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Abstract— This paper considers the identification of Wiener
systems in a worst case framework. Given some a priori
information about the admissible set of plants, nonlinearities
and measurement noise, and a posteriori experimental data,
our goal is twofold: (i) establish whether the a priori and a
posteriori information are consistent, and (ii) in that case find a
model that interpolates the available experimental information
within the noise level. As recently shown, this problem is
generically NP hard both in the number of data points and the
number of inputs to the non-linearity. Our main result shows
that a computationally attractive relaxation can be obtained
by recasting the problem as a rank-constrained semi-definite
optimization and using existing tools specifically tailored to this
type of problems. These results are illustrated with a practical
application drawn from computer vision

I. INTRODUCTION AND MOTIVATION

Many processes of practical interest can be modeled as
the output of a Wiener system, consisting of the cascade
of a memoryless (possibly time varying) nonlinearity and a
Linear Time Invariant (LTI) plant.

Roughly speaking, existing Wiener identification tech-
niques can be classified into two broad categories: statistical
(see for instance [25], [8], [10], [3], [4], [19] and references
therein), and set membership approaches [6]. The latter are
attractive since they furnish hard bounds on the values of
the unknown parameters of the plant, in a form that can
be directly used for instance by robust control synthesis
techniques. However, as recently shown in [22], set mem-
bership identification of Wiener systems is generically NP
hard. Hence, obtaining scalable, computationally tractable
solutions requires the use of relaxations. In this paper, we
propose a new relaxation based on the use of a combination
of recently developed tools for rank minimization to reduce
the problem to a convex semi-definite optimization.

Specifically, we consider several scenarios with varying
degrees of complexity depending on the information avail-
able on the non-linearity (ranging from just a bound on its
gain to a family of rational functions known to span it) and
the linear part of the system (bounds on its degree, `2 induced
norm). As we show in the paper, all of these cases can be
reduced to the problem of minimizing the rank of a matrix
whose entries depend polynomially on the measured data.
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While in principle this is a very challenging problem, we
show that tractable relaxations can be obtained by appealing
to a combination of arguments from the classical theory
of moments and convex analysis. A salient feature of this
approach is that it can seamlessly handle missing data, due
for instance to outages in a communication channel, sensor
failure or occlusion. In the second part of the paper, we
illustrate these results with some non-trivial examples arising
in computer vision: extracting geometric 3D structure from a
sequence of 2D images (structure from motion). As we will
illustrate there, recasting the problem as a Wiener systems
identification, leads to an algorithm that outperforms the
current state–of–the–art in the field.

II. PRELIMINARIES

The notation used in the paper is summarized below:
σ (A) maximum singular value of matrix A.
σiA ith singular value of matrix A.
A ≥ 0 A is positive semidefinite.
(X ,m) metric space of elements in X equipped with

the metric m(x1, x2).
d(A) diameter of A ⊆ X : d(A) .= sup

x,a∈A
m(x, a).

BX (γ) closed γ-ball in a normed space {X , ‖.‖}:
BX (γ) = {x ∈ X : ‖x‖X ≤ γ}.

`∞ space of vector valued sequences equipped
with the norm: ‖x‖∞

.= supi ‖xi‖∞.
H∞,ρ space of transfer functions analytic in |z | ≤

ρ, equipped with the norm ‖G‖∞,ρ
.=

ess sup|z|<ρ σ (G(z)). The case ρ = 1 will
be simply denoted H∞.

PN Projection operator: PN [H(z)] =∑N−1
i=0 hizi

Hm,n
x Hankel matrix associated with a vector se-

quence x:

Hm,n
x

.=


x0 x1 · · · xm
x1 x2 · · · xm+1

...
...
. . .

...
xn xn+1 · · · xm+n


Tx lower triangular block Toeplitz matrix as-

sociates with any finite sequence {xk, k =
0, 1, · · · , n− 1}

Given a Linear Time Invariant (LTI) system G, we will
denote by g its impulse response sequence (Markov param-
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eters) and by Tg the corresponding Toeplitz matrix. Finally,
when dealing with finite sequences of length N, we will
use gN and TN

g to denote the truncated sequence and the
corresponding N ×N upper left sub-matrix of Tg.

III. PROBLEM STATEMENT

Fig. 1. Wiener System Structure

Consider the Wiener system shown in Figure 1 consisting
of the interconnection of a LTI system G(z) and a memory-
less nonlinearity Ψ(.). The corresponding equations are:

yk = Ψ(rk) + ηk

rk = (g ∗ u)k
(1)

where ∗ denotes convolution and the signals u ∈ Rnu

and y ∈ Rny represent the experimental data: a known
input and its corresponding output, corrupted by unknown
but norm–bounded measurement noise η. Our goal is to,
given experimental data consisting of N measurements of
the input/output sequences {uk, yk}N−1

k=0 and some a pri-
ori information about the plant, establish whether they
are consistent, and if so, find a model that interpolates the
experimental data within the measurement error level.

In the sequel, we will make the following standard as-
sumptions about the a priori information:
A1.- A set description of G(z) is available, e.g. G(z) ∈ S ,

for some S ⊆ H∞, compact, convex.
A2.- A set description of the measurement noise is available:

η ∈ N , compact, convex.
A3.- Ψ ∈ F , a family of equi-bounded, uniformly equi-

continuous functions.
Remark 1: Assumptions [A1.-] and [A2.-] are standard

[7]. Assumption [A3.-] is required in order to guarantee con-
vergence of any interpolatory algorithm as the information is
completed [24]. It is automatically satisfied in cases where
the nonlinearity can be expressed as a bounded combination
of a finite set of known, continuous basis functions:a

F .= {Ψ(.) : Ψ(.) = BΦ, Φ = [φ1(.), . . . , φnf
(.)]T ,

φi(.) known, B ∈ B ⊂ Rny×nf }

In principle the continuity assumption seems too strong,
ruling out, among others, relay nonlinearities. However, note
that these nonlinearities render all plants whose response to
the given input has the same zero-crossings indistinguishable.
Further, since the domain of the nonlinearity is restricted to

aSince G has a finite `2 induced norm, for a given input, the signal r,
and hence the domain of φi belong to a compact subset of Rnr . Uniform
equicontinuity and equiboundedness follow from continuity and finiteness
of the family {φi}.

a compact subset of Rnr , it can be approximated arbitrarily
close by a continuously differentiable function. Indeed, it
can be argued that such smooth models provide a better
representation of physically realizable nonlinearities.

Under assumptions [A1–A3], the problem under consid-
eration can be precisely stated as:

Problem 1: Given the a priori information S,N ,F and
the experimental data {yk, uk}N−1

k=0 :

1) determine whether the information is consistent, i.e.,
the consistency set T (y,N,N ) .= {G ∈ S : yk =
Ψ [(g ∗ u)k] + ηk, k = 0, . . . , N − 1 for some Ψ ∈
F and some sequence ηk ∈ N} is nonempty.

2) If T (y,N,N ) 6= ∅, find a nominal model {G,Ψ(.)}
that interpolates the data.

IV. IDENTIFICATION ALGORITHM

In this section we present the main result of the paper,
a rank-constrained semi-definite optimization based identi-
fication algorithm. We will begin by considering a setup
similar to the one standard in set-membership identification
approaches and then indicate how to incorporate additional
constraints to regularize the problem.

A. The Basic Setup

Consider first a setup similar to the one used in [24], with
the following a priori information:

1.- The set S that characterizes the linear portion of the
system is given by:
S .=

{
G(z) : G(z) ∈ BH∞,ρ(K)

}
, ρ > 1, K given.

2.- The measurement noise satisfies: η ∈ N .=
{η : ‖ηk‖∞ ≤ ε}.

3.- The nonlinearity Ψ is a linear combination of a finite
set of known rational functions, e.g. φi(r) = Pi(r)

Qi(r)
,

where Pi(.), Qi(.) are known multivariate polynomi-
als.

Next, we recall a result from [24] that allows for recasting
Problem 1 into a constrained optimization problem.

Lemma 1 ([24]): Given K > 0, ρ > 1, a nonlinear matrix
function Ψ(·), and two vector sequences of experimental data
y = [y0, y1, · · · , yN−1]T and u = [u0, u1, · · · , uN−1]T ,
there exist a linear operator G(z) ∈ BH∞,ρ(K) and a
nonlinear mapping f(·) = BΨ(·) such that the consistency
set T (y) is nonempty, if and only if there exist a vector g
and a matrix B satisfying:

L(g) .=

[
KR−2

(
TN
g

)T
TN
g KR2

]
≥ 0 (2)

r = TN
g u (3)

[y −B ·Ψ(r)]k ∈ N ∀ k (4)

where TN
g is the lower Toeplitz matrix associated with the

sequence g, R = diag[1, ρ, ρ2, · · · , ρN−1], and where, for a
given vector sequence v, [v]k denotes its kth element.
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Once feasibility of (2)–(4) is established, then a suitable
G(z) can be obtained proceeding as in [13]b.

B. A Rank Constrained SDP Relaxation
From Lemma 1 it follows that establishing consistency of

the a priori information and the a posteriori experimental
data reduces to checking feasibility of the set (2)–(4). Un-
fortunately, as recently shown in [22], this problem is NP
hard both in the number of inputs to the nonlinearity Ψ and
the number of experimental data pairs (u, y), even in cases
where the nonlinearity Ψ(.) is known. To circumvent this
difficulty, in the sequel we develop a rank constrained semi-
definite optimization based relaxation. The starting point is
the fact that in the case where the nonlinearity is spanned
by a rational basis Φi(r) = Pi(r)

Qi(r)
, the feasibility set of (4)

is semi-algebraic (e.g. defined by a finite set of polynomial
equalities and inequalities). Indeed, simple algebra shows
that the set of inequalities (4) is equivalent to:

qikQi(rk)− biPi(rk) = 0
‖yk −

∑
i qik‖`∞ ≤ ε, ∀ i, k (5)

which defines a semi–algebraic set for the unknowns
qik, bi, rk. Next, note that the feasibility set of (2) is also
semi-algebraic, since positive definiteness of a matrix can
be checked by checking positivity of its leading principal
minors. Clearly this is equivalent to a polynomial constraint
in g. It follows then that feasibility of (2)–(4) can be reduced
to checking whether or not a semi-algebraic set is empty, a
problem that can be solved using either results from semi-
algebraic geometry [18], or from polynomial optimization
(via the use of moments) [14]. A potential difficulty in pur-
suing these approaches arises from the high computational
complexity entailed. For instance, when using moments, note
that all elements of the sequence g are coupled through the
inequality (2). Hence, using moments will require dealing
with very large matrices (see [14] for details). Since the
computational complexity of general SDP solvers is at least
O(n8) [20], where n is the number of decision variables,
this approach becomes impractical even for moderately sized
MIMO problems. Thus, in the sequel, we will pursue a
different approach (although similar in spirit), where the
number of variables is traded-off against rank constraints.
To this effect, consider (5) for a fixed time instant k, and
fixed basis function Φl(r). (For notational simplicity, we
assume here scalar nonlinearities, but the approach extends
trivially to the vector case). Assume that deg(Pl) = tl and
deg(Ql) = sl and, for each k, form the following matrices

Mk ∈ Rnv×nv
.=
(
m

(k)
ij

)
, m

(k)
ij = r

(i+j−2)
k (6)

P(k)
i,j =

[
1 m

(k)
1,j

bi αi,j

]
and Q(k)

i,j =
[

1 m
(k)
1,j

qi,j βi,j

]
(7)

with d+ 1 ≥ 2nv ≥ d
.= max(tl, sl). Here Mk,P

(k)
i,j ,Q

(k)
i,j

correspond to the truncated moments matrices of the joint

bRecall that all elements in the consistency set T (y,N,N ) can be
parameterized as a Linear Fractional Transformation of a free parameter
Q ∈ BH∞. The formulas in [13] provide a state–space realization for the
central interpolant, e.g. the case Q = 0.

probability distribution of rk, b,qk. From the results in [14]
it follows that one can obtain a hierarchy of converging
relaxations by embedding these matrices into increasingly
larger size ones. Further, due to the flat extension property,
if (2)–(4) are feasible, then this expansion can be stopped
at some finite horizon, with the resulting matrices having
rank 1. However, typically pursuing this approach requires
considering large horizons, and hence large optimization
problems, even in cases where there are relatively few mea-
surements. To avoid this difficulty, we will impose directly
rank constraints, leading to the following result:

Theorem 1: There exists a feasible solution r,q,g to (2)–
(4) if and only if there exist a feasible solution to the
following rank-constrained problem:

L(g) .=

[
KR−2

(
TN
g

)T
TN
g KR2

]
≥ 0 (8)

m(k)
12 = [TN

g u]k (9)

rank [Mk)] ≤ 1, rank
[
P(k)
i,j

]
≤ 1, rank

[
Q(k)
i,j

]
≤ 1 (10)

tl∑
j=0

ai,jα
(k)
i,j −

sl∑
j=0

ci,jβ
(k)
i,j = 0 (11)

‖yk −
∑
i

qik‖`∞ ≤ ε, (12)

Proof: (Sufficiency). Note that (10) is equivalent to
α

(k)
i,j = bir

j
k, βi,j = qikr

j
k and m

(k)
12 = rk. Hence (9)-(11)

are equivalent to (3) and (5). Necessity follows immediately
from the fact that if (2)–(4) admit a feasible solutions then
the matrices Mk =

[
1 rk . . . r

n
k

]T [1 rk . . . r
n
k

]
, P(k)

i,j =[
1 rjk
bi αi,j

]
and Q(k)

i,j =
[

1 rjk
qi,j βi,j

]
satisfy (10)

From the result above it follows that the Wiener identification
problem can be solved by solving the rank–constrained
SDP defined by (8)–(12), which can be accomplished for
instance by using the convex relaxation proposed in [17].
It is worth noting that missing data can be handled by
simply not enforcing (4) for those time instants where data
is unavailable.

C. Finding Minimum Rank Interpolants

Recall (see Theorem 1 in [24]) that in the case of Wiener
systems, interpolatory algorithmsc are no longer guaranteed
to converge to the true plant as the information is completed,
that is ε→ 0 and N →∞, in the sense that T (y,N,N )→
{go} is no longer guaranteed (except in special cases, e.g.
invertible nonlinearities). Rather, any interpolatory algorithm
AI will converge to the set

T ∗(y) .= {G ∈ S : yk = Ψ(g ∗ u)k, k = 0, 1, . . . ,
for some Ψ ∈ F}

e.g. the consistency set in case of complete and uncorrupted
experimental information. The diameter of this set e∗(y) .=
d{T (y)} defines an intrinsic local worst-case error for iden-
tification of Wiener systems, in the sense that this is the best

cIn the context of this paper, interpolatory algorithms are those such that
the linear portion of the true plant go ∈ T (y,N,N ).
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that can be achieved by any interpolatory algorithm. Under
these circumstances, it is reasonable to exploit additional a
priori information to remove the ambiguities in the problem
formulation. In particular, in many cases of practical interest,
it is known that the lowest order model that explains the
observed information is the correct one (an example of this
situation arises in the problem of recovering 3D geometric in-
formation from 2D video data [23]). In principle, model order
constraints can be handled by simply placing a constraint on
the rank of the Hankel matrix associated with the (truncated)
impulse response gNi=1 of the plant G(z). Note however that
this does not guarantee that when the complete interpolant
is formed, its rank will equal that of the truncated Hankel
matrix. As we show next, this difficulty can be circumvented
by considering an augmented optimization problem. To this
effect, we introduce next the following result relating the
singular values of an infinite Hankel matrix to those of its
finite n× n upper left submatrix.

Theorem 2: Consider a transfer matrix G(z) ∈
BH∞,ρ(K) with ρ < 1, and let Hg and Hn,n

g denote the
associated infinite Hankel matrix and its (n + 1) × (n + 1)
upper left submatrix, respectively, e.g.

Hg
.=


g0 g1 · · · gn gn+1 . . .
g1 g2 · · · gn+1 gn+2 . . .
...

...
. . .

...
...

...
gn gn+1 · · · g2n g2n+1

...
...

...
...

...



=

 Hn,n
g

Mg

Hgtail


(13)

where

Mg
.=

gn+1 gn+2 · · · g2n+1

gn+2 gn+3 · · · g2n+2

...
... . . .

...


and where Hgtail

is the Hankel matrix associated with the
transfer matrix Gtail(z) = z(n+1)gn+1 + z(n+2)gn+2 + . . ..
Then, given any ε > 0, there exist N(ε) such that for all
n ≥ N(ε), σi(H) ≤ σi(Hn,n

g ) + ε, i=1,..n.
Proof: Since

Hg =

 Hn,n
g

0
0

+

 0

0
Hgtail



+

 0

Mg

0


From Weyl’s inequality it follows that

σi(Hg) ≤ σi(Hn,n
g ) + σ1(Mg) + σ1(Hgtail

)
≤ σi(Hn,n

g ) + 2σ1(Hgtail
)

where we used the fact that Mg is a submatrix of Hgtail
.

Next, recall from Theorem 2 in [5] that, for any transfer

function G(z), σ1(Hg) ≤ ‖g‖1. Applying this result to Gtail
and using the fact that G ∈ BH∞,ρ(K) ⇒ |gi| ≤ Kρ−i

yields

σi(Hg) ≤ σi(Hn,n
g ) + 2K 1

ρn+1(ρ−1)

Since ρ > 1, the second term can be made arbitrarily small
by selecting n large enough.

Corollary 1: Given ε > 0, select n so that

2K
1

ρn+1(ρ− 1)
< ε

Define gTaug
.=
[
g0 . . . gN gN+1 . . . gn

]T
and con-

sider the following feasibility problem:

L(gaug)
.=

[
KR−2

(
Tn
gaug

)T
Tn
gaug

KR2

]
≥ 0 (14)

[r −TN
g u]k = 0

[y −B ·Ψ(r)]k ∈ N

}
∀ k = 1, 2, . . . N (15)

rank(Hn,n
gaug

) ≤ nred (16)

If this problem admits a feasible solution gaug , then the
Hankel singular values of the associated interpolant Gaug(z)
satisfy σHi (Gaug) ≤ ε for all i ≥ n.
Combining the results of the corollary above with standard
model reduction arguments (see for instance Chapter 9 in
[21]), it follows that the linear portion of the plant identified
by solving the feasibility problem above can be approximated
by a transfer function with McMillan degree nred.

D. Further extensions
In this section we briefly indicate how to extend the pro-

posed identification algorithm to cases where the nonlinearity
is time varying. In particular, we will consider two cases: (1)
arbitrarily fast time-varying sector bound nonlinearities; and
(2) switching nonlinearities, where the nonlinearity switches
(at unknown times) between the elements of a given set.
Arbitrarily fast time-varying, sector bounded nonlinear-
ity. In this case, the only information available about the
non-linearity is a sector bound of the form (qk−γ1rk))(qk−
γ2rk) ≤ 0, where, as before, rk and qk denote the input and
output to the nonlinearity, respectively. Since the constraint
above is polynomial in rk, qk it can be directly incorporated
to the set (2)–(4), with this last inequality replaced by

yk − rk ∈ N ∀ k
Switching nonlinearities Next, we consider the case of a
switching Wiener system, where the nonlinearity switches
randomly, at unknown times, amongst those on a given,
known set. As we show next, this case can be also handled by
our framework, with minimal modifications. For notational
simplicity, we will assume that the system switches between
two nonlinearities Ψ1(ξ) = P1(ξ)

Q1(ξ)
and Ψ2(ξ) = P2(ξ)

Q2(ξ)
, but

the argument is general. Since at any given time instant either
Ψ1 or Ψ2 is active, then the following constraint must hold
at all times:

0 = (qk −Ψ1(rk))(qk −Ψ2(rk)) ⇐⇒
0 = q2kQ1(rk)Q2(rk)− qk(P1(rk)Q2(rk)

+ Q1(rk)P2(rk)) + P1(rk)P2(rk)
(17)
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Clearly, the constraint above can be incorporated to the feasi-
bility problem (2)–(4) as an affine constraint by considering
the appropriate elements of the matrices Mk,P

(k)
i,j and Q(k)

i,j .

V. COMPUTING BOUNDS OF THE IDENTIFICATION ERROR

In this section we briefly address the problem of comput-
ing worst case bounds on the identification error. For a given
set of experimental measurements y, define the worst case
identification error as:

e(y, N,N ) .= sup
G1,G2∈T (y,N,N )

‖G1 −G2‖∗ (18)

where ‖.‖∗ denotes a suitable norm. In the case of linear
plants the quantity above can be further related to the diam-
eter of information and, depending on the characterization
of the set T and the choice of norm, computed by solving a
linear programming problem. On the other hand, due to the
presence of the non-linearity, this is no longer possible in
the case of Wiener systems. Indeed, in this case, computing
even an upper bound of the identification error is in principle
a very challenging problem. Nevertheless, as we show in the
sequel, the same ideas used to obtain tractable relaxations
of the Wiener identification problem, can be exploited to
compute upper bounds on e(y, N,N ) by solving a semi-
definite optimization problem. Start by noting that for all
G1, G2 ∈ T (y) the following holds:

‖G1 −G2‖∞ ≤ ‖PN [G1 −G2]‖∞+
+ ‖(I − PN )[G1 −G2]‖∞
≤

∑N
i=0 |g1i − g2i|+

2K
ρN+1(ρ−1)

(19)

Thus, e(y, N,N ) ≤ K1 + 2K
ρN+1(ρ−1)

, where

K1
.= sup
G1,G2∈T (y,N,N )

N∑
i=0

|g1i − g2i|

Next, note that K1 can be computed from:

K1 = max
g1,g2,x+,x−

N∑
i=1

x+
i + x−i (20)

subject to (2)–(4) x+
i ≥ 0, x−i ≥ 0

g1i − g2i = x+
i − x

−
i (21)

x+
i xi− = 0 (22)

This amounts to solving an identification problem of the form
discussed earlier in the paper, with additional constraints (one
linear, one quadratic) on the nonlinearity. Thus, the same
tools applied earlier can also be used here.

VI. ILLUSTRATIVE EXAMPLES

In this section we illustrate the proposed algorithm using
both academic examples and a non-trivial, computer vision
motivated application.

A. Minimum Rank Interpolants

This example illustrates the regularizing effect of re-
stricting the order of the linear portion of the plant. The
experimental data consists of n = 10 samples of the impulse
response of the system

G(z) =
0.2

z2 − 1.5z + 0.765
, Φ(r) = r2 (23)

with tight a priori constraints; K = 1.6540, ρ = 1.1433.
Figure 2 compares the identification results obtained with
and without enforcing a rank constraint (rank[Hg] ≤ 2) on
the interpolant. Note that, due to the nonlinearity q = r2,
without additional priors, if a plant Gi(z) explains the data,
then so does the plant −Gi(z), from where it follows that the
radius of information (and hence the minimally achievable
identification error) is at least ‖G‖. In addition, in this case,
it is not possible to shape an input that would drive the output
to an invertible interval of the nonlinearity, since there is no
such interval for Φ(r) = r2 (See [6] for input shaping on
the problem of polynomial nonlinearity). On the other hand,
imposing the rank constraint leads to the correct description.

1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time

Fig. 2. (+) True impulse response, (∆) Estimated with Hankel Rank
Constraint, (o) Estimated without Hankel Rank Constraint

B. Identification with missing data

This example illustrates the ability of the method to handle
missing data and still obtain plants with good predictive
power. The experimental data consists of the first eight
measurements of the sequence obtained by filtering the
impulse response of the linear plant used in the previous
example through the following rational nonlinearity

rk = (g ∗ u)k, k = 0, 1, . . .

yk = b1
6rk
r2k + 1

+ b2
rk + 4
r2k + 3

+ ηk
(24)

where η, with |ηk| ≤ 0.10maxk|yk| = 0.44 denotes mea-
surement noise. We further assumed that the measurements
at n = 6 and n = 7 were missing (e.g. a gap of 25% in
the data). The available a priori information is K = 1.6540,
ρ = 1.1433, b1 ∈ [0.8, 1.2] and b2 ∈ [1.6, 2.4]. The set
membership description of the coefficients bi amounts to
20 % uncertainty around their nominal values. As shown in
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Figure 3, the proposed algorithm is capable of reconstruct-
ing the missing data and the resulting plant is capable of
interpolating future data within the noise level.

0 2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

time

Prediction

Fig. 3. Identification with missing data, (o) true signal, (+) estimated signal.
Two outputs shown in rectangles missing

C. Switching Nonlinearities

This example illustrates the ability of our framework to
handle switching nonlinearities. The data consists of n = 10
elements of the impulse response of the linear plant used in
the previous examples, filtered through a nonlinearity that
switches randomly between Ψ1(r) = 6r

r2+1 and Ψ2(r) =
r+4
r2+3 and corrupted by 10% measurement noise. As shown
in Fig 4, our algorithm is capable of correctly identifying
both a system that interpolates the experimental data and the
nonlinearity that is active at each time instant.

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

time

 

 

1 2 3 4 5 6 7 8 9 10
0

1

2

Fig. 4. Identification with a switching nonlinearity: Top (4) Output of
Ψ1, (o) Output of Ψ2, (+) Measured Output. Bottom: Active nonlinearity,
as identified by the algorithm.

VII. APPLICATION: 3D-STRUCTURE FROM MOTION
USING UNCALIBRATED CAMERAS

In this section we illustrate the potential of the proposed
approach to handle realistic problems by applying it to
a nontrivial computer vision problem, 3D structure from
motion, where the goal is to recover the 3D geometry of
a scene, using 2 dimensional data generated by a moving

perspective camera. A model of the system generating the
data is given by (see for instance [16]):

ζζζk+1
.= Aζζζ + Bek (25)

Pkj
.=

Xkj

Ykj
Zkj

 = Cjζk (26)

ukj = f
Xkj

Zkj
+ cu, vkj = f

Ykj
Zkj

+ cv (27)

where f and (cu, cv) denote the focal length f and
principal points of the camera, respectively, and where the
pair (A,B) and the associated state vector ζk model the
3D motion of the camera in response to the input ed, Pkj ,
j = 1, . . . , N , denotes the 3D coordinates of point Pj
at time k, i = 1, . . . , F , and (ukj , vkj) denotes the 2D
coordinates of the image of Pkj . Clearly, the model above
is a special case of a Wiener system, where the nonlinearity
is rational. In this context, the problem of reconstructing the
3D geometry of the scene can be formalized as a nonlinear
filtering one: estimating Pkj from (ukj , vkj), potentially
corrupted by measurement noise. In principle, this nonlin-
ear filtering problem can be solved using the techniques
proposed in [16], [11], [1], [9]. However, proceeding in
this fashion requires first identifying the Wiener system.
Alternatively, several approaches have been developed in
the computer vision community, based on a combination of
matrix factorizations and non-linear optimization ([15], [12]
and references therein). However, these approaches cannot
guarantee convergence to the correct 3D geometry. In the
sequel, we show that these difficulties can be circumvented
by recasting the problem into a Wiener Systems identification
form. Indeed, direct application of Theorem 1 in [2] shows
that, in the case of uncalibrated cameras, the correct 3D
geometry can be found by simultaneously identifying the
lowest order dynamical system of the form (25)-(26) and a
corresponding non-linearity of the form (27) such that the
resulting system interpolates the 2D measurements, subject
to an additional “rigidity”–type constraint on the trajectories.
Specifically, given 4 points from the rigid, their 3D distances
must remain constant along trajectories, that is:

(Xn1,i −Xn1,j)
2 + (Yn1,i − Yn1,j)

2 + · · ·
(Zn1,i − Zn1,j)

2 − · · ·
−(Xn2,i −Xn2,j)

2 − (Yn2,j − Yn2,j)
2 − · · ·

(Zn2,i − Zn2,i)
2 = 0

∀n1 6= n2 = 1, 2...Nf and for all 1 ≤ i ≤ j ≤ 4. (28)

Clearly, since the constraints above are polynomial, and
(27) defines a family of known rational nonlinearities with
unknown parameters (f, cu, cv), this problem fits the formal-
ism developed in section IV-C (minimum rank interpolants).
Figure 5 shows the results of applying these ideas to an
artificially generated motion sequence of the Utah Teapot.

dTypically ζk contains the past values of the camera position, velocity,
etc, with respect to a fixed frame
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(a) (b) (c)

Fig. 5. Teapot 3D ground truth (red mesh) and reconstruction from 2D images (solid surface). (a) Wiener ID based. (b) Hung and Tang method [12] (c)
Mahamud and Hebert method [15].

The actual camera parameters used in generating these
frames were f = 1, cx = 0.5 and cy = 0.5, but during
the identification we assumed that these values were only
known to within 50% uncertainty level, that is the a priori
information was 0.5 ≤ f ≤ 1.5 and 0.25 ≤ cx, cy ≤ 0.75.
This a priori information is consistent with the fact that
with current EXIF tag technology, some knowledge about
the focal length of the camera is available, and it is known
that the cameras’ center of projection are usually close to
the image center. As illustrated in Figure 5, the proposed
approach is able to perfectly recover the 3D geometry
of the scene, while current state–of–the–art methods (even
assuming calibrated cameras) fail to do so.

VIII. CONCLUSIONS

In this paper we propose an algorithm for set membership
identification of Wiener systems using time–domain data. As
shown in the paper, this problem is equivalent to establishing
feasibility of a semi-algebraic set. In turn, this can be reduced
to a semi-definite optimization subject to a rank constraint,
a problem that can be solved using recently introduced rank
relaxations such as [17]. The proposed framework can handle
missing data, arbitrarily fast time–varying nonlinearities and
cases where the nonlinearity switches (at unknown times)
amongst the elements of a given set. These results were
illustrated with both academic examples and a non-trivial
application arising in the context of computer vision.
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