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Abstract—A state observer is designed for estimating the
structure of a moving object with time-varying velocities seen by
a moving camera. A nonlinear unknown input observer strategy
is used where the object’s velocity is considered as an unknown
input to the perspective dynamical system. The object is assumed
to be moving on a ground plane. The downward-looking camera
observing the moving object is also moving (e.g., attached to
an air vehicle) with known velocities. The developed method
provides the first causal, observer-based structure estimation
algorithm for a moving camera viewing a moving object with
unknown time-varying object velocities.

I. INTRODUCTION

Recovering the structure of a static scene (i.e., the 3D
Euclidean coordinates of feature points) using a moving cam-
era is called ‘Structure from Motion (SfM)’. A number of
solutions to the SfM problem are given in the form of batch
or offline methods [1]–[3] and causal or online methods [4]–
[10]. Solutions to the SfM problem (e.g. see [6], [7]) can be
used for self-localization and map building of an environment
using a moving camera. The fundamental problem behind
SfM algorithms is a triangulation problem. Since the object
is assumed to be stationary, a moving camera can capture
snapshots of the object from two different locations and
triangulation is feasible. SfM techniques cannot be used to
recover the structure and motion of moving objects using a
moving camera because triangulation is not feasible when the
object is moving [11].

Recovering the structure of a moving object using a moving
camera is termed trajectory triangulation in the pioneering
work of [11]. In this paper, the trajectory triangulation problem
is called structure and motion from motion (SaMfM). In [11],
a batch algorithm is applied for points moving in straight lines
or conic trajectories given five or nine views, respectively. In
[12], a batch algorithm is presented for object motions repre-
sented by more general curves. In [13], a factorization-based
batch algorithm is proposed where objects are assumed to be
moving with constant speed in a straight line, observed by a
weak perspective camera. An algebraic geometry approach is
presented in [14] to estimate the motion of objects up to a scale
given a minimum number of point correspondences. In [15],
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authors propose a batch algorithm to estimate the structure
and motion of objects moving on a ground plane observed
by a moving airborne camera. The method relies on a static
scene for estimating the projective depth, approximated by
the depth of feature points on a static background assuming
that one of the feature points of the moving object lies on
the static background. In [16], a batch algorithm is developed
by approximating the trajectories of a moving object using a
linear combination of discrete cosine transform (DCT) basis
vectors.

Batch algorithms use an algebraic relationship between 3D
coordinates of points in the camera coordinate frame and
corresponding 2D projections on the image frame collected
over n images to estimate the structure. Hence, batch al-
gorithms are not useful in real-time control algorithms. For
visual servo control or video-based surveillance tasks, online
structure estimation algorithms are required. The objective of
this paper is to estimate the structure of moving objects from
a continuous stream of images which can be described using a
continuous dynamical model. Instead of algebraic relationships
and geometric constraints used by batch algorithms, a rigid
body kinematic motion model is used to estimate structure.
The use of a dynamical model enables the design of an
online/causal algorithm which uses data from images up to
the current time step. In [11], authors point out that structure
estimation of a moving object using a moving camera can only
be obtained if some assumptions are made on the trajectories
of the moving object. Recently, a causal algorithm is presented
in [17] to estimate the structure and motion of objects moving
with constant linear velocities observed by a moving camera
with known camera motions. In this paper, efforts are focused
on relaxing the assumption of constant object linear velocity.
The object is assumed to be moving on a ground plane
observed by a downward-looking airborne camera. In the
relative rigid body motion dynamics, the moving object’s
linear velocity can be viewed as an exogenous time-varying
disturbance. An unknown input observer (UIO) approach is
used to estimate the state of the dynamical system where the
moving object’s velocity is considered as an unknown input.

Several UIO algorithms are present in literature for esti-
mating the state when an exogenous time-varying unknown
input is present in the system. For linear systems UIOs can
be found in [18]–[22]. Linear UIO algorithms are extended
for various classes of nonlinear systems in [23]–[26]. In [27],
an unknown input observer for fault diagnosis is presented.
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Figure 1. Moving camera looking at a moving object.

The observer design relies on a coordinate transformation
and solving a parametric Lyapunov equation for computing
an observer gain. However, no systematic method exists for
solving a parametric Lyapunov equation. In [24], a nonlinear
UIO is presented where the design procedure is based on H∞
optimization. The observer is called a dynamic UIO which
provides an extra degree of design freedom but increases the
order of the system. In [26], a nonlinear UIO is presented for a
class of nonlinear systems based on a linear matrix inequality
(LMI) approach. In this paper, a nonlinear UIO is presented
for a more general class of nonlinear systems than considered
in [26]. The observer synthesis, i.e., finding the observer gain
matrices, is achieved by solving a LMI feasibility problem or
a LMI eigenvalue optimization problem.

The contribution of this work is to provide a causal algo-
rithm for estimating the structure of a moving object using
a moving camera with relaxed assumptions on the object’s
motion. The object is assumed to be moving on a ground plane
with arbitrary velocities observed by a downward looking cam-
era with arbitrary linear motion in 3D space. No assumptions
are made on the minimum number of points or minimum
number of views required to estimate the structure. Feature
point data and camera velocity data from each image frame
is required. Estimating the structure of a moving object is re-
cast into an unknown input observer design problem. Another
contribution of this paper is to extend the nonlinear UIO design
for a more general class of nonlinear systems inspired by the
UIO design in [18], [26] and to develop sufficient conditions
for the existence of the UIO.

II. EUCLIDEAN TO IMAGE SPACE MAPPING

Consider a scenario depicted in Fig. 1 where a moving
camera views moving point objects (such as feature points
on a rigid object). In Fig. 1, an inertial reference frame is
denoted by F∗1. After the initial time, a reference frame Fc
attached to a pinhole camera undergoes some rotation R̄(t)
∈ SO(3) and translation x̄f (t) ∈ R3 away from F∗.

1w.l.o.g. F∗ can be attached to the camera at the location corresponding
to an initial point in time t0 where the object is in the camera field of view
(FOV) and F∗ is identical to Fc(t0).

The Euclidean coordinates m̄j(t) ∈ R3 (where j =
{1, 2, ...., n} denotes a point number) of points observed by a
camera expressed in the camera frame Fc and the respective
normalized Euclidean coordinates mj(t) ∈ R3 are defined as

m̄j(t) =
[
Xj(t), Yj(t), Zj(t)

]T
, (1)

mj(t) =

[
Xj(t)

Zj(t)
,

Yj(t)

Zj(t)
, 1

]T
. (2)

Consider a closed and bounded set Y ⊂ R3. To facilitate
the subsequent development, the state vector xj(t) = [x1j(t),
x2j(t), x3j(t)]T ∈ Y is constructed from (2) as

xj =

[
Xj

Zj
,

Yj
Zj
,

1

Zj

]T
. (3)

Using projective geometry, the normalized Euclidean coordi-
nates mj(t) can be related to the pixel coordinates in the image
space as

qj = Acmj (4)

where qj(t) =
[
uj(t) vj(t) 1

]T
is a vector of the image-

space feature point coordinates uj(t), vj(t) ∈ R defined on the
closed and bounded set I ⊂ R3, and Ac ∈ R3×3 is a constant,
known, invertible camera calibration matrix [28]. Since Ac is
known, the expression in (4) can be used to recover mj(t),
which can be used to partially reconstruct the state xj(t) so
that the first two components of xj(t) can be determined.

Assumption 1: The relative Euclidean distance Zj(t) be-
tween the camera and the feature points observed on the object
is upper and lower bounded by some known positive constants
(i.e., the object remains within some finite distance away from
the camera). Therefore, the definition in (3) can be used to
assume that

x̄3 ≥ x3j(t) ≥ x3 (5)

where x̄3, x3 ∈ R denote known positive bounding constants.
Likewise, since the image coordinates are constrained (i.e.,
the object is assumed to remain in the camera field of view
(FOV)), the relationships in (2)-(4) along with the fact that Ac
is invertible can be used to conclude that

x̄1 ≥ |x1j(t)| ≥ x1 x̄2 ≥ |x2j(t)| ≥ x2
where x̄1, x̄2, x1, x2 ∈ R denote known positive bounding
constants.

For the remainder of this paper, the feature point subscript
j is omitted to streamline the notation.

III. CAMERA MOTION MODEL AND STATE SPACE
DYNAMICS

Consider a moving camera viewing a moving point q. As
shown in Fig. 1, the point q can be expressed in the coordinate
system Fc as

m̄ = x̄f + R̄xoq (6)

where xoq is a vector from the origin of coordinate system
F∗ to the point q expressed in the coordinate system F∗.
Differentiating (6), the relative motion of q as observed in the
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camera coordinate system can be expressed by the following
kinematics [28]

˙̄m = [ω]×m̄+ vr (7)

where m̄(t) is defined in (1), [ω]× ∈ R3×3 denotes a skew
symmetric matrix formed from the angular velocity vector
of the camera ω(t) =

[
ω1 ω2 ω3

]T ∈ W , and vr(t)
represents the relative velocity of the camera with respect to
the moving point, defined as

vr = vc − vp. (8)

In (8), vc(t) denotes the camera velocity in the camera
reference frame given by vc(t) =

[
vcx vcy vcz

]T ∈ Vc
and vp(t) denotes the velocity of the point in the camera
reference frame given by vp(t) =

[
vpx vpy vpz

]T ∈ Vp.
The sets W, Vc and Vp are closed and bounded sets such that
W ⊂ R3,Vc ⊂ R3 and Vp ⊂ R3. Let the linear and angular
camera velocities be denoted by u =

[
vc ω

]T
.

The states defined in (3) contain unknown structure infor-
mation of the object. To recover the 3D structure, the state
x(t) should be estimated. Using (3) and (7), the dynamics of
the state vector x(t) are expressed as

ẋ1 = Ω1 + f1 − vpxx3 + x1vpzx3,

ẋ2 = Ω2 + f2 − vpyx3 + x2vpzx3,

ẋ3 = −vczx23 − (x2ω1 − x1ω2)x3 + vpzx
2
3,

y =
[
x1 x2

]T
. (9)

where Ω1(u, y), Ω2 (u, y) , f1 (u, x) , f2 (u, x) , f3 (u, x) ∈ R
are defined as

Ω1(u, y) , −x1x2ω1 + ω2 + x21ω2 − x2ω3,

Ω2(u, y) , −ω1 − x22ω1 + x1x2ω2 + x1ω3,

f1(u, x) , (vcx − x1vcz)x3,
f2(u, x) , (vcy − x2vcz)x3,
f3(u, x) , −vczx23 − (x2ω1 − x1ω2)x3.

Assumption 2: The camera velocities ω(t), and vc(t), the
object velocity vp(t), and the feature points y(t) are assumed
to be upper bounded by constants.

Assumption 3: The linear velocity of the moving object
along the Y and Z-directions of the camera coordinate system
is zero, i.e., vpy(t) = vpz(t) = 0, or the linear velocity of
the moving object along only the Z-direction of the camera
coordinate system is zero; i.e., vpz (t) = 0, ∀t > 0. Non-
zero linear velocities of the object can be time-varying and
unknown.

Remark 1. Assumption 3 is satisfied in many practical sce-
narios such as an object moving along a straight line with
a time-varying unknown velocity or an object moving on a
ground plane seen by a downward looking camera attached to
an airborne UAV. Consider a scenario where the Z-axis of the
world coordinate system is pointed upwards perpendicular to
the ground plane and the X, Y axes are in the ground plane.
Since the object is moving in the ground plane, the linear

velocity of the object in the Z-axis of the world coordinate
system is zero and the velocities in X, and Y directions are
time-varying unknowns. The Z-axis of the camera coordinate
system is pointing downwards, hence, for an object moving in
a straight line, vpy(t) = vpz(t) = 0, and for object moving in
a plane vpz(t) = 0.

IV. STRUCTURE AND MOTION ESTIMATION

A. Structure and Motion from Motion (SaMfM) Objective
The objective of SaMfM is to recover the structure (i.e.,

Euclidean coordinates with a scaling factor) and motion (i.e.,
velocities) of moving objects observed by a moving camera,
assuming that all camera velocities are known. In this section,
an observer is presented which estimates the structure of
the moving object with respect to the moving camera. It
is assumed that one or more feature points on the object
are tracked in each image frame and camera velocities are
recorded using sensors such as an IMU. The camera is
assumed to be internally calibrated. Estimating the structure
of an object is equivalent to estimating the state x(t) of the
feature points on the object in each image frame. Based on
the definition of the state in (3), the structure of the moving
object can be estimated by scaling x̂1(t) and x̂2(t) by x̂3(t).

B. Nonlinear Unknown Input Observer
In this section a nonlinear unknown input observer is

developed for a class of nonlinear system in the following
form

ẋ = f(x, u) + g(y, u) +Dd

y = Cx (10)

where x(t) ∈ Rn is a state of the system, u(t) ∈ Rm is
a measurable control input, d(t) ∈ Rq is an unmeasurable
input, y(t) ∈ Rp is output of the system, the function f(x, u)
is nonlinear in x(t), and u(t) and satisfies Lipschitz condition
||f(x, u)− f(x̂, u)|| ≤ γ1 ||x− x̂|| where γ1 ∈ R+. The
system given by (9) can be represented in the form of (10) with
f (x, u) =

[
f1 f2 f3

]T
, g (y, u) =

[
Ω1 Ω2 0

]T
,

C =

[
1 0 0
0 1 0

]
, n = 3, m = 6, p = 2. For the

object moving along straight line d(t) = vpxx3, D =[
1 0 0

]T
, q = 1 and for the object moving on a plane

d(t) =
[
vpxx3 vpyx3

]T
, D =

[
1 0 0
0 1 0

]T
, q = 2. A

general n-dimensional model described by (10) is used for the
subsequent development of the nonlinear UIO. The UIO can
be used for the specific SaMfM dynamics in (9).
Remark 2. The dynamics in (9) are not observable if:
a) the camera is stationary, i.e., u = 0, or b) the
camera moves along the ray projected by the feature
point on the image, i.e., (vcx − vpx − x1 (vcz − vpz)) =
(vcy − vpy − x2 (vcz − vpz)) = 0.

The system in (10) can be written in the following form

ẋ = Ax+ f̄(x, u) + g(y, u) +Dd

y = Cx (11)
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where f̄(x, u) = f(x, u)−Ax, and A ∈ Rn×n. The function
f̄(x, u) satisfies the Lipschitz condition [29], [30]

||f(x, u)− f(x̂, u)−A (x− x̂)|| ≤ (γ1 + γ2) ||x− x̂|| (12)

where γ2 ∈ R+. In this section, the goal is to design an
asymptotically converging state observer to estimate x(t) in
the presence of an unknown input d(t) (i.e., the moving
object’s velocity).
Remark 3. If γ1 is large, the UIO is stable even in the presence
of fast moving nonlinear dynamics in f (x, u) . For the SaMfM
problem, larger values of γ1 means camera can move with
faster velocities.

An unknown input reduced order state observer for the
system (11) is designed as

ż = Nz + Ly +Mf̄(x̂, u) +Mg(y, u)

x̂ = z − Ey (13)

where x̂(t) ∈ Rn is an estimate of the unknown state x(t),
z(t) ∈ Rn is an auxiliary signal, the matrices N ∈ Rn×n,
L ∈ Rn×p, E ∈ Rn×p, M ∈ Rn×n are designed as [18]

M = I + EC

N = MA−KC
L = K(I + CE)−MAE (14)

where K ∈ Rn×p is a gain matrix, and E is subsequently
designed.

To quantify the estimation objective an estimation error is
defined as

e(t) , x̂(t)− x(t) = z − Ey − x. (15)

Taking the time derivative of the estimation error and using
(11) and (13) yields

ė = ż − (I + EC) ẋ,

ė = Nz + Ly +Mf̄(x̂, u)− (I + EC)Ax

−(I + EC)f̄(x, u)− (I + EC)Dd. (16)

Using (14) and (15), the error system in (16) can be written
as

ė = Ne+N (I + EC)x+ LCx

+M
(
f̄(x̂, u)− f̄(x, u)

)
−MAx−MDd,

= Ne+ (NM + LC −MA)x

+M
(
f̄(x̂, u)− f̄(x, u)

)
−MDd.

Using (14) the equality NM + LC −MA = 0 is satisfied,
and if E is chosen such that

MD = (I + EC)D = 0, (17)

then the error dynamics can be written as

ė = Ne+M
(
f̄(x̂, u)− f̄(x, u)

)
. (18)

The condition in (17) can be written as

ECD = −D.

A solution exists for matrix E if rank(CD) = q and the
solution is given in a generalized form by [18]

E = F + Y G (19)

where Y ∈ Rn×p can be chosen arbitrarily, F and G are given
by

F , −D(CD)†, G ,
(
Ip − (CD)(CD)†

)
and (CD)

† denotes the generalized pseudo inverse of the
matrix CD given by

(CD)
†

=
(

(CD)
T

(CD)
)−1

(CD)
T
.

C. Stability Analysis

Since E can be computed using (19), the only unknowns in
(14) are the matrices K and Y . The following theorem gives
a condition for choosing K and Y such that the observation
error e(t) converges to zero.

Theorem: The nonlinear unknown input observer in (13) is
exponentially stable such that

‖e(t)‖ ≤ ‖e(t0)‖ exp(−λt)

where λ ∈ R+ is a constant, provided Assumptions 1-3 and
following sufficient conditions are satisfied

NTP + PN +
(
γ21 + γ22

)
PMMTP + 2I < 0 (20)

where P ∈ Rn×n is a positive definite, symmetric matrix.
Proof: Consider a Lyapunov candidate function V : Rn →

R defined as
V = eTPe. (21)

The Lyapunov function satisfies

λmin (P ) ‖e‖2 ≤ V ≤ λmax (P ) ‖e‖2 (22)

where λmin and λmax are the min and max eigen values of
the matrix P. Taking the time derivative of (21) along the
trajectories of (18) yields

V̇ = eT
(
NTP + PN

)
e+ 2eTPM

(
f̄(x̂, u)− f̄(x, u)

)
V̇ = eT

(
NTP + PN

)
e+ 2eTPM (f(x̂, u)− f(x, u))

−2eTPMA (x̂− x)

V̇ ≤ eT
(
NTP + PN

)
e+ 2

∥∥eTPM∥∥ ‖A‖ ‖e‖
+2
∥∥eTPM∥∥ ‖f(x̂, u)− f(x, u)‖

V̇ ≤ eT
(
NTP + PN

)
e+ 2

∥∥eTPM∥∥ γ1 ‖e‖
+2
∥∥eTPM∥∥ γ2 ‖e‖

where γ1 ∈ R+ is a Lipschitz constant, and γ2 ∈ R+ is norm
of the matrix A. Using the norm inequality

2γi
∥∥eTPM∥∥ ‖e‖ ≤ γ2i

∥∥eTPM∥∥2 + ‖e‖2 , ∀i = {1, 2}

the upper bound on V̇ is given by

V̇ ≤ eT
(
NTP + PN

)
e

+
(
γ21 + γ22

)
eTPMMTPe+ 2eT e

V̇ ≤ eT
(
NTP + PN +

(
γ21 + γ22

)
PMMTP + 2I

)
e.
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If Q , NTP +PN +
(
γ21 + γ22

)
PMMTP + 2I < 0 then V̇

can be expressed as

V̇ ≤ eTQe. (23)

Using (22) and (23), the following upper bound for V (t) can
be developed

V (t) ≤ V (t0) exp (−λt)

where λ = λmax(Q)
λmin(P ) and the upper bound for the estimation

error is given by

‖e(t)‖ ≤ ζ ‖e(t0)‖ exp (−λt)

where ζ = λmax(P )
λmin(P ) .

Remark 4. Model uncertainties can be represented by an
additive disturbance term d1(t) ∈ Rn in (10). The estimation
error will be uniformly ultimately bounded in the presence of
model uncertainties.

D. Sufficient Condition

The inequality in (20) is satisfied if the pair (MA,C) is
observable [18] and the following condition is satisfied [31]

min
ω∈R+

σmin (MA−KC − jωI3) >
√
γ3 (γ1 + γ2) (24)

where σmin (·) denotes the minimum singular value of a
matrix, and γ3 , λmax

(
MMT

)
. If the pair (MA,C) is

observable then the gain matrix K can be selected so that
N = MA−KC is Hurwitz. Since rank(CD) = rank(D) =
q the condition

rank

[
sIn −A D

C 0

]
= n+ q, ∀s ∈ C (25)

implies that the pair (MA,C) is observable [18]. Thus, the
matrix A in (11) should be chosen such that the condition
in (25) is satisfied. Another criteria on the selection of A is
to minimize the Lipschitz constant in (12). In the following
section, the condition in (20) is reformulated as a LMI
feasibility problem.

E. LMI Formulation

The matrices P , K and Y should be selected such that the
sufficient condition for the observer error stability in (20) is
satisfied. Substituting N and M from (14) into (20) yields

(MA−KC)
T
P + P (MA−KC) + 2I

+
(
γ21 + γ22

)
P (I + EC) (I + EC)

T
P < 0. (26)

After using (19), the inequality in (26) can be expressed as

AT (I + FC)
T
P + P (I + FC)A

+ATCTGTPTY + PYGCA− CTPTK − PKC
+2I +

(
γ21 + γ22

)
(P + PFC + PYGC) < 0

(P + PFC + PYGC)
T (27)

where PY = PY and PK = PK. For the observer synthesis,
the matrices Y , K and P > 0 should be computed such that
the matrix inequality in (27) is satisfied. Since P > 0, P−1
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Figure 2. Comparison of the actual and estimated X,Y and Z positions of a
moving object with respect to a moving camera.

exists and Y , and K can be computed using Y = P−1PY ,
and K = P−1PK . Using Schur’s complement, the inequality
in (27) can be transformed into the matrix inequality[

P1 βR
βRT −I

]
< 0 (28)

where

P1 = AT (I + FC)
T
P + P (I + FC)A+

ATCTGTPTY + PYGCA− CTPTK − PKC
+2I,

R = P + PFC + PYGC,

β =
√
γ21 + γ22 .

The matrix inequality in (28) is an LMI in variables P , PY ,
and PK . The LMI feasibility problem can be solved using
standard LMI algorithms [32]. The LMI problem in (28) can
also be seen as a problem of finding P , PY and PK such that
β is maximized. Maximizing β is equivalent to maximizing
γ1 which means the observer can be designed for nonlinear
functions with a larger Lipschitz constant.

V. SIMULATION

Consider a moving camera observing an object moving
along a straight line. Camera velocities are given by vc(t) =[

2 1 0.5cos(t/2)
]T

and ω(t) =
[

0 0 1
]T

. The
object is assumed to be moving with velocity vp(t) =[

0.5 0 0
]T

. The camera calibration matrix is chosen as

Ac =

 720 0 320
0 720 240
0 0 1

 .
Matrices A, C and D are given by

A =

 0 −1 2
1 0 1
0 0 0

 , C =

[
1 0 0
0 1 0

]
, D =

 1
0
0

 .
5009
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Figure 3. Error in the range estimation of the moving object.

The matrix Y and the gain matrix K are computed using the
LMI feasibility command ’feasp’ in Matlab and are given by

K =

 0.8278 0
0 0.8278

−1.5374 0

 , Y =

 0 0
0 −1
0 −1.5374


Fig. 2 shows comparison of the actual and estimated X, Y and
Z coordinates of the object in the camera coordinate frame.
Fig. 3 shows the range estimation error between the moving
object and the moving camera.

VI. CONCLUSION

A nonlinear observer is developed to solve the SaMfM
problem. The proposed algorithm estimates the structure of
a moving object using a moving camera with less restrictive
assumptions on the object motion. The object motion is
assumed to be along a straight line or in a plane observed
by a moving airborne camera. The algorithm improves on our
previous work in [17] by relaxing the constant object velocity
assumption to arbitrary object motion in a straight line or in
a plane. The observer-based approach is causal and does not
assume a minimum number of views or feature points. The
structure estimation is insensitive to the object motion in the
sense that the state estimation is completely decoupled from
the object motion which acts as an exogenous disturbance
input.
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