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Abstract— In this paper, a robust adaptive algorithm for
active noise and vibration control applications is proposed
and the robust stability of the algorithm is analyzed using a
combination of the small gain theorem and Popov’s hyper-
stability theorem. The algorithm is developed based on the
so-called Filtered-x RLS algorithm in the modified form. In
design and analysis of the algorithm, it is assumed that the
estimated model of the secondary path is associated with a set
of uncertainties of additive structure; and sufficient conditions
for stability of the algorithm are derived. In fact, by introducing
a stabilizing filter, the aim is to design this filter in a way that the
achieved sufficient conditions for robust stability are satisfied.
The employed method is to transform the proposed control
structure to an equivalent output error identification problem,
and then formulate the governing adaptive algorithm in a way
that is representable as a feedback control problem. In view of
this approach, sufficient conditions for robust stability of the
adaptive algorithm will be equivalent to find the conditions for
the stability of the established feedback control system. The
technique applied here to this end is established on the energy
conservation relation that is valid for the general data models
in adaptive filters.

I. INTRODUCTION

Active noise and vibration control (ANVC) systems usu-

ally deal with a large amount of dominant, weakly damped,

resonance modes and need controllers with a large impulse

response to obtain a good disturbance rejection. Furthermore,

sampling rates are often in the range of 1–10 kHz to have

sufficient control bandwidth. The controller not only should

be adaptive to be able to follow the time-varying character-

istics of the incident undesired noise, but also it has to be

robust against variations in the system transfer function. In

fact, because of the non-stationary nature of the environment

where active noise and vibration control systems (ANVC)

operate, the estimated models of the system are prone to

changes. Depending on the application this could be due to

different phenomena, such as aging, temperature variations,

movement of persons, etc. Since in most of the adaptive

algorithms developed for ANVC systems an estimation of

the model of the secondary path is required, these changes

will degrade or even destabilize the adaptive algorithm when

it exceeds a predetermined threshold. These constraints make

ANVC a challenging control problem even in the time of fast

increasing computer power [1].
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There are two main control strategies to design an effective

control system which reduces noise and vibration actively:

1. adaptive feedforward methods when a reference signal

which is a measure of the incident noise is available; and 2.

feedback control systems when this reference signal is not

producible [2]. Each of these methods has their own pros

and cons when applied in a particular application, and it is

on the designer to select the suitable control structure.

Most of the adaptive algorithms designed for ANVC

systems belong to the category of indirect adaptive control

methods. In almost all of these methods it is assumed that

an estimated model of the mechanical or acoustical plant,

the so-called secondary path is available. However, due to

the time-varying nature of these systems, they are prone

to large changes and the designed algorithm has to be

made robust against these changes. In the literature, two

approaches are proposed to improve the robustness of the

designed control algorithm: online secondary path modeling

[3], [4] and increasing the robustness of the control algorithm

by considering uncertainties in the design of control systems

[5], [6], [7]. A group of adaptive feedforward methods which

belongs to the larger category of indirect adaptive control

techniques, and also well-known in ANVC applications, is

the family of Filtered LMS algorithms. In these methods, the

reference input signal or the error signal which has to be

fed back to the LMS algorithm, is filtered linearly before

applying it to the adaptive algorithm. One of the algorithms

in this family which is widely exploited in different ANVC

applications is the so-called FxLMS algorithm [8], [9]. In this

algorithm the FIR filter structure is used for the controller

and the reference signal is filtered with an estimation of the

secondary path to update the coefficients of adaptive filters.

Replacing the FIR filter structure with the IIR counterpart

results in the so-called FuLMS algorithm. However, insta-

bility problems and multi-modal nature of the performance

surface of this algorithm, unlike the FxLMS algorithm, has

hindered its usage in different applications [10], [11].

Analysis of the FxLMS and FuLMS algorithms reveals

that they have some intrinsic robustness against errors in

the estimation of the secondary path, and the stability of

these algorithms will be maintained despite of some errors

in the estimation within the secondary paths [12], [13].

This phenomenon is better explained in [14] by formulating

the LMS algorithm as a priori H∞ optimal filter which

has a close optimal solution in the H∞ form. In light of

this, one may assume that the characteristics are inherited

to the LMS algorithm because it is a minimax algorithm

or, more precisely, is optimal in the H∞ sense. Following
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this concept, but using the energy conservation idea, the

robustness characteristics of different classes of adaptive

algorithms are investigated within a purely deterministic

framework in [15], [16]. Specifically, a time domain feedback

analysis is performed for the LMS algorithm in [15] and

extended to Filtered LMS algorithms for FIR filters. In [16],

this type of analysis is also developed and repeated for RLS

type adaptive FIR filters.

Most of the approaches proposed in the literature to in-

crease the robustness of adaptive filters and make it less sen-

sitive to modeling errors in ANVC applications are applied to

the FxLMS algorithm, e.g. as suggested in [17], a simple way

is to add leakage to the FxLMS update rule. Another method,

quite similar to leakage, is adding a control effort weighting

to the cost function that reduces the control effort. Besides

the necessity of tuning a scalar parameter, a drawback of

leakage and control effort weighting is that there is no

frequency selectivity in the regularization, resulting in too

much conservatism. To reduce the control effort, especially

in the frequency band where the model uncertainty is large, a

robust FxLMS algorithm has been proposed in [18], in which

the model uncertainty is considered as a frequency dependent

stochastic variable with zero mean and known covariance. In

[19], a general robust FxLMS algorithm structure in which

the aforementioned regularization methods can be viewed

as special case is proposed. The general robust FxLMS

algorithm is obtained by adding to the cost function a term

where the control signal filtered by a filter is to be designed.

By using the concept of L2-stability and the time domain

analysis in [15], two robust variants of the FxLMS algorithm

are proposed in [20], in which the error signal is passed

through a time-varying filter that has to be designed properly.

In this paper, a robust adaptive IIR filter in the modified

form and based on the RLS algorithm is proposed. This is

in continuation of previous works [21], [22], [23], in which

the algorithm has been improved in different steps. As a

matter of fact, the algorithm which in [21] is proposed under

the condition of slowly time-varying adaptation of filter

weights, is improved in [22], [23] by transforming it to the

modified form, and then the robust stability of the algorithm

is analyzed when a variable step size coefficient [22] and a

nonlinear static function is introduced in the update algorithm

[23]. Here it is attempted to increase the robust stability of

this algorithm, by filtering the error signal with a linear filter

which has to be designed appropriately. By using the energy

conservation concept introduced in [16], sufficient conditions

for the stability of the algorithms in front of uncertainties in

the secondary path, are derived.

The paper is organized as follows. After this introduction,

first some important quantities are introduced in Section

II. Then the proposed algorithm and some preliminary for-

mulations required for the stability analysis are exposed in

Section III. In Section IV, by deriving the relations among

different quantities in the feedforward and feedback path,

sufficient conditions for robust stability of the algorithm

based on the equivalent feedback representation of the al-

gorithm are derived. Conclusions are drawn in Section V.

II. DEFINITIONS AND NOTATIONS

The block diagram of a typical ANVC system in the

modified form is depicted in Fig. 1.
m1(k)

m2(k)

w(k)

r(k) u(k)

y(k)

d(k) d1(k) e(k)

uf (k)

r̂f (k)

u′

f (k)

d′(k)

ê(k)
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Gdw(q)
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Ĝyu(q)
Ĝyu(q)

C(q, k)

C(q, k)

–

Robust Adaptive

Algorithm

Fig. 1. Block diagram of adaptive IIR filter in the modified form

The primary disturbance w(k) ∈ R, and the additive

noises m1(k) ∈ R and m2(k) ∈ R are zero mean (possibly

colored) processes which are uncorrelated with each other.

Besides, in this figure Gdw(q) ∈ RH∞ corresponds to the

primary path, Gyu(q) ∈ RH∞ corresponds to the secondary

path, and the detector path is defined by Grw(q) ∈ RH∞.

The aim is to adapt the coefficients of the controller

C(q, k) =
b̂0(k) + b̂1(k)q

−1 + · · ·+ b̂nB
(k)q−nB

1 + â1(k)q−1 + · · ·+ ânA
(k)q−nA

(1)

so that the sum of squares of a posteriori errors in the error

microphone ε(i) is minimized, that is

ε(i) = d′(i) +Gyu(q)
⌊

ϕ(i)θ̂(k)
⌋

, i = 1, . . . , k . (2)

The vectors in (2) are created by putting the coefficients of

the numerators and denominators of the controller C(q, k)
in a vector and are defined in Table I. In this table, ϕ̂f (i)
represents the filtered regression vector whose elements are

filtered with the estimated transfer function of the secondary

path. The vector of deviations of the controller coefficients

from their optimal value is defined as

θ̃(k) = θ− θ̂(k), (3)

where θ is the vector of the optimal controller coefficient

values. After multiplying both sides of the parameter error

vector with ϕ̂f (k) four errors, as described in Table I, can be

defined and will be used in the sequel. For brevity, the whole

procedure required for developing the primary version of the

algorithm is not given here. For a more complete description

and also preliminary attempts to improve the robustness of

this algorithm in active noise and vibration control systems,

the reader may refer to [21], [22], [23].

III. THE PROPOSED ALGORITHM

A. Algorithm in the modified filtered-x form

It can be shown that the block diagram separated by the

dashed-box in Fig. 1 can be represented by an equivalent

block diagram in which the parameters of the controller will

be adapted with the performance of an RLS type algorithm

and the stability of the algorithm for this block diagram
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TABLE I

PARAMETERS AND DEFINITIONS

Symbol Defininition

θ̂(k)
(

â1(k), â2(k), . . . , ânA
(k), b̂0(k), b̂1(k), . . . , b̂nB

(k)
)T

ϕ(i) (−u′(i−1), . . . ,−u′(i−nA), r(i), . . . , r(i−nB))T

where u′(i) = C(q, i)r(i)

ϕ̂f (i)
(

−û′

f
(i−1), . . . ,−û′

f
(i−nA), r̂f (i), . . . , r̂f (i−nB)

)T

where r̂f (i) = Ĝyu(q)r(i), û′

f
(i) = C(q, i)r̂f (i)

e0(k) unperturbed a priori error θ̃T(k − 1)ϕ̂f (k)

ε0(k) unperturbed a posteriori error θ̃T(k)ϕ̂f (k)

ê(k) perturbed a priori error e0(k) + n(k)

ε̂(k) perturbed a posteriori error ε0(k) + n′(k)

n(k) defined in (5)

n′(k) defined in (6)

guarantees the stability for the original block diagram in

Fig. 1. This is proved by Lemma 1 in [23]. As can be fol-

lowed in [23], in the next step, the obtained equivalent block

diagram is transformable to an output error identification

problem represented in Fig. 2. In this figure, ∆(q) ∈ RH∞
is the additive uncertainty due to estimation of the secondary

path, and m′
1(k) ∈ R is the total independent additive noise

modeled at the output of the system. The transfer function

in Fig. 2 can be defined as

B(q)

A(q)
= Gdw(q)G

−1
rw(q)Ĝ

−1
yu (q) =

b0 + b1q
−1 + · · ·+ bnB

q−nB

1 + a1q−1 + · · ·+ anA
q−nA

. (4)

Remark 1: In (4), it is assumed that the transfer functions

Grw(q) and Gyu(q) are minimum phase, and hence their

inverses exist. However, in reality these transfer functions

are non-minimum phase, and by using the approach of [21],

the algorithm can be extended to the general case.

Remark 2: By writing n(k) ∈ R as the total disturbances

added at the output of the controller in Fig. 2, it is reasonable

to assume an upper bound and define n′(k) alike n(k):

n(k) = ∆(q)u(k) +m′
1(k), ‖n(k)‖∞ < β (5)

u(k) = C(q, k − 1)r(k) = ϕT(k + 1)θ̂(k) . (6)

n′(k) = ∆(q)u′(k) +m′
1(k) (7)

u′(k) = C(q, k)r(k) = ϕT(k)θ̂(k) .

r̂f (k)

m′

1(k)

d1(k)

n(k)

d′(k) ê(k)

u′

f (k)

B(q)
A(q)

C(q, k)

C(q, k)Ĝ−1
yu (q) ∆(q)

Robust Adaptive

Algorithm

Fig. 2. Output-error identification problem equivalent to diagram of Fig. 1

TABLE II

SUMMARY OF THE PROPOSED ALGORITHM

Steps Computations

1. Updating the
regression vector
by filtering the
new samples

r̂f (i) = Ĝyu(q)r(i), u′

f
(i) = C(q, i)r̂f (i)

ϕ̂f (k) =
(

−û′

f
(k−1), . . . ,−û′

f
(k−nA),

r̂f (k), . . . , r̂f (k−nB)
)T

2. Calculating the
control signal

u(k+1) = C(q, k)r(k+1)

uf (k+1) = Ĝyu(q)u(k+1)

3. Calculating the
control signal

ê(k+1) = d′(k+1) + ϕ̂T
f
(k+1)θ̂(k)

d′(k+1) = e(k+1)− uf (k+1)

4. Updating the
covariance of
the parameter
estimation error

F (k+1) =

1
λ1(k)

(

F (k)−
F (k)ϕ̂f (k+1)ϕ̂T

f (k+1)F (k)

λ1(k)
λ2(k)

+ϕ̂T
f
(k+1)F (k)ϕ̂f (k+1)

)

5. Calculating the
a posteriori error

ε̂(k + 1) =
ê(k+1)

1+ϕ̂T
f
(k+1)F (k)ϕ̂f (k+1)

6. Calculating the
filtered a posteri-

ori error

ν(k + 1) = H(q) ε̂(k + 1)

7. Updating the
IIR filter weights

θ̂(k + 1) = θ̂(k)− F (k)ϕ̂f (k + 1)ν(k + 1)

The proposed algorithm which adapts the parameters of the

controller in the dashed-box in Fig. 1 is summarized in Table

II. Here, H(q) is a linear filter that should be designed

properly to enhance the robustness of the adaptive algorithm

with respect to the possible uncertainties in the secondary

path. Besides, 0 ≪ λ1(k) ≤ 1 and 0 ≪ λ2(k) < 2 are

two scalar parameters which determine the variations of the

adaptation gain through the time.

B. Preliminary Analysis

Considering the block diagram of Fig. 2, the a posteriori

error, i.e. ε̂(k + 1), can be calculated as

ε̂(k) = d′(k) + û′
f (k) + n(k) = d1(k) + û′

f (k) + δ(k) (8)

where

δ(k) = m′
1(k) + ∆(q)u′(k), û′

f (k) = ϕ̂T
f (k)θ(k) . (9)

Then by replacing the output of the recursive IIR filter

based on the previous value, and adding and subtracting

A⋆(q)û′
f (k − 1) to the right hand side of (7), i.e.

ε̂(k) =−A⋆(q)d1(k − 1) +B(q)r̂f (k) + û′
f (k)+

A⋆(q)û′
f (k − 1)−A⋆(q)û′

f (k − 1) + δ(k)

=−A⋆(q)
(

d1(k − 1) + û′
f (k − 1)

)

+

B(q)r̂f (k) + û′
f (k) +A⋆(q)û′

f (k − 1) + δ(k)

=−A⋆(q) (ε̂(k − 1)− δ(k − 1)) +B(q)r̂f (k)+

û′
f (k) +A⋆(q)û′

f (k − 1) + δ(k)

Hence,

A(q)ε̂(k) =A⋆(q)û′
f (k−1)+B(q)r̂f (k)+û′

f (k)+A(q)δ(k)

=− ϕ̂T
f (k)θ+ ϕ̂T

f (k)θ(k) +A(q)δ(k)

⇒ ε̂(k) =−
1

A(q)

(

ϕ̂T
f (k)θ̃(k)

)

+ δ(k)

=−
1

A(q)
ε0(k) + δ(k) (10)
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On the other hand, following the energy conservation relation

of adaptive algorithms and its equivalent feedback represen-

tation as in [16], we will analyze the stability and robustness

condition of the proposed adaptive RLS-based algorithm for

active noise and vibration control systems. To this end, the

first step to establish the equivalent feedback representation

of the proposed algorithm is to derive the relation between

unperturbed a posteriori error, i.e. ε0(k+1), and unperturbed

a priori error e0(k + 1) and in the second step the forward

lossless mapping T will be derived. By subtracting both sides

of parameter update equation in step 7 of Table II from

the desired parameter vector θ, the update equation can be

written in terms of the weight-error vector θ̃(k) along

θ̃(k + 1) = θ̃(k) + F (k)ϕ̂f (k + 1)ν(k + 1) (11)

and by multiplication of both sides of (10) with ϕ̂f (k + 1)
we will get:

ε0(k+1) = e0(k+1)+ ϕ̂T
f (k+1)F (k)ϕ̂f (k+1)ν(k+1)

(12)

Furthermore, multiplying both sides of the parameter update

equation by ϕ̂T(k + 1) results in:

u′(k + 1) = u(k + 1)− ϕ̂T(k + 1)F (k)ϕ̂f (k + 1)ν(k + 1)
(13)

The relations (12) and (13) will be used later to establish the

feedback equivalent representation of the algorithm.

IV. STABILITY ANALYSIS

A. Establishing the feedback path

By substituting ν(k+1) from step 6 of Table II into (12)

and (13), and considering the relation obtained for ε̂(k) in

(10) we will get

ε0(k + 1) = e0(k + 1) + µ1(k)H(q)
(

−
1

A(q)
ε0(k + 1) + ∆(q)u′(k + 1) +m′

1(k + 1)

)

(14)

u′(k + 1) = u(k + 1)− µ2(k)H(q)
(

−
1

A(q)
ε0(k + 1) + ∆(q)u′(k + 1) +m′

1(k + 1)
)

(15)

where
µ1(k) = ϕ̂T

f (k + 1)F (k)ϕ̂f (k + 1)

µ2(k) = ϕ̂T(k + 1)F (k)ϕ̂f (k + 1)

By simplifying the relations (14) and (15) we have

ε0(k + 1) = µ1(k)H1(q, k)H(q)∆(q)u′(k + 1)+

H1(q, k)e0(k + 1) + µ1(k)H1(q, k)H(q)m′
1(k + 1) (16)

and

u′(k + 1) = µ2(k)H2(q, k)
H(q)

A(q)
ε0(k + 1)+

H2(q, k)u(k + 1)− µ2(k)H2(q, k)H(q)m′
1(k + 1) (17)

where

H1(q, k) =
1

1+µ1(k)
H(q)
A(q)

, H2(q, k) =
1

1+µ2(k)H(q)∆(q) .

Then substitution of (17) into (16) yields

H3(q, k)ε0(k + 1) = H1(q, k)e0(k + 1)+

µ1(k)H1(q, k)H(q)∆(q)H2(q, k)u(k + 1)+

µ1(k)H1(q, k)H(q) (1−µ2(k)∆(q)H2(q, k)H(q))m′
1(k+1)

(18)

and

H3(q, k) = 1−µ1(k)H1(q, k)H(q)∆(q)µ2(k)H2(q, k)
H(q)

A(q)

Simplification of H3(q, k) will turn it into

H3(q, k) = H1(q, k)H2(q, k)
(

1 + µ1(k)
H(q)

A(q)
+ µ2(k)H(q)∆(q)

)

. (19)

Remark 3: To be able to change the order of the transfer

functions in (18) and (19) it is necessary to assume that

µ1(k) and µ2(k) are slowly varying or constant with time.

Since this assumption might not hold in a general sense, it

is possible to design the tuning parameters λ1(k) and λ2(k)
such that this condition becomes true, e.g. by assuming

λ1(k) = λ2(k) =
(

1+ ϕ̂T
f (k+ 1)F (k)ϕ̂f (k+ 1)

)−1
(20)

we will have µ1(k) = µ2(k) = µ.

In order to find the conditions for the stability of the proposed

algorithm, it is necessary that the obtained recursive formula

in (18) operates in a stable manner. For this purpose it

is necessary that the transfer functions H1(q, k), H2(q, k),
H3(q, k) be stable. The conditions for the stability of these

transfer functions are stated in the following Lemma.

Lemma 1: A sufficient condition to assure the stability of

the transfer functions H1(q, k), H2(q, k), and H3(q, k) in

(18) is to design H(q) so that
H(q)
A(q) becomes strictly positive

real, and also ‖H(q)∆(q)‖∞ < 1
|µ2(k)| .

Proof: Since the matrix F (k) is positive definite for

all k, the parameter µ1(k) in the denominator of H1(q, k)
is always positive, and hence by using Popov’s hyper-

stability theorem a sufficient condition for the stability of

H1(q, k) is that Re
(

H(q)
A(q)

)

> 0 . After applying the small

gain theorem to the transfer function H2(q, k) a sufficient

stability condition reads ‖µ2(k)H(q)∆(q)‖∞ < 1, which by

extracting µ2(k) from the norm turns to ‖H(q)∆(q)‖∞ <
1

µ2(k)
. Now it is enough to prove that these two stability

conditions will assure the stability of the transfer function

H3(q, k). Considering the fact that µ1(k) and µ2(k) are

slowly varying, the stability of H3(q, k) can be proved

by using the Nyquist criterion. In this case, if we assume

Γ(q) = µ1(k)
H(q)
A(q) +µ2(k)H(q)∆(q) as the loop gain of the

system then 1+µ1(k)
H(q)
A(q) +µ2(k)H(q)∆(q) will not have

any poles in the right half plane when the plot of Γ(q) will

not encircle the point −1 + j 0. Since ‖H2(q, k)‖∞ < 1 we

have −1 < Re (H2(q, k)) < 1 and since Re (H1(q, k)) > 0
we conclude that the real part of their summation is always

larger than −1 and the Nyquist curve will not encircle the

point −1 + j 0. Hence, H3(q, k) is also stable.
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B. Establishing the feedforward path

It is possible to find the relation among different variables

in the forward path by equation (11). In fact, by multiplying

both sides of (11) by F− 1
2 (k) and rearranging it, we obtain

F− 1
2 (k)θ̃(k) = F− 1

2 (k)θ̃(k+1)−F
1
2 (k)ϕ̂f (k+1)ν(k+1).

(21)

Then by calculating the square norm of both sides we get

θ̃T(k)F−1(k)θ̃(k) = θ̃T(k + 1)F−1(k)θ̃(k + 1)−

2ε0(k+1)ν(k+1)+ ϕ̂T
f (k+1)F (k)ϕ̂f (k+1)ν2(k+1).

Replacing ν(k + 1) from (12) into the equation above and

doing some simplifications yields

θ̃T(k)F−1(k)θ̃(k) + µ̄(k)ε20(k + 1) =

θ̃T(k + 1)F−1(k)θ̃(k + 1) + µ̄(k)e20(k + 1) (22)

where µ̄(k) =
(

ϕ̂T
f (k + 1)F (k)ϕ̂f (k + 1)

)−1
. Now by

replacing F−1(k) in terms of F−1(k + 1), from equation

F−1(k + 1) = λ1(k)F
−1(k) + λ2(k)ϕ̂f (k + 1)ϕ̂T

f (k + 1)
(23)

the energy conservation relation in (22) transforms to

θ̃T(k)F−1(k)θ̃(k) +

(

µ̄(k) +
λ2(k)

λ1(k)

)

ε20(k + 1) =

λ−1
1 (k)θ̃T(k + 1)F−1(k)θ̃(k + 1) + µ̄(k)e20(k + 1). (24)

Eqn. (24) shows the relation among the quantities θ̃(k+1),
θ̃(k), ε0(k+1), and e0(k+1). The first term on the left-hand

side of (24) is the weighted energy of current coefficients, the

second term is the weighted energy of the a posteriori error.

The first term in the right-hand side of (24) is the weighted

energy of the updated coefficients and the second term is the

weighted energy of the a priori error. The relation (24) can

be represented as a mapping between two vectors as follows:
(

µ̄
1
2 (k)e0(k + 1)

λ
−

1
2

1 (k)F−
1
2 (k + 1)θ̃(k + 1)

)

= T





F−
1
2 (k)θ̃(k)

(

µ̄(k) +
λ2(k)
λ1(k)

) 1
2
ε0(k + 1)





(25)
where

T =

(

T11 T12

T21 T22

)

is a unitary matrix so that TTT = I , given as

T11 = µ̄
1
2 (k)ϕ̂T

f (k + 1)F
1
2 (k), T12 = 0

T21 = F− 1
2 (k)

(

I + µ̄(k)F (k)ϕ̂f (k + 1)ϕ̂T
f (k + 1)

)

F
1
2 (k)

T22 = µ̄(k)

(

µ̄(k) +
λ2(k)

λ1(k)

)− 1
2

F
1
2 (k)ϕ̂f (k + 1)

By multiplying both sides of (18) with the inverse of

H3(q, k) and defining

α(k) =µ̄(k) +
λ2(k)

λ1(k)
(26)

G(q, k) =H
−1
3 (q, k)H1(q, k) (27)

H(q, k) =
√

α(k)µ1(k)H
−1
3 (q, k)H1(q, k)H(q)∆(q)H2(q, k)

(28)

F (q, k) =
√

α(k)µ1(k)H
−1
3 (q, k)H1(q, k)H(q)

(1− µ2(k)∆(q)H2(q, k)H(q)) (29)

the relation among the variables in the feedback path will

be obtained when putting the feedforward and the feedback

block together. The equivalent block diagram of the algo-

rithm can be represented as shown in Fig. 3.

u(k+1)

m′

1(k+1)
λ
1
2
1(k)q

−1

√

α(k)
µ̄(k)

H(q, k)

F (q, k)

G(q, k)

T

F
−

1
2(k)θ̃(k)

√

µ̄(k)e0(k+1)

√

α(k)ε0(k+1)
F

−
1
2 (k+1)θ̃(k+1)√

λ1(k)

Fig. 3. Equivalent feedback representation of the output-error identification
problem represented by the block diagram of Fig. 1

C. Stability conditions

To analyze the stability of the algorithm proposed in

Table II, we will resort to the developed equivalent feedback

representation in Fig. 3. Since the forward path is a unitary

map with infinity norm equal to one, based on the small

gain theorem, the stability of the feedback system will be

guaranteed if the infinity norm of the feedback path remains

less than one. For this purpose a sufficient condition for

stability of this system will be obtained if the infinity norm

of the transfer function in the feedback path is less than one.

This issue is expressed in the following theorem.

Theorem 1: The algorithm proposed in Table II to update

the coefficients of the adaptive IIR filter in Fig. 1 is asymptot-

ically stable in the presence of uncertainty in the estimation

of the secondary path, and will converge to the desired filter

weights if the filter H(q) and the parameters λ1(k) and λ2(k)
are such that the following conditions are satisfied:

I) Re
(

H(q)
A(q)

)

> 0

II)

∥

∥

∥

H(q)
A(q) −

2λ2(k)
λ1(k)

∥

∥

∥

∞
> 4µ̄(k)

III) ‖H(q)∆(q)‖∞ < µ̄′(k)

with µ̄(k) =
(

ϕ̂T
f (k + 1)F (k)ϕ̂f (k + 1)

)−1

µ̄′(k) =
(

ϕ̂T(k + 1)F (k)ϕ̂f (k + 1)
)−1

and A(q) denominator of the transfer function defined in (4).

Proof: Conditions I and III are clear by Lemma 1. In

order to derive condition II we follow the formulation used

to establish the equivalent feedback representation of the

proposed algorithm. By continuing this point, the sufficient

condition that guarantees robust stability of the adaptive

algorithm reads
∥

∥

∥

∥

∥

G(q, k)

√

α(k)

µ̄(k)

∥

∥

∥

∥

∥

∞
< 1 . (30)

Using the definition of infinity norm and substituting G(q, k)
and α(k) from (26) and (27) we have ∀ω ∈ [−π, π] that

∣

∣H−1
3 (ejω, k)H1(e

jω, k)
∣

∣ <

√

√

√

√

µ̄(k)

µ̄(k) + λ2(k)
λ1(k)

. (31)
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We change the inequality (31) to another inequality in two

steps such that by the new inequality it is easy to extract the

sufficient condition for stability. In the first step, it is easy

to prove that for the right hand-side of (31) holds

µ̄(k)

µ̄(k) + λ2(k)
λ1(k)

<

√

√

√

√

µ̄(k)

µ̄(k) + λ2(k)
λ1(k)

(32)

and in the second step, by writing the left-hand side of (31) in

another form and taking into account the result of Lemma 1,

at the same time, we will obtain
∣

∣

∣

∣

∣

1 + µ2(k)H(ejω)∆(ejω)

1 + µ2(k)H(ejω)∆(ejω) + µ1(k)
H(ejω)
A(ejω)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

2

1 + µ2(k)H(ejω)∆(ejω) + µ1(k)
H(ejω)
A(ejω)

∣

∣

∣

∣

∣

. (33)

Therefore, instead of (31), it is enough to find conditions s.t.

2
∣

∣

∣
1 + µ2(k)H(ejω)∆(ejω) + µ1(k)

H(ejω)
A(ejω)

∣

∣

∣

<
1

1+µ1(k)
λ2(k)
λ1(k)

(34)

is satisfied. By inverting both sides of (34) we have
∣

∣

∣

∣

1 + ϕ̂T(k + 1)F (k)ϕ̂f (k + 1)H(ejω)∆(ejω)+

ϕ̂T
f (k+1)F (k)ϕ̂f (k+1)

H(ejω)

A(ejω)

∣

∣

∣

∣

> 2

(

1+µ1(k)
λ2(k)

λ1(k)

)

(35)

which then by applying the triangular inequality to (35),
∣

∣

∣
|a| − |b|

∣

∣

∣
< |a+ b| < |a|+ |b|,

yields the sufficient condition for equation (35) to hold

ϕ̂T
f (k + 1)F (k)ϕ̂f (k + 1)

∣

∣

∣

∣

H(ejω)

A(ejω)
−

2λ2(k)

λ1(k)

∣

∣

∣

∣

>

2 +
∣

∣1 + ϕ̂T(k + 1)F (k)ϕ̂(k + 1)H(ejω)∆(ejω)
∣

∣ . (36)

Since
∣

∣1 + ϕ̂T
f (k + 1)F (k)ϕ̂f (k + 1)H(ejω)∆(ejω)

∣

∣ < 2 (37)

inequality (36) holds if

ϕ̂T
f (k + 1)F (k)ϕ̂f (k + 1)

∣

∣

∣

∣

H(ejω)

A(ejω)
−

2λ2(k)

λ1(k)

∣

∣

∣

∣

> 4. (38)

Dividing both sides of (38) by the positive scalar term on

the left-hand side, we finally obtain condition II.

V. CONCLUSIONS

A robust adaptive IIR filter based on the recursive least

square technique has been developed. To avoid the assump-

tion of slowly varying adaptation of the adaptive filter coeffi-

cients the algorithm is proposed in the modified form. Due to

the time-varying nature of the secondary path, the algorithm

is always exposed to eventual uncertainties and becomes

vulnerable in terms of stability. Therefore, it is necessary

to find methods that make it robust in the secondary path.

To this end, in this study the possibility of designing a

general linear filter for shaping the error signal generated by

the algorithm is investigated. By analysis of the algorithm,

sufficient conditions assuring robust stability of the algorithm

in front of uncertainties in the secondary path are derived.
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