
Bounds on the Probability of Misclassification
among Hidden Markov Models

Christoforos Keroglou and Christoforos N. Hadjicostis

Abstract— Given a sequence of observations, classification
among two known hidden Markov models (HMMs) can be
accomplished with a classifier that minimizes the probability
of error (i.e., the probability of misclassification) by enforcing
the maximum a posteriori probability (MAP) rule. For this MAP
classifier, we are interested in assessing the a priori probability
of error (before any observations are made), something that
can be obtained (as a function of the length of the sequence of
observations) by summing up the probability of error over all
possible observation sequences of the given length. To avoid the
high complexity of computing the exact probability of error, we
devise techniques for merging different observation sequences,
and obtain corresponding upper bounds by summing up the
probabilities of error over the merged sequences. We show that
if one employs a deterministic finite automaton (DFA) to capture
the merging of different sequences of observations (of the same
length), then Markov chain theory can be used to efficiently
determine a corresponding upper bound on the probability of
misclassification. The result is a class of upper bounds that can
be computed with polynomial complexity in the size of the two
HMMs and the size of the DFA.

Index Terms— hidden Markov model, probability of error,
classification, probabilistic diagnosis, stochastic diagnoser.

I. INTRODUCTION

We consider classification among systems that can be
modeled as hidden Markov models (HMMs). Given a se-
quence of observations that is generated by underlying
(unknown) activity in one of two known HMMs, we analyze
the performance of the MAP classifier, which minimizes
the probability of misclassification [1], by characterizing the
a priori probability of error, i.e., the probability of error
before any observations are made. The precise calculation
of the probability of error (for sequences of observations
of a given finite length) is a combinatorial task of high
complexity (typically exponential in the length of the se-
quences). In this paper, we circumvent this problem by
focusing on obtaining upper bounds on the probability of
misclassification. In particular, we employ finite automata
to merge sequences of observations of the same length in
different ways; calculating in each case an upper bound
on the probability of misclassification by summing up the
individual probabilities of misclassification over the merged
sequences.

This material is based upon work supported in part by the European
Community (EC) 7th Framework Programme (FP7/2007-2013), under
grants INFSO-ICT-223844 and PIRG02-GA-2007-224877. Any opinions,
findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of EC.

The authors are with the Department of Electrical and Com-
puter Engineering, University of Cyprus, Nicosia, Cyprus. E-mails:
{keroglou.christoforos, chadjic}@ucy.ac.cy.

Our analysis and bounds can find application in many
areas where HMMs are used, including speech recognition
[2], [3], [4], pattern recognition [5], bioinformatics [6], [7]
and failure diagnosis in discrete event systems [1], [8], [9].
Our work also relates to approaches dealing with the distance
or dissimilarity between two HMMs [10], [11], [12] and the
construction we devise to obtain our bounds encompasses
the concept of a stochastic diagnoser [9]. Directly related
previous work can be found in [1], which introduces an upper
bound on the probability of misclassification, applicable to
the case when the two HMMs have different languages.1

More specifically, given two models S(1) and S(2) with
languages L(S(1)) and L(S(2)) respectively, [1] obtains
an upper bound on the probability of misclassification by
focusing on the probability of strings in L(S(1))−L(S(2)) or
L(S(2))−L(S(1)). Under certain conditions (which require,
among other things, that L(S(1)) 6= L(S(2))), this bound
tends to zero exponentially with the number of observation
steps.

The contribution of this paper is the characterization of
a class of upper bounds on the a priori probability of
error when classifying among two known HMMs that may
not necessarily have different languages. By introducing
an appropriate deterministic finite automaton (DFA), we
systematically merge different sequences of the same length
in a way that allows easy computation of an upper bound
on the probability of misclassification. In particular, for
sequences of observations of a given length n, our bounds
can be obtained with linear complexity in n, which should be
contrasted against the generally exponential complexity in n
for obtaining the exact probability of error. Our approach
also allows us to use Markov chain theory to obtain an
upper bound for asymptotically large n (in all cases, the
approach has complexity polynomial in the size of the two
given HMMs and the size of the DFA that is used).

II. NOTATION AND BACKGROUND

An HMM is described by a five-tuple (Q,E,∆,Λ, π0),
where Q = {q1, q2, ..., q|Q|} is the finite set of states;
E = {e1, e2, ..., e|E|} is the finite set of outputs; ∆ :
Q × Q → [0 1] captures the state transition probabilities;
Λ : Q × E × Q → [0 1] captures the output probabilities
associated with transitions; π0 is the initial state probability
distribution vector. For q, q′ ∈ Q and σ ∈ E, the state

1The language of an HMM consists of the set of all finite length sequences
of outputs (observations) that can be generated by the HMM starting from
a valid initial state.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 385

transition probabilities are defined as

∆(q, q′) ≡ P (q[n+ 1] = q′ | q[n] = q) ,

and the output probabilities associated with transitions are
given by

Λ(q, σ, q′) = P (q[n+ 1] = q′, E[n+ 1] = σ | q[n] = q) ,

where q[n] (E[n]) is the state (output/observation) of the
HMM at time step n. The output function Λ describes the
conditional probability of observing the output σ associated
with the transition to state q′ from state q. The state transition
function needs to satisfy

∆(q, q′) =
∑
σ∈E

Λ(q, σ, q′) (1)

and also
|Q|∑
i=1

∆(q, qi) = 1, ∀q ∈ Q.

We define the |Q|×|Q| matrix Aσ , associated with output
σ ∈ E of the HMM, as follows: the (k, j)th entry of Aσ
captures the probability of a transition from state qj to state
qk that produces output σ, i.e., Aσ(k, j) = Λ(qj , σ, qk).
Note that A =

∑
σ∈E Aσ , is a column stochastic matrix

whose (k, j)th entry denotes the probability of taking a
transition from state qj to state qk, without regard to the
output produced, i.e., A(k, j) = ∆(qj , qk).

Suppose that we are given two HMMs, captured
by S(1) = (Q(1), E(1),∆(1),Λ(1), π

(1)
0) and S(2) =

(Q(2), E(2),∆(2),Λ(2), π
(2)
0), with prior probabilities for

each model given by P1 and P2 = 1 − P1, respectively.
Given E(j) = {e(j)1 , e

(j)
2 , ..., e

(j)

|E(j)|}, j = {1, 2}, for the
two HMMs, we define E = E(1) ∪ E(2) with E =
{e1, e2, ..., e|E|} and let A(j)

ei be the transition matrix for
S(j), j = {1, 2}, under the output symbol ei ∈ E. We set
A

(j)
ei to zero if ei ∈ E−E(j). If we observe a sequence of n

outputs Y n1 = y[1], y[2], ..., y[n], y[i] ∈ E, that is generated
by one of the two underlying HMMs, the classifier that
minimizes the probability of error needs to implement the
maximum a posteriori probability (MAP) rule. Specifically
the MAP classifier compares

P (S(1) | Y n1) >
< P (S(2) | Y n1)⇒ P (Y n1 | S(1))

P (Y n1 | S(2))
>
<

P2

P1
,

and decides in favor of S(1) (S(2)) if the left (right) quantity
is larger. It is obvious that when we decide in favor of one
or the other model, then we have probability of error propor-
tional to the probability of the model that was not selected.
With some algebra, it can be shown that P (error, Y n1) =
min{P1 · P (Y n1 | S(1)), P2 · P (Y n1 | S(2))}. Clearly, if
E(1) 6= E(2) and at least one symbol y[i] is unique to S(1)

(i.e., y[i] ∈ E−E(2)) or to S(2) (i.e., y[i] ∈ E−E(1)), then
we will choose the model with nonzero probability of error
(assuming the sequence of observations was indeed generated
by one of the two models) and will make an error with zero
probability.

III. PROBABILITY OF MISCLASSIFICATION

Step 1. Probability of Misclassification
To calculate the a priori probability of error before the

sequence of observations of length n is observed, we need
to consider all possible observation sequences of length n,
so that

P (error at n) =
∑

Y n
1 ∈En

P (error, Y n1), (2)

where En is the set of all sequences of length n with outputs
from E (some of these sequences may have zero probability
under one of the two models or even both models).

We arbitrarily index each of the dn (d = |E|) sequences
of observations via Y (i), i ∈ {1, 2, ..., dn}, and use P (j)

i to
denote P (j)

i = P (Y (i)|S(j)). The probability of misclassifi-
cation between the two systems, after n steps, can then be
expressed as

P (error at n) =
dn∑
i=1

P (error, Y (i))

=
dn∑
i=1

min{P1 · P (1)
i , P2 · P (2)

i }. (3)

We can calculate P (j)
i = P (Y (i)|S(j)) with an iterative

algorithm, a description of which can be found in [1]. For
sequence Y n1 = y[1], y[2], ..., y[n], we calculate ρ

(j)
n =

A
(j)
y[n]A

(j)
y[n−1]...A

(j)
y[1]π

(j)
0 , which is essentially a vector whose

kth entry captures the probability of reaching state qk ∈ Q(j)

while generating the sequence of outputs Y n1 (i.e., ρ(j)
n (k) =

P (q[n] = qk, Y
n
1)). If we sum up the entries of ρ(j)

n we
obtain P (j)

Y n
1

= P (Y n1 | S(j)) =
∑|Q(j)|
k=1 ρ

(j)
n (k).

We can obtain the probability of error over all sequences
of n observations by calculating and comparing the ρ

(j)
n ,

j = 1, 2, for all possible sequences of observations of length
n. We can arrange the computations in terms of two d-ary
trees of depth n, as shown in Fig. 1. Each node at level L
represents ρ(j)

L , j = 1, 2, after a specific sequence (of exactly
L) observations has been seen. For each node at level L,
we create d child-nodes, and we repeat this procedure until
having n-levels in the tree.

Once we expand these trees to n-levels, each of the dn

leaf nodes corresponds to a unique sequence of length n,
which, in the worst case scenario, can be produced by both
HMM models. We assign to each leaf-node a probability of
occurring P

(j)
i = P (Y n1 = Y (i) | S(j)), where j ∈ {1, 2}

represents the model and i ∈ {1, 2, ..., dn} corresponds to
the index of each sequence of n observations.

Example 1:
Suppose we are given the two HMMs shown in Fig. 2, with

E(1) = E(2) = E = {α, β}, π(1)
0 = π

(2)
0 =

[
1 0

]T
, and

P1 = P2 = 0.5. The corresponding A(1)
α , A

(1)
β , A

(2)
α , A

(2)
β are

as follows:

A(1)
α =

»
0 0.95
0 0.05

–
, A(1)

β =

»
0 0
1 0

–
,

386

S1

… …

… … … …

… …

L1

L0

Ln

S2

… …

… … … …

… …

… … … … … … … …

a) b)

d events
… … … …

d events

P1
1

Pdn
1 Pdn

2P1
2

Fig. 1. Computation on two d-ary trees of depth n, one for S(1) and one
for S(2).

A(2)
α =

»
0 0.05
0 0.95

–
, A(2)

β =

»
0 0
1 0

–
.

1 2

1’ 2’

β, 1

α, 0.95

α, 0.05

α, 0.95

α, 0.05

β, 1

Fig. 2. S(1) (left) and S(2) (right) in Example 1.

If the sequence Y (`) = baba is observed, we have P (1)
` =

|Q(1)|∑
k=1

ρ
(1)
4 (k) = 0.05, where ρ

(1)
4 = A

(1)
a A

(1)
b A

(1)
a A

(1)
b π

(1)
0

and P
(2)
` =

|Q(2)|∑
k=1

ρ
(2)
4 (k) = 0.95, where ρ

(2)
4 =

A
(2)
a A

(2)
b A

(2)
a A

(2)
b π

(2)
0 . Thus, the probability of error be-

tween the two models if this specific sequence is observed
is P (error, Y (`)) = 0.025.

Step 2. Upper Bound for Probability of Error
If we have two sequences Y (1) and Y (2) of length n, we

can obtain an upper bound on the probability of error for
these sequences as follows:

P (error, {Y (1), Y (2)}) =
2∑
i=1

min{P1 · P (1)
i , P2 · P (2)

i }

≤ min{P1 ·
2∑
i=1

P
(1)
i , P2 ·

2∑
i=1

P
(2)
i } .

(4)

The above can be shown easily by considering the different
cases and observing that min{a1, a2} + min{b1, b2} ≤
min{a1 + b1, a2 + b2}. We can easily generalize the above
discussion to any number of merged sequences of the same
length. The next step is to find an upper bound for the
probability of error at n steps. In particular, if we take any
partition of the index set I = {1, 2, ..., dn}, into subsets
D1, D2, ..., Dm (such that Di ∩ Dj = ∅ for i 6= j and
∪mi=1Di = I), then we have

P (error at n) =
dn∑
`=1

P (error, Y (`))

=
m∑
k=1

∑
`∈Dk

min{P1 · P (1)
` , P2 · P (2)

` }

≤
m∑
k=1

min{
∑
`∈Dk

P1 · P (1)
` ,

∑
`∈Dk

P2 · P (2)
` }.

(5)

Step 3. Calculation of Upper Bound via a DFA
We now discuss how we can obtain a partition of the

index set I , via a deterministic finite automaton (DFA) H
with language E∗. The reason we consider this particular
partitioning of I will become clearer later when we discuss
efficient ways of calculating the quantities

∑
`∈Dk

P1 · P (j)
` ,

j = 1, 2.
A DFA H is described by a four-tuple (X,E, δ, x0),

where X = {x1, x2, ..., x|X|} is the finite set of states;
E = {e1, e2, ..., e|E|} is the finite set of inputs (alphabet);
δ : X × E → X is the transition function; and x0 ∈ X is
the initial state. For a sequence of events s = s[n]s[n −
1]...s[1], s[i] ∈ E, i = 1, 2, ..., n, we define δ(q, s) =
δ(...δ(δ(q, s[1]), s[2]), ..., s[n]).

A sufficient condition for the requirement that the lan-
guage of H is E∗ is that δ is defined for all pairs of states
x ∈ X and outputs e ∈ E. Consider the following subsets
of sequences of observations of length n: Dk = {s ∈ En |
δ(x0, s) = xk}, k = 1, 2, ..., |X|. It is not hard to argue that
Dk, where k = 1, 2, ..., |X|, form a partition of En.

For each e ∈ E, we can construct the binary transition
matrix Te of H , following the rule that if δ(xi, e) = xi′ , then
Te(i′, i) = 1, otherwise Te(i′, i) = 0. This matrix captures
all possible transitions from a state to another, under event e;
since H is deterministic, Te for e ∈ E is a binary matrix with
exactly a single “1” in each column. We can also define the
binary column vector π′0 to have a single nonzero element
with value “1” at its ith location, if x0 = xi (in other words,
π′0 is an indicator vector for the initial state of H). With this
notation at hand, δ(x0, s) = xk for s = s[n]s[n − 1]...s[1]
is equivalent to π′n = Ts[n]Ts[n−1]...Ts[1]︸ ︷︷ ︸

Ts

π′0 being a vector

with all zero entries except a single “1” at the kth location.
This is easy to establish by induction.

More generally, the entries of the matrix Ts =
Ts[n]Ts[n−1]...Ts[1] are such that Ts(k, i) ∈ {0, 1} and
Ts(k, i) = 1 if and only if δ(xi, s) = xk. If we let the

387

two vectors c(j) = Pj [1...1], of size 1× |Q(j)| for j = 1, 2,
we can show that the probability of error in Eq. (5) is smaller
or equal to

|X|∑
k=1

min{
∑
s∈Dk

c(1)A(1)
s π

(1)
0 ,

∑
s∈Dk

c(2)A(2)
s π

(2)
0 } (6)

where for s = s[n]s[n − 1]...s[1] we have A
(j)
s π

(j)
0 =

A
(j)
s[n]A

(j)
s[n−1]...A

(j)
s[1]π

(j)
0 . We now discuss how the above

bound can be computed rather efficiently.
We define the matrix A(j) =

∑
e∈E

Te ⊗ A(j)
e , j =

1, 2, where Te ⊗ A
(j)
e denotes the Kronecker prod-

uct defined as the (|X||Q(j)|) × (|X||Q(j)|) matrix266664
Te(1, 1)A

(j)
e Te(1, 2)A

(j)
e · · · Te(1, |X|)A(j)

e

Te(2, 1)A
(j)
e Te(2, 2)A

(j)
e · · · Te(2, |X|)A(j)

e

...
...

. . .
...

Te(|X|, 1)A
(j)
e Te(|X|, 2)A

(j)
e · · · Te(|X|, |X|)A(j)

e

377775
Note that each Te(i′, i)A

(j)
e , xi, xi′ ∈ X , is a matrix of

size (|Q(j)|) × (|Q(j)|). We also define the (i′, i) block of
A(j) as A(j)(Bi′ , Bi) = A(j)(b(j)i : f (j)

i , b
(j)
i′ : f (j)

i′),
i.e., a (|Qj |) × (|Qj |) submatrix starting from row b

(j)
i =

(i − 1)Q(j) + 1 to row f
(j)
i = iQ(j), and from column

b
(j)
i′ = (i′ − 1)Q(j) to column f (j)

i′ = i′Q(j). Letting p(j)
0 =

π′0 ⊗ π
(j)
0 , we can write2 (for s = s[n]s[n− 1]...s[1] ∈ En)

p
(j)
n = (A(j))np(j)

0

=

(∑
e∈E

Te ⊗A(j)
e

)n
(π′0 ⊗ π

(j)
0)

=
∑
s∈En

(Ts[n]...Ts[1])π′0 ⊗ (A(j)
s[n]...A

(j)
s[1])π

(j)
0

=
|X|∑
k=1

∑
s∈Dk

Tsπ
′
0 ⊗ ρ(j)

n,s

=
|X|∑
k=1

∑
s∈Dk

uk ⊗ ρ(j)
n,s

=
|X|∑
k=1

uk ⊗
∑
s∈Dk

ρ(j)
n,s ,

where uk is a column vector of size |X| × 1, with zeros on
all of its entries except a single one at its kth entry, and ρ(j)

n,s

is the vector ρ(j)
n for the sequence of observations s.

If we focus on the kth block of p(j)
n of size |Q(j)| × 1

(i.e., entries (k − 1)Q(j) + 1 to kQ(j)), we see that

p(j)
n (Bk) =

∑
s∈Dk

ρ(j)
n,s =

∑
s∈Dk

A(j)
s π

(j)
0 .

Following Eqs. (5) and the bound in (6), we can write

P (error at n) ≤
|X|∑
k=1

min{c(1)p(1)
n (Bk), c(2)p(2)

n (Bk)} , (7)

2One of the properties of the Kronecker product is that (A ⊗ B)(C ⊗
D) = (AC)⊗ (BD) for matrices A, B, C, D of appropriate sizes [13].

which can be used to compute an upper bound on the
probability of error between the two systems (S(1) and S(2))
by taking advantage of how the DFA H creates the partitions
Dk, k = 1, 2, ..., |X|.

1

2 3

α βα

β

α

β

Fig. 3. DFA Hs for Example 2.

Example 2:
Consider the two HMMs in Fig. 2 and the DFA Hs in

Fig. 3, with X = {1, 2, 3}, language E∗ = (α + β)∗, and
initial state x0 = 1 (which means that π′0 = [1 0 0]T).
Assume that the priors are P1 = 0.6, P2 = 0.4, so that

c(1) =
[

0.6 0.6
]

, c(2) =
[

0.4 0.4
]
,

and also that

π
(1)
0 =

[
1 0

]T
, π(2)

0 =
[

0.5 0.5
]T
.

We create, according to the previous definitions, the ma-
trices Tα, Tβ for Hs as

Tα =

 0 0 0
1 1 1
0 0 0

 , Tβ =

 0 0 0
0 0 0
1 1 1

and obtain the matrices A(1), A(2) as

A(1) =

0 0 0 0 0 0
0 0 0 0 0 0
0 0.05 0 0.05 0 0.05
0 0.95 0 0.95 0 0.95
0 0 0 0 0 0
1 0 1 0 1 0

 ,

A(2) =

0 0 0 0 0 0
0 0 0 0 0 0
0 0.95 0 0.95 0 0.95
0 0.05 0 0.05 0 0.05
0 0 0 0 0 0
1 0 1 0 1 0

 .

Similarly, we obtain p(j)
0 = π′0 ⊗ π

(j)
0 , for j = 1, 2, as

p
(1)
0 =

[
1 0 0 0 0 0

]T
,

p
(2)
0 =

[
0.5 0.5 0 0 0 0

]T
.

For a sequence of observations of length n, we can write

P (error at n) ≤
∑

i∈{1,2,3}

min{c(1)p(1)
n (Bi), c(2)p(2)

n (Bi)} ,

388

where p(j)
n = (A(j))

n
π

(j)
0 , j = 1, 2. The plot of the bound as

a function of n is provided in Fig. 4. As n becomes infinite,
this bound stabilizes at 0.2349.

Fig. 4. Actual probability of error (continuous line) and upper bound
(dashed line) with DFA Hs in Fig. 3.

12

4

8 9

5

10 11

3

6

12 13

7

14 15

α

β

α

β

α

β

α

β

α β

α

β

α

β

α,β

α β
α β

α β

α β

α β

α β

α,β

Fig. 5. DFA H in Example 3.

Example 3: We can extend the construction of the pre-
vious example to the larger DFA H in Fig. 5 with X =
{1, 2, ..., 15}, language E∗ = (α + β)∗, and initial state
x0 = 1 (which means that π′0 = [1 0 0 . . . 0]T). We omit
the details of the construction due to space considerations
(but the steps are identical to the steps in Example 2).

The resulting upper bound on the probability of error is
plotted in Fig. 6 as a function of the number of observations.
As n → ∞, we see that this upper bound tends to the
constant value 0.0166. Note that this bound can perhaps
be reduced by employing a DFA with more states and/or
different transition functionality (to try and achieve a better
partitioning of the set of possible sequences). In this partic-
ular example, in order to find this H , we tried all possible
DFAs of 15 states, and presented the one that asymptotically
results in the least upper bound.

IV. CONNECTIONS TO A STOCHASTIC DIAGNOSER

We can reduce the number of states or even the size of all
transition submatrices A(j)

e , j = 1, 2, for each model (S(1),
S(2)) if we are able to remove all states that are not reachable
under specific conditions (e.g., unreachability from a specific
starting state). An example of such a deterministic finite
automaton was the stochastic diagnoser introduced in [9], for

Fig. 6. Actual probability of error (continuous line) and upper bound
(dashed line) with the DFA H in Fig. 5.

the purpose of fault diagnosis. We describe this connection
via the following example, where we use an appropriate DFA
to create the stochastic diagnoser for the two models shown
in Fig. 2.

Example 4.
Suppose that the models in Fig. 2 capture the Normal

(S1) and Faulty (S2) behaviour of a system. Also we define
Q(1) = {1N, 2N}, and Q(2) = {1F, 2F}, with priors P1 =
P2 = 0.5, and initial states, q(1)0 = {1N}, q(2)0 = {1F}.
We want to find all transition matrices for the stochastic
diagnoser, and relate them to the previous analysis (the
original work in [9] uses the transpose of the matrices we
use here). We analyze the system using the previous method,
with the only difference being that the construction of the
matrices Ae, e ∈ E, considers the behavior in each system
simultaneously, e.g.,

Ab =

[
A(1)
b 0

0 A(2)
b

]
=

1N 2N 1F 2F

1N 0 0 0 0
2N 1 0 0 0
1F 0 0 0 0
2F 0 0 1 0

 .
If we only keep elements on nonzero rows and columns, we
obtain the reduced matrix

A
(s)
b =

 1N 1F
2N 1 0
2F 0 1

 .

1N
1F

2N
2F

b

a

b

1N
2N
1F
2F

a

1 0
0 1

X1 X2

X3

0.95 0
0.05 0
0 0.05
0 0.95

1 0 0 0
0 0 1 0

0 0.95 0 0
0 0.05 0 0
0 0 0 0.05
0 0 0 0.95

Fig. 7. Stochastic Diagnoser for S(1) and S(2).

389

Following this approach, we can create all possible dif-
ferent states and apply the reduced transition matrices. The
stochastic diagnoser for our example is shown in Fig. 7.
We can create the S matrix which includes all submatrices,
according to each state {X1, X2, X3} (e.g., S(1, 7) captures
the transition probability from state X1N

1 to X1F
3). If the

states are ordered as follows: state 1→ X1N
1 , state 2→ X1F

1 ,
state 3→ X1N

2 ,..., state 8 → X2F
3 , the matrix S is given by

S =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0.95 0 0 0.95 0 0
0 0 0.05 0 0 0.05 0 0
0 0 0 0.05 0 0 0 0.05
0 0 0 0.95 0 0 0 0.95

.

Using S we can compute the upper bound of the probability
of error as in the previous example (using, however, blocks
of different sizes, due to the fact that entries that are zero
in each block are dropped). Alternatively, we can use the
automaton shown in Fig. 8 and follow the approach in the
previous section to obtain p

(j)
n = (A(j))

n
p
(j)
0 . Note that

by construction, a stochastic diagnoser checks if an output
symbol is possible or not, so that the underlined symbols in
Fig. 8 do not appear in the stochastic diagnoser in Fig. 7.
For large n, we find the upper bound to be 0.2802.

1 2

3

α, β

α, β

α

β

Fig. 8. Equivalent DFA to Stochastic Diagnoser in Example 4.

A probabilistic finite automaton that is AA-stochastically
diagnosable [9] is essentially an automaton for which the
probability of misclassification3 goes to zero as the number
of observations becomes asymptotically large. It is evident
that our method can be used to establish whether the
probability of misclassification goes to zero (by determining
whether its upper bound goes to zero) using constructions
quite distinct from a stochastic diagnoser. Thus, a sufficient
condition for AA-stochastic diagnosability would be the
existence of a DFA that leads to an upper bound on the

3Strictly speaking AA-stochastic diagnosability is only concerned with
faulty behavior that might be considered as non-faulty (and whether its
probability goes to zero as the number of observations increases); thus,
one should exclude the probability of misclassification that arises from
strings generated by the non-faulty system that are more likely to have
been generated by the faulty system.

probability of misclassification that goes to zero as the
number of observations increases.

Remark: The complexity of computing the exact prob-
ability of error is an exponential function of n (it is of
O(n × dn × (|Q(1)|2 + |Q(2)|2))). In obtaining the up-
per bound, we only require complexity linear in n (the
complexity is of O(n × |X|2 × (|Q(1)|2 + |Q(2)|2))). In
addition, for an arbitrarily large number of observations, we
can compute the asymptotic upper bound with complexity
of O(|X|3 × (|Q(1)|3 + |Q(2)|3)) by employing eigenvalue
decomposition to obtain the steady-state of the Markov
chains with transition matrices A(j), j = 1, 2.

V. CONCLUSIONS

In this work we obtain an upper bound on the probability
of error when classifying among two HMMs, based on a
sequence of observations of length n. We use a specific
class of DFAs to split the sequences of observations into
different partitions and apply Markov chain theory to effi-
ciently compute an upper bound on the a priori probability
of misclassification among the two HMMs for sequences in
each partition. The choice of DFA affects the partitioning
which in turn affects the tightness of the upper bound. An
open problem is the choice of a specific DFA (of a fixed
number of states) that results in the least upper bound.

REFERENCES

[1] E. Athanasopoulou and C. N. Hadjicostis, “Probability of error bounds
for failure diagnosis and classification in hidden Markov models,” in
Proceedings of the IEEE Conference on Decision and Control, 2008,
pp. 1477–1482.

[2] L. R. Rabiner, “Readings in speech recognition,” A. Waibel and K.-F.
Lee, Eds. Morgan Kaufmann Publishers Inc., 1990, ch. A tutorial on
hidden Markov models and selected applications in speech recognition,
pp. 267–296.

[3] F. Jelinek, Statistical methods for speech recognition. MIT Press,
1997.

[4] L. R. Bahl, F. Jelinek, and R. L. Mercer, “Readings in speech recog-
nition,” A. Waibel and K.-F. Lee, Eds. Morgan Kaufmann Publishers
Inc., 1990, ch. A maximum likelihood approach to continuous speech
recognition, pp. 308–319.

[5] K. S. Fu, Syntactic Pattern Recognition and Applications. Prentice-
Hall, 1982.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, 1998.

[7] T. Koski, Hidden Markov Models of Bioinformatics. Kluwer Aca-
demic Publishers, 2001.

[8] J. Lunze and J. Schröder, “State observation and diagnosis of discrete
event systems described by stochastic automata,” Discrete Event
Dynamic Systems: Theory and Applications, vol. 11, no. 4, pp. 319–
369, 2001.

[9] D. Thorsley and D. Teneketzis, “Diagnosability of stochastic discrete
event systems,” IEEE Transactions on Automatic Control, vol. 50,
no. 4, pp. 476–492, 2005.

[10] B.-H. Juang and L. Rabiner, “A probabilistic distance measure for
hidden Markov models,” AT&T Technical Journal, pp. 391–408, 1985.

[11] M. Falkhausen, H. Reininger, and D. Wolf, “Calculation of distance
measures between hidden Markov models,” in Proc. Eurospeech, 1995,
pp. 1487–1490.

[12] S. M. E. Sahraeian and B. Yoon, “A novel low-complexity HMM
similarity measure,” IEEE Signal Processing Letters, vol. 18, no. 2,
pp. 87–90, 2010.

[13] P. A. Regalia and S. K. Mitra, “Kronecker products, unitary matrices
and signal processing applications,” Society for Industrial and Applied
Mathematics, vol. 31, no. 4, pp. 586–613, December 1989.

390

