two
fictitious time-delays τ1 and τ2 are introduced (see Fig. 5).
The problem to be solved is thus as follows: compute the
maximum value τ such that the closed loop system remains
stable on the whole set of admissible mass configurations
and ∀τi ≤ τ , i = 1, 2.

∆Σ

Σ(s)K(s)

∆K

e−τ1s

e−τ2s

δp

Nz

q

Fig. 5. Example 3 - Closed-loop interconnection for MIMO time-delay
margin computation at the system output.

The algorithm described in Section IV is applied with
ηtol = 0.25. An optimistic bound τu = 0.392 sec is
obtained, as well as a guaranteed bound τ l = 0.313 sec.
The computational time is 6.72 hours. It is quite acceptable,
considering the size of this realistic model, which is used in
an industrial context for control laws validation.

VI. CONCLUSION

A µ-analysis based algorithm is proposed in this paper
to analyze the stability of systems with both constant time-
delays and structured uncertainties. A wide class of time-
delay uncertain systems can be considered, since multiple
delays, as well as parametric and dynamical uncertainties,
are taken into account. Conservatism is efficiently mastered
and can be reduced to any positive value in the case of purely
real uncertainties. Three numerical examples demonstrate the
accuracy of the results and the ability of the algorithm to
handle some large-scale industrial systems.
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