
MDP Optimal Control under Temporal Logic Constraints

Xu Chu Ding Stephen L. Smith Calin Belta Daniela Rus

Abstract— In this paper, we develop a method to automati-
cally generate a control policy for a dynamical system modeled
as a Markov Decision Process (MDP). The control specification
is given as a Linear Temporal Logic (LTL) formula over a set of
propositions defined on the states of the MDP. We synthesize a
control policy such that the MDP satisfies the given specification
almost surely, if such a policy exists. In addition, we designate
an “optimizing proposition” to be repeatedly satisfied, and we
formulate a novel optimization criterion in terms of minimizing
the expected cost in between satisfactions of this proposition.
We propose a sufficient condition for a policy to be optimal, and
develop a dynamic programming algorithm that synthesizes a
policy that is optimal under some conditions, and sub-optimal
otherwise. This problem is motivated by robotic applications
requiring persistent tasks, such as environmental monitoring
or data gathering, to be performed.

I. INTRODUCTION

Recently, many works [1]–[4] have proposed using tempo-
ral logics, such as Linear Temporal Logic (LTL) and Com-
putation Tree Logic (CTL) [5], as specification languages for
control systems. Such logics are appealing because they have
well defined syntax and semantics, which can be easily used
to specify complex behavior. In particular, in LTL, it is pos-
sible to specify persistent tasks, e.g., “Visit regions A, then
B, and then C, infinitely often. Never enter B unless coming
directly from D.” In addition, off-the-shelf model checking
algorithms [5] and temporal logic game strategies [6] can be
used to verify the correctness of system trajectories and to
synthesize provably correct control strategies.

The existing works focusing on LTL assume that a finite
model of the system is available and the current state can be
precisely determined. If the control model is deterministic
(i.e., at each state, an available control enables exactly one
transition), control strategies from specifications given as
LTL formulas can be found through simple adaptations of
off-the-shelf model checking algorithms [7]. If the control
is non-deterministic (an available control at a state enables
one of several transitions, and their probabilities are not
known), the control problem from an LTL specification can
be mapped to the solution of a Büchi or GR(1) game if
the specification is restricted to a fragment of LTL [1], [8].
If the probabilities of the enabled transitions at each state
are known, the control problem reduces to finding a control
policy for a Markov Decision Process (MDP) such that a
probabilistic temporal logic formula is satisfied [9].

X. C. Ding and C. Belta are with Department of Mechanical En-
gineering, Boston University, Boston, MA 02215, USA (email: {xcding;
cbelta}@bu.edu). S. L. Smith is with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(email: stephen.smith@uwaterloo.ca). D. Rus is with the Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA (email: rus@csail.mit.edu). This work
was supported in part by ONR-MURI N00014-09-1051, ARO W911NF-
09-1-0088, AFOSR YIP FA9550-09-1-020, and NSF CNS-0834260.

By adapting methods from probabilistic model-checking
[9]–[11], we have recently developed frameworks for deriv-
ing MDP control policies from LTL formulas [12], which
is related to a number of other approaches [13], [14] that
address the problem of synthesizing control policies for
MDPs subject to LTL satisfaction constraints. In all of the
above approaches, a control policy is designed to maximize
the probability of satisfying a given LTL formula. However,
no attempt has been made so far to optimize the long-term
behavior of the system, while enforcing LTL satisfaction
guarantees. Such an objective is often critical in many
applications, such as surveillance, persistent monitoring, and
pickup delivery tasks, where an autonomous agent must
repeatedly visit some areas in an environment and the time
in between revisits should be minimized.

As far as we know, this paper is the first attempt to
compute an optimal control policy for a dynamical system
modeled as an MDP, while satisfying temporal logic con-
straints. This work begins to bridge the gap between our prior
work on MDP control policies maximizing the probability of
satisfying an LTL formula [12] and optimal path planning
under LTL constraints [15]. We consider LTL formulas
defined over a set of propositions assigned to the states of
the MDP. We synthesize a control policy such that the MDP
satisfies the specification almost surely. In addition, over
all such policies, we minimize the expected cost between
satisfying instances of an “optimizing proposition.”

The main contribution of this paper is two-fold. First, we
formulate the above MDP optimization problem in terms
of minimizing the average cost per cycle, where a cycle
is defined between successive satisfaction of the optimizing
proposition. We present a novel connection between this
problem and the well-known average cost per stage problem.
Second, we incorporate the LTL constraints and obtain a
sufficient condition for a policy to be optimal. We present a
dynamic programming algorithm that under some restrictions
synthesizes an optimal control policy, and a sub-optimal
policy otherwise.

Due to space constraints, we omit all proofs in the paper
and the complexity analysis of the approach. They can be
found in the technical report [16].

II. PRELIMINARIES

A. Linear Temporal Logic
We employ Linear Temporal Logic (LTL) to describe

MDP control specifications. A detailed description of the
syntax and semantics of LTL is beyond the scope of this
paper and can be found in [5], [10]. Roughly, an LTL
formula is built up from a set of atomic propositions Π,
standard Boolean operators ¬ (negation), ∨ (disjunction), ∧
(conjunction), and temporal operators© (next), U (until), 3

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 532

(eventually), 2 (always). More expressivity can be achieved
by combining the above temporal and Boolean operators.
An LTL formula φ over Π is evaluated over infinite words
o = o0o1 . . . in 2Π (i.e., o either satisfies or violates φ).
Definition II.1 (Deterministic Rabin Automaton). A de-
terministic Rabin automaton (DRA) is a tuple R =
(Q,Σ, δ, q0, F), where (i) Q is a finite set of states; (ii) Σ
is a set of inputs (alphabet); (iii) δ : Q × Σ → Q is the
transition function; (iv) q0 ∈ Q is the initial state; and (v)
F = {(L(1),K(1)), . . . , (L(M),K(M))} is a set of pairs of
sets of states such that L(i),K(i) ⊆ Q for all i = 1, . . . ,M .

A run of a Rabin automaton R, denoted by rR = q0q1 . . .,
is an infinite sequence of states inR such that for each i ≥ 0,
qi+1 ∈ δ(qi, α) for some α ∈ Σ. A run rR is accepting if
there exists a pair (L(i),K(i)) such that set L(i) is visited by
rR only finitely often and set K(i) is visited by rR infinitely
often. For any LTL formula φ over Π, one can construct a
DRA with input alphabet Σ = 2Π accepting all and only
words over Π that satisfy φ (see e.g., [10]). We refer readers
to [10] and references therein for algorithms and to freely
available implementations, such as [17], to translate an LTL
formula to a corresponding DRA.

B. Markov Decision Process and probability measure

Definition II.2 (Labeled Markov Decision Process). A la-
beled Markov decision process (MDP) is a tuple M =
(S,U, P, s0,Π,L, g), where S = {1, . . . , n} is a finite set
of states; U is a finite set of controls (actions) (with slight
abuse of notations we also define the function U(i), where
i ∈ S and U(i) ⊆ U to represent the available controls at
state i); P : S×U ×S → [0, 1] is the transition probability
function such that for all i ∈ S,

∑
j∈S P (i, u, j) = 1 if

u ∈ U(i), and P (i, u, j) = 0 if u /∈ U(i); s0 ∈ S is the
initial state; Π is a set of atomic propositions; L : S → 2Π

is a labeling function and g : S × U → R+ is such that
g(i, u) is the expected (positive) cost when control u ∈ U(i)
is taken at state i.

We define a control function µ : S → U such that µ(i) ∈
U(i) for all i ∈ S. An infinite sequence of control functions
M = {µ0, µ1, . . .} is called a policy. One can use a policy to
resolve all non-deterministic choices in an MDP by applying
the action µk(sk) at state sk. Given an initial state s0, an
infinite sequence rMM = s0s1 . . . on M generated under a
policy M is called a path on M if P (sk, µk(sk), sk+1) > 0
for all k. The index k of a path is called stage. If µk = µ
for all k, then we call it a stationary policy and we denote it
simply as µ. A stationary policy µ induces a Markov chain
where its set of states is S and the transition probability from
state i to j is P (i, µ(i), j).

We define PathsMM as the set of all paths of M under a
policy M . We can then define a probability measure PrMM
over the set PathsMM. The definition of this measure can
be found in a text in probabilistic model checking, such as
[10, Ch. 10]. With this probability measure, we can define
the probability that an MDP M under a policy M satisfies
an LTL formula φ. A path rMM = s0s1 . . . deterministically
generates a word o = o0o1 . . ., where oi = L(si) for all i.

With a slight abuse of notation, we denote L(rMM) as the
word generated by rMM. We denote o � φ if word o satisfies
φ. Given an LTL formula φ, one can show that the set {rMM ∈
PathsMM : L(rMM) � φ} is measurable. We define

PrMM(φ) := PrMM{rMM ∈ PathsMM : L(rMM) � φ} (1)

as the probability of satisfying φ for M under M . See [10]
for more details about probability measures on MDPs under
a policy and measurability of LTL formulas.

III. PROBLEM FORMULATION

Consider a weighted MDPM = (S,U, P, s0,Π,L, g) and
an LTL formula φ over Π. As proposed in [15], we assume
that formula φ is of the form:

φ = 23π ∧ ψ, (2)

where the atomic proposition π ∈ Π is called the optimizing
proposition and ψ is an arbitrary LTL formula. In other
words, φ requires that ψ be satisfied and π be satisfied
infinitely often. We assume that there exists at least one
policy M of M such that M under M satisfies φ almost
surely, i.e., PrMM(φ) = 1 (in this case we simply say M
satisfies φ almost surely).

We let M be the set of all policies and Mφ be the set of all
policies satisfying φ almost surely. Note that if there exists a
control policy satisfying φ almost surely, then there typically
exist many (possibly infinite number of) such policies.

We would like to obtain the optimal policy such that φ
is almost surely satisfied, and the expected cost in between
visiting a state satisfying π is minimized. To formalize this,
we first denote Sπ = {i ∈ S, π ∈ L(i)} (i.e., the states where
atomic proposition π is true). We say that each visit to set
Sπ completes a cycle. Thus, starting at the initial state, the
finite path reaching Sπ for the first time is the first cycle;
the finite path that starts after the completion of the first
cycle and ends with revisiting Sπ for the second time is the
second cycle, and so on. Given a path rMM = s0s1 . . ., we use
C(rMM, N) to denote the cycle index up to stage N , which is
defined as the total number of cycles completed in N stages
plus 1 (i.e., the cycle index starts with 1 at the initial state).

The main problem that we consider in this paper is to
find a policy that almost surely satisfies φ and minimizes
the average cost per cycle (ACPC) starting from the initial
state s0. Formally, we have:
Problem III.1. Find a policy M = {µ0, µ1, . . .} over Mφ

that minimizes

J(s0) = lim sup
N→∞

E

{∑N
k=0 g(sk, µk(sk))

C(rMM, N)

}
, (3)

where E{·} denotes the expected value.
Prob. III.1 is related to the standard average cost per stage

(ACPS) problem, which consists of minimizing

Js(s0) = lim sup
N→∞

E

{∑N
k=0 g(sk, µk(sk))

N

}
, (4)

over M, with the noted difference that the right-hand-side
(RHS) of (4) is divided by the index of stages instead of

533

cycles. The ACPS problem has been widely studied in the
dynamic programming community, without the constraint of
satisfying temporal logic formulas.

The ACPC cost function we consider in this paper is
relevant for probabilistic abstractions and practical appli-
cations, where the cost of controls can represent the time,
energy, or fuel required to apply controls at each state. In
particular, it is a suitable performance measure for persistent
tasks, which can be specified by LTL formulas. For example,
in a data gathering mission [15], an agent is required to
repeatedly gather and upload data. We can assign π to the
data upload locations and a solution to Prob. III.1 minimizes
the expected cost in between data upload. In such cases,
the ACPS cost function does not translate to a meaningful
performance criterion. In fact, a policy minimizing (4) may
even produce an infinite cost in (3). Nevertheless, we will
make the connection between the ACPS and the ACPC
problems in Sec. IV.

IV. SOLVING THE AVERAGE COST PER CYCLE PROBLEM

A. Optimality conditions for ACPS problems

In this section, we recall some known results on the ACPS
problem, namely finding a policy over M that minimizes Js

in (4). The reader interested in more details is referred to
standard texts (e.g., [18], [19]) and references therein.
Definition IV.1 (Weak Accessibility Condition). An MDP
M is said to satisfy the Weak Accessibility (WA) condition
if there exist Sr ⊆ S, such that (i) there exists a stationary
policy where j is reachable from i for any i, j ∈ Sr, and (ii)
states in S \ Sr are transient under all stationary policies.

MDPM is called single-chain (or weakly-communicating)
if it satisfies the WA condition. If M satisfies the WA
condition with Sr = S, then M is called communicating.
For a stationary policy, it induces a Markov chain with a
set of recurrent classes. A state that does not belong to any
recurrent class is called transient. A stationary policy µ is
called unichain if the Markov chain induced by µ contains
one recurrent class (and a possible set of transient states). If
every stationary policy is unichain, M is called unichain.

Recall that the set of states ofM is denoted by {1, . . . , n}.
For each stationary policy µ, we use Pµ to denote the
transition probability matrix: Pµ(i, j) = P (i, µ(i), j). Define
vector gµ where gµ(i) = g(i, µ(i)). For each stationary
policy µ, we can obtain a gain-bias pair (Jsµ, h

s
µ), where

Jsµ = P ∗µgµ, hsµ = Hs
µgµ (5)

with

P ∗µ = lim
N→∞

1

N

N−1∑
k=0

(Pµ)k, Hµ = (I−Pµ+P ∗µ)−1−P ∗µ .

(6)
The vector Jsµ = [Jsµ(1), . . . , Jsµ(n)]T is such that Jsµ(i) is
the ACPS starting at initial state i under policy µ. Note that
the limit in (6) exists for any stochastic matrix Pµ, and P ∗µ is
stochastic. Therefore, the lim sup in (4) can be replaced by
the limit for a stationary policy. Moreover, (Jsµ, h

s
µ) satisfies

Jsµ = PµJ
s
µ, Jsµ + hsµ = gµ + Pµh

s
µ. (7)

By noting that
hsµ + vsµ = Pµv

s
µ, (8)

for some vector vsµ, we see that (Jsµ, h
s
µ, v

s
µ) is the solution

of 3n linear equations with 3n unknowns.
It has been shown that, there exists a stationary optimal

policy µ? minimizing (4) over all policies. Furthermore, If
M is single-chain or communicating, the optimal ACPS does
not depend on the initial state, i.e., Jsµ?(i) = λ for all i ∈ S
and the gain-bias pair is (λ1, hs), where 1 is a vector of
all 1s. In this case, the following optimality condition can
be derived from the Bellman’s equations of optimality for
ACPS problems (see, e.g., [18]):

λ1 + hs ≤ gµ + Pµh
s (9)

for all µ ∈M, where ≤ is component-wise.

B. Optimality conditions for ACPC problems
Now we derive optimality conditions for ACPC problems,

without considering the satisfaction constraint, i.e., we do not
limit the set of polices to Mφ at the moment. We consider
the following problem:
Problem IV.2. Given a communicating MDP M and a set
Sπ , find a policy µ over M that minimizes (3).

Note that, for reasons that will become clear in Sec. V,
we assume in Prob. IV.2 that the MDP is communicating.
However, it is possible to generalize the results in this section
to an MDP that is not communicating.

We limit our attention to stationary policies. We will
show that, similar to the majority of problems in dynamic
programming, there exist optimal stationary policies, thus it
is sufficient to consider only stationary policies. For such
policies, we use the following notion of proper policies,
which is the same as the one used in stochastic shortest path
problems (see e.g., [18]).
Definition IV.3 (Proper Polices). We say a stationary policy
µ is proper if, under µ, there is positive probability that
the set Sπ will be reached after a finite number of stages,
regardless of the initial state.

We denote Jµ = [Jµ(1), . . . , Jµ(n)]T where Jµ(i) is the
ACPC in (3) starting from state i under policy µ. If policy
µ is improper, then there exist some states i ∈ S that can
never reach Sπ . In this case, since g(i, u) is positive for all
i, u, we can immediately see that Jµ(i) = ∞. We will first
consider only proper policies.

Without loss of generality, we assume that Sπ =
{1, . . . ,m} (i.e., states m + 1, . . . , n are not in Sπ). Given
a proper policy µ, we obtain its transition matrix Pµ as
described in Sec. IV-A. Our goal is to express Jµ in terms of
Pµ, similar to (5) in the ACPS case. To achieve this, we first
compute the probability that j ∈ Sπ is the first state visited
in Sπ after leaving from a state i ∈ S by applying policy µ.
We denote this probability by P̃ (i, µ, j). We can obtain this
probability for all i ∈ S and j ∈ Sπ using the following:
Proposition IV.4. P̃ (i, µ, j) satisfies

P̃ (i, µ, j) =

n∑
k=m+1

P (i, µ(i), k)P̃ (k, µ(k), j)+P (i, µ(i), j).

(10)

534

We now define a n× n matrix P̃µ such that

P̃µ(i, j) =

{
P̃ (i, µ, j) if j ∈ Sπ
0 otherwise

(11)

We can immediately see that P̃µ is a stochastic matrix, i.e.,∑n
j=1 P̃ (i, µ, j) = 1. More precisely,

∑m
j=1 P̃ (i, µ, j) = 1

since P̃ (i, µ, j) = 0 for all j = m+ 1, . . . , n.
Using (10), we can express P̃µ in a matrix equation in

terms of Pµ. To do this, we need to first define two n × n
matrices from Pµ as follows:

←−
P µ(i, j) =

{
Pµ(i, j) if j ∈ Sπ
0 otherwise (12)

−→
P µ(i, j) =

{
Pµ(i, j) if j /∈ Sπ
0 otherwise (13)

We can see that matrix Pµ is “split” into
←−
P µ and

−→
P µ, i.e.,

Pµ =
←−
P µ +

−→
P µ.

Proposition IV.5. If a policy µ is proper, then matrix I−
−→
P µ

is non-singular.
We can then write (10) as the following matrix equation:

P̃µ =
−→
P µP̃µ +

←−
P µ. (14)

Since I −
−→
P µ is invertible, we have

P̃µ = (I −
−→
P µ)−1←−P µ. (15)

Note that (14) and (15) do not depend on the ordering of the
states ofM, i.e., Sπ does not need to be equal to {1, . . . ,m}.

Next, we give an expression for the expected cost of
reaching Sπ from i ∈ S under µ (if i ∈ Sπ , this is the
expected cost of reaching Sπ again), and denote it as g̃(i, µ).
Proposition IV.6. g̃(i, µ) satisfies

g̃(i, µ) =

n∑
k=m+1

P (i, µ(i), k)g̃(k, µ) + g(i, µ(i)). (16)

We define g̃µ such that g̃µ(i) = g̃(i, µ), and note that (16)
can be written as follows:

g̃µ =
−→
P µg̃µ + gµ

g̃µ = (I −
−→
P µ)−1gµ, (17)

where gµ is defined in Sec. IV-A.
We can now express the ACPC Jµ in terms of P̃µ and

g̃µ. Observe that, starting from i, the expected cost of the
first cycle is g̃µ(i); the expected cost of the second cycle
is
∑m
j=1 P̃µ(i, µ, j)g̃µ(j); the expected cost of the third

cycle is
∑m
j=1

∑m
k=1 P̃µ(i, µ, j)P̃µ(j, µ, k)g̃µ(k); and so on.

Therefore

Jµ = lim sup
C→∞

1

C

C−1∑
k=0

(P̃µ)kg̃µ, (18)

where C represents the cycle count. Since P̃µ is a stochastic
matrix, the lim sup in (18) can be replaced by the limit, and
we have

Jµ = lim
C→∞

1

C

C−1∑
k=0

(P̃µ)kg̃µ = P̃ ∗µ g̃µ, (19)

where P ∗ for a stochastic matrix P is defined in (6).
We can now make a connection between Prob. IV.2 and the

ACPS problem. Each proper policy µ of M can be mapped
to a policy µ̃ with transition matrix Pµ̃ := P̃µ and vector of
costs gµ̃ := g̃µ, and we have

Jµ = Jsµ̃. (20)

Moreover, we define hµ := hsµ̃. Together with Jµ, pair
(Jµ, hµ) can be seen as the gain-bias pair for the ACPC
problem. We denote the set of all polices that can be mapped
to a proper policy as Mµ̃. We see that a proper policy
minimizing the ACPC maps to a policy over Mµ̃ minimizing
the ACPS.

The by-product of the above analysis is that, if µ is proper,
then Jµ(i) is finite for all i, since P̃ ∗µ is stochastic and gµ(i) is
finite for all i. We now show that, among stationary policies,
it is sufficient to consider only proper policies.
Proposition IV.7. Assume µ to be an improper policy. IfM
is communicating, then there exists a proper policy µ′ such
that Jµ′(i) ≤ Jµ(i) for all i = 1, . . . , n, with strict inequality
for at least one i.

Using the connection to the ACPS problem, we have:
Proposition IV.8. If M is communicating, the optimal
ACPC policy over stationary policies is independent of the
initial state.

The above result means that the gain-bias pair for the
optimal policy is (λ1, h). This is not surprising, as it mirrors
the result for a communicating MDP in the ACPS problem.
Essentially, transient behavior does not matter in the long
run so the optimal cost is the same for any initial state.

Using inequality in the case when the optimal cost is the
same for all initial states (9), policy µ̃? with the ACPS gain-
bias pair (λ1, hsµ̃?) satisfying for all µ̃ ∈Mµ̃:

λ1 + hsµ̃? ≤ gµ̃ + Pµ̃h
s
µ̃? (21)

is optimal. Equivalently, µ? that maps to µ̃? is optimal over
all proper policies. The following proposition shows that µ?

is optimal over all policies in M, stationary or not.
Proposition IV.9. The proper policy µ? that maps to µ̃?

satisfying (21) is optimal over M.
Unfortunately, it is not clear how to find the optimal

policy from (21) except by searching through all policies
in Mµ̃. This exhaustive search is not feasible for reasonably
large problems. Instead, we would like equations in the form
Bellman’s equations (see e.g., [18]), where optimizations can
be carried out independently at each state.

To circumvent this difficulty, we need to express the gain-
bias pair (Jµ, hµ), which is equal to (Jsµ̃, h

s
µ̃), in terms of µ.

From (7), we have

Jµ = Pµ̃Jµ, Jµ + hµ = gµ̃ + Pµ̃hµ.

By manipulating the above equations, we can now show that
Jµ and hµ can be expressed in terms of µ (analogous to (7))
instead of µ̃ via the following proposition:
Proposition IV.10. We have:

Jµ = PµJµ, Jµ + hµ = gµ + Pµhµ +
−→
P µJµ. (22)

535

Moreover, we have:

(I −
−→
P µ)hµ + vµ = Pµvµ, (23)

for some vector vµ.
From Prop. IV.10, similar to the ACPS problem,

(Jµ, hµ, vµ) can be solved together by a linear system of
3n equations and 3n unknowns. The insight gained when
simplifying Jµ and hµ in terms of µ motivates us to propose
the following optimality condition for an optimal policy.
Proposition IV.11. The policy µ? with gain-bias pair (λ1, h)
satisfying

λ+ h(i) = min
u∈U(i)[

g(i, u) +

n∑
j=1

P (i, u, j)h(j) + λ

n∑
j=m+1

P (i, u, j)

]
, (24)

for all i = 1, . . . , n, is the optimal policy minimizing (3)
over all policies in M.

We will present an algorithm that uses Prop. IV.11 to find
the optimal policy in the next section. Note that, unlike (21),
(24) can be checked for any policy µ by finding the minimum
for all states i = 1, . . . , n, which is significantly easier than
searching over all proper policies.

V. SYNTHESIZING THE OPTIMAL POLICY UNDER LTL
CONSTRAINTS

In this section we outline an approach for Prob. III.1. We
aim for a computational framework, which in combination
with results of [12] produces a policy that both maximizes
the satisfaction probability and optimizes the long-term per-
formance of the system, using results from Sec. IV.

A. Automata-theoretical approach to LTL control synthesis

Our approach proceeds by converting the LTL formula
φ to a DRA as defined in Def. II.1. We denote the
resulting DRA as Rφ = (Q, 2Π, δ, q0, F) with F =
{(L(1),K(1)), . . . , (L(M),K(M))} where L(i),K(i) ⊆ Q
for all i = 1, . . . ,M . We can now obtain an MDP as the
product of a labeled MDPM and a DRARφ, which captures
all paths of M satisfying φ (see, e.g., [10], [11]).
Definition V.1 (Product MDP). The product MDP M×Rφ
between a labeled MDP M = (S,U, P, s0,Π,L, g) and a
DRA Rφ = (Q, 2Π, δ, q0, F) is obtained from a tuple P =
(SP , U, PP , sP0, FP , SPπ, gP), where

(i) SP = S ×Q is a set of states;
(ii) U is a set of controls inherited from M and we define

UP((s, q)) = U(s);
(iii) PP gives the transition probabilities:

PP((s, q), u, (s′, q′))=

{
P (s, u, s′) if q′ = δ(q,L(s))

0 otherwise;

(iv) sP0 = (s0, q0) is the initial state;
(v) FP = {(LP(1),KP(1)), . . . , (LP(M),KP(M))}

where LP(i) = S × L(i), KP(i) = S × K(i), for
i = 1, . . . ,M ;

(vi) SPπ is the set of states in SP for which proposition π
is satisfied. Thus, SPπ = Sπ ×Q;

(vii) gP((s, q), u) = g(s, u) for all (s, q) ∈ SP ;

Note that some states of SP may be unreachable and
therefore have no control available. After removing those
states (via a simple graph search), P is a valid MDP and is
the desired product MDP. With a slight abuse of notation we
still denote the product MDP as P and always assume that
unreachable states are removed.

There is an one-to-one correspondence between a path
s0s1, . . . on M and a path (s0, q0)(s1, q1) . . . on P . More-
over, from the definition of gP , the costs along these two
paths are the same. The product MDP is constructed so
that, given a path (s0, q0)(s1, q1) . . ., the corresponding path
s0s1 . . . on M generates a word satisfying φ if and only if,
there exists (LP ,KP) ∈ FP such that the set KP is visited
infinitely often and LP finitely often (see e.g., [10]).

A similar one-to-one correspondence exists for policies:
Definition V.2 (Inducing a policy from P). Given policy
MP = {µP0 , µP1 , . . .} on P , where µPk ((s, q)) ∈ UP((s, q)),
it induces policy M = {µ0, µ1, . . .} on M by setting
µk(sk) = µPk ((sk, qk)) for all k. We denote MP |M as the
policy induced by MP , and use the same notation for a set
of policies.

An induced policy can be implemented on M by simply
keeping track of its current state on P . Note that a stationary
policy on P induces a non-stationary policy on M. From
the one-to-one correspondence between paths and the equiv-
alence of their costs, the expected cost in (3) from initial
state s0 under MP |M is equal to the expected cost from
initial state (s0, q0) under MP .

For each pair of states (LP ,KP) ∈ FP , we can obtain a
set of accepting maximal end components (AMEC):
Definition V.3 (Accepting Maximal End Components).
Given (LP ,KP) ∈ FP , an end component C is a communi-
cating MDP (SC , UC , PC ,KC , SCπ, gC) such that SC ⊆ SP ,
UC ⊆ UP , UC(i) ⊆ U(i) for all i ∈ SC , KC = SC ∩ KP ,
SCπ = SC ∩ SPπ , and gC(i, u) = gP(i, u) if i ∈ SC ,
u ∈ UC(i). If P (i, u, j) > 0 for any i ∈ SC and u ∈ UC(i),
then j ∈ SC , in which case PC(i, u, j) = P (i, u, j). An
accepting maximal end components (AMEC) is the largest
such end component such that KC 6= ∅ and SC ∩ LP = ∅.

An algorithm to obtain all AMECs for a product MDP
was provided in [10]. Note that, an AMEC always contains
at least one state in KP and no state in LP . Moreover, it
is “absorbing” in the sense that the state does not leave an
AMEC once entered. From probabilistic model checking, a
policy M = MP |M almost surely satisfies φ (i.e., M ∈
Mφ) if and only if, there exists an AMEC C such that the
probability of reaching SC from initial state (s0, q0) under
policy MP is 1. If such a policy MP exists for an AMEC
C, we call C reachable. In [12], such a policy was found by
dynamic programming or solving a linear program. For states
inside C, since C itself is a communicating MDP, a policy
(not unique) can be easily constructed such that a state in KC
is infinitely often visited, satisfying the LTL specification.

536

B. Optimizing the long-term performance of the MDP

For a control policy designed to satisfy an LTL formula,
the system behavior outside an AMEC is transient, while the
behavior inside an AMEC is long-term. The policies obtained
in [12]–[14] essentially disregard the behavior inside an
AMEC, because, from the verification point of view, the
behavior inside an AMEC is for the most part irrelevant, as
long as a state in KP is visited infinitely often. We now aim
to optimize the long-term behavior of the MDP with respect
to the ACPC cost function, while enforcing the satisfaction
constraint. Since each AMEC is a communicating MDP, we
can use results in Sec. IV-B to help obtaining a solution. Our
approach consists of the following steps:

(i) Convert formula φ to a DRA Rφ and obtain the product
MDP P between M and Rφ;

(ii) Obtain the set of reachable AMECs, denoted as A;
(iii) For each C ∈ A: Find a stationary policy µ?→C(i),

defined for i ∈ S \SC , that reaches SC with probability
1 (µ?→C is guaranteed to exist and obtained as in [12]);
Find a stationary policy µ?�C(i), defined for i ∈ SC ,
which minimizes (3) for MDP C and set SCπ with
optimal cost λC , while satisfying the LTL constraint
(how to find this policy will be explained later); Define

µ?C =

{
µ?→C(i) if i /∈ SC
µ?�C(i) if i ∈ SC

; (25)

(iv) We find the solution to Prob. III.1 by

J?(s0) = min
C∈A

λC , (26)

and the optimal policy is µ?C? |M, where C? is the AMEC
attaining the minimum in (26).

We now provide the sufficient conditions for a policy
µ?�C to be optimal. Moreover, if an optimal policy µ?�C can
be obtained for each C, we show that the above procedure
indeed gives the optimal solution to Prob. III.1.
Proposition V.4. For each C ∈ A, let µ?C to be constructed
as in (25), where µ?�C is a stationary policy satisfying
two optimality conditions: (i) its ACPC gain-bias pair is
(λC1, h), where

λC + h(i) = min
u∈UC(i)

[
gC(i, u) +

∑
j∈SC

P (i, u, j)h(j)

+ λC
∑
j /∈SCπ

P (i, u, j)

]
, (27)

for all i ∈ SC , and (ii) there exists a state of KC in each
recurrent class of µ?�C . Then the optimal cost for Prob. III.1
is J?(s0) = minC∈A λC , and the optimal policy is µ?C? |M,
where C? is the AMEC attaining this minimum.

We can relax the optimality conditions for µ?�C in Prop.
V.4 and require that there exist a state i ∈ KC in one recurrent
class of µ?�C . For such a policy, we can construct a policy
such that it has one recurrent class containing state i, with the
same ACPC cost at each state. This construction is identical
to a similar procedure for ACPS problems when the MDP

is communicating (see [18, p. 203]). We can then use (25)
to obtain the optimal policy µ?C for C.

We now present an algorithm (see Alg. 1) that iteratively
updates the policy in an attempt to find one that satisfies the
optimality conditions given in Prop. V.4, for a given C ∈
A. Note that Alg. 1 is similar in nature to policy iteration
algorithms for ACPS problems.

Algorithm 1 : Policy iteration algorithm for ACPC
Input: C = (SC , UC , PC ,KC , SCπ, gC)
Output: Policy µ�C

1: Initialize µ0 to a proper policy containing KC in its recurrent
classes (such a policy can always be constructed since C is
communicating)

2: repeat
3: Given µk, compute Jµk and hµk with (22) and (23)
4: Compute for all i ∈ SC :

Ū(i) = arg min
u∈UC(i)

∑
j∈SC

P (i, u, j)Jµk (j) (28)

5: if µk(i) ∈ Ū(i) for all i ∈ SC then
6: Compute, for all i ∈ SC :

M̄(i) = arg min
u∈Ū(i)

[
gC(i, u) +

∑
j∈SC

P (i, u, j)hµk (j)

+
∑
j /∈SCπ

P (i, u, j)Jµk (j)

]
(29)

7: Find µk+1 such that µk+1(i) ∈ M̄(i) for all i ∈ SC , and
contains a state of KC in its recurrent classes. If one does
not exist. Return: µk with “not optimal”

8: else
9: Find µk+1 such that µk+1(i) ∈ Ū(i) for all i ∈ SC , and

contains a state of KC in its recurrent classes. If one does
not exist, Return: µk with “not optimal”

10: end if
11: Set k ← k + 1
12: until µk with gain-bias pair satisfying (27) and Return: µk

with “optimal”

Proposition V.5. Given C, Alg. 1 terminates in a finite
number of iterations. If it returns policy µ�C with “optimal”,
then µ�C satisfies the optimality conditions in Prop. V.4. If
C is unichain (i.e., each stationary policy of C is unichain),
then Alg. 1 is guaranteed to return the optimal policy µ?�C .

The unichain condition in Prop. V.5 is sufficient, but not
necessary, i.e., if C is not unchain, Alg. 1 may still return
with “optimal”. If we obtain the optimal policy for each
C ∈ A, then we use (26) to obtain the optimal solution for
Prob. III.1. If for some C, Alg. 1 returns “not optimal”, then
the policy returned by Alg. 1 is only sub-optimal. We can
then apply this algorithm to each AMEC in A and use (26)
to obtain a sub-optimal solution for Prob. III.1. Note that
similar to policy iteration algorithms for ACPS problems,
either the gain or the bias strictly decreases every time when
µ is updated, so policy µ is improved in each iteration. In
both cases, the satisfaction constraint is always enforced.

VI. CASE STUDY

The algorithmic framework developed in this paper is
implemented in MATLAB, and here we provide an example

537

as a case study. Consider the MDP M shown in Fig. 1,
which can be viewed as the dynamics of a robot navigat-
ing in an environment with the set of atomic propositions
{pickup, dropoff}. In practice, this MDP can be obtained
via an abstraction process (see e.g., [20]) from the environ-
ment, where its probabilities of transitions can be obtained
from experimental data or accurate simulations.

1 1

0.2

0.8
1

1

0.9

11

1

1
α

α α

α

α

β1

β

γ
0.7

0.11

dropoff
β

1

γβ

0.3

α

α1

α

α

pickup

0 1 2 3

4 5 6

7 8 9

Fig. 1. MDP capturing a robot navigating in an environment. {α, β, γ} is
the set of controls. The cost of applying α, β, γ at a state where the control
is available is 5, 10, 1, respectively. (e.g., g(i, α) = 5 if α ∈ U(i))

The goal of the robot is to continuously perform a pickup-
delivery task. The robot is required to pick up items at the
state marked by pickup (see Fig. 1), and drop them off at
the state marked by dropoff. It is then required to go back
to pickup and this process is repeated. This task can be
written as the following LTL formula:

φ = 23pickup ∧2(pickup⇒©(¬pickup Udropoff)).

The first part of φ, 23pickup, enforces that the robot
repeatedly pick up items. The remaining part of φ ensures
that new items cannot be picked up until the current items
are dropped off. We denote pickup as the optimizing
proposition, and the goal is to find a policy that satisfies
φ with probability 1 and minimizes the expected cost in
between visiting the pickup state (i.e., we aim to minimize
the expected cost in between picking up items).

We generated the DRA Rφ using the ltl2dstar tool [17]
with 13 states and 1 pair (L,K) ∈ F . The product MDP
P after removing unreachable states contains 31 states
(note that P has 130 states without removing unreachable
states). There is one AMEC C corresponding to the only
pair in FP and it contains 20 states. We tested Alg. 1
with a number of different initial policies and Alg. 1
produced the optimal policy within 2 or 3 policy updates
in each case (note that C is not unichain). For one initial
policy, the ACPC was initially 330 at each state of C,
and it was reduced to 62.4 at each state when the optimal
policy was found. The optimal policy µ?C |M is as follows:

State 0 1 2 3 4 5 6 7 8 9
After pickup α β α α α γ γ α β α

After dropoff α α α α α α γ α α α

The first row of the above table shows the optimal policy
after pick-up but before drop-off and the second row shows
the optimal policy after drop-off and before another pick-up.

VII. CONCLUSIONS

We developed a method to automatically generate a control
policy for a Markov Decision Process (MDP), in order

to satisfy specifications given as Linear Temporal Logic
formulas. The control policy satisfies the given specification
almost surely, and it optimizes the average cost between
satisfying instances of an “optimizing proposition”, under
some restrictions. The problem is motivated by robotic
applications requiring some persistent tasks to be performed.

For future work, we aim for completeness and remove the
restrictions of this paper in finding the optimal policy (if
one exists). Alternatively, we aim to characterize the class
of LTL formulas for which our algorithm is complete and
always return the optimal policy.

REFERENCES

[1] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-based temporal logic motion planning,” in Proc ICRA, Rome,
Italy, 2007, pp. 3116–3121.

[2] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc CDC, Shanghai,
China, 2009, pp. 2222–2229.

[3] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in Proc CDC,
Paradise Island, Bahamas, 2004, pp. 153–158.

[4] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc CDC, Shang-
hai, China, 2009, pp. 5997–6004.

[5] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[6] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in International Conference on Verification, Model Checking, and
Abstract Interpretation, Charleston, SC, 2006, pp. 364–380.

[7] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans
Automatic Ctrl, vol. 53, no. 1, pp. 287–297, 2008.

[8] M.Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Hybrid Systems: Computation and Control, ser. Lect. Notes
Comp. Science, M. Egerstedt and B. Mishra, Eds. Springer Verlag,
2008, pp. 287–300.

[9] L. De Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, 1997.

[10] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Check-
ing. MIT Press, 2008.

[11] M. Vardi, “Probabilistic linear-time model checking: An overview of
the automata-theoretic approach,” Formal Methods for Real-Time and
Probabilistic Systems, pp. 265–276, 1999.

[12] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” in
Proc IFAC World C, Milan, Italy, Aug. 2011, to appear.

[13] C. Courcoubetis and M. Yannakakis, “Markov decision processes and
regular events,” IEEE Trans Automatic Ctrl, vol. 43, no. 10, pp. 1399–
1418, 1998.

[14] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Con-
troller synthesis for probabilistic systems,” in Proceedings of IFIP
TCS’2004. Kluwer, 2004.

[15] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path plan-
ning for surveillance with temporal logic constraints,” Int J Robotic
Research, 2011, In press.

[16] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control
under probabilistic temporal logic constraints,” March 2011, available
at http://arxiv.org/abs/1103.4342.

[17] J. Klein, “ltl2dstar - LTL to deterministic Streett and Rabin automata,”
http://www.ltl2dstar.de/, 2007, viewed September 2010.

[18] D. Bertsekas, Dynamic programming and optimal control, vol. II.
Athena Scientific, 2007.

[19] M. L. Puterman, Markov decision processes: Discrete stochastic
dynamic programming. John Wiley and Sons, 1994.

[20] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees,” in Proc ICRA, Anchorage, AK, 2010,
pp. 3227 – 3232.

538

