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Abstract— In this paper, the fault detection (FD) problem of
uncertain discrete-time switched systems under the constrained
switching law and external disturbances is addressed. In the
multiple Lyapunov functions (MLF) framework with H−/H∞

performance index, a robust fault detection filter (RFDF) is
designed in order to generate a residual signal which is sensitive
to the faults and robust against the disturbances. The design
method is formulated to be solved by linear matrix inequality
(LMI) technique. The main contribution in this paper is to
improve the performance of the FD for switched systems by
considering switch detection logics. The design of the RFDF
is based on the local performance index of each subsystem.
An adaptive threshold is set based on both, the bounds of
disturbances and the individual performance index for each
subsystem.

I. INTRODUCTION

In the last decade, the study on hybrid systems has

received increasing attention, due to their ability in

modeling and representing the high complex systems

in multi-models, which are normally linear and simple.

Such complex systems may exist in physical and practical

technical systems as in the control of mechanical system,

process control, automotive industry, power systems,

aircrafts, traffic control and many other fields, see e.g.

[1] and [2]. A particular class of the hybrid systems

are linear switched systems, which are characterized by

subsystems (models), and switching rules governing the

active subsystem for each time instant.

One of the fundamental problems in studying the switched

systems is the stability. Surveys on this problem can be

found in [2], [3], [4] and references therein. The stability

problem of the switched systems is usually studied in

the Lyapunov function framework, such as, common

Lyapunov function, switched Lyapunov functions and

multiple Lyapunov functions. More details can be found in

[4].

While a lot of works deal with designing a robust control

law for switched systems, the fault detection and isolation

(FDI) problem in switched systems is still an open issue.

It is the aim of this paper to investigate the problem of

robust residual generation, residual evaluation and threshold

setting for FD in switched systems. To the best of authors’

knowledge, the FD problem has not been intensively

investigated for switched systems. Recently, some works

have addressed the design of a robust residual generator

for switched systems, for example, in [5], [6] and [7]

the design of a robust hybrid observer for switched linear

systems with unknown inputs is given based on the H−/H∞

performance index. In [8] and [9] the H∞-filtering problem

is considered for design a robust fault detection for discrete

and continuous-time switched systems with state delays.

The H∞ fault detection for continuous-time linear switched

systems with its application to turntable systems is shown

in [10]. In these works, the evaluation and threshold setting

are defined as in the linear time invariant system, and it

didn’t adapt the behavior of the switched systems. Thus,

a highlight on the evaluation and threshold setting of the

residual signal will be given in this paper.

In this paper, the FD problem of discrete-time linear

switched systems under modeling uncertainties and system

disturbances with average dwell-time will be addressed. The

residual signal will be generated using the fault detection

filter (FDF). In order to make the residual signal more

reliable for fault detection purpose, H−/H∞ performance

index will be used to minimize the effects of unknown

inputs, and to maximize the faults effects. This residual

signal will be evaluated, and then compared with switch

detection logics. The MLF with average dwell-time will be

used to ensure the stability of the FD system. The solution

is obtained by solving a set of LMIs. The main tasks of this

paper are:

• To design a robust residual generator for switched

systems in the existence of disturbances and ploytopic

model uncertainties by considering the local perfor-

mance index for each subsystem.

• To find an appropriate evaluation function, fault decision

logic and an adaptive threshold for FD of the switched

systems by considering both, the individual performance

index, and the bound values of the disturbances for each

subsystem.

This paper is organized as follows. After the introduction,

problem formulation is given in Section II. Some

preliminaries are given in section III. Section IV contains the

RFDF design theorem for switched systems. The residual

evaluation and threshold setting is addressed in Section V.
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Finally, Section VI shows the concluding remarks and the

possible future work.

Notations: The notation used in this paper is generally

standard. XT is the transpose of the matrix X . The star sym-

bol {A} in a symmetric matrix denotes the transposed block

in the symmetric position. The notation P > 0, (P < 0) means

P is real-symmetric and positive definite, (negative definite).

0 is a zero matrix of appropriate dimension. I represent the

identity matrix and L2-norm for each subsystem is defined

as ||xσ(k)(k)||2 =

√
∞

∑
k=0

xT
σ(k)

(k)x
σ(k)

(k), where σ(k) is the

switching signal which will be defined in the next section.

II. PROBLEM FORMULATION

The following discrete-time linear switched system with

polytopic uncertainties is considered:

xk+1 = Āσ(k)xk + B̄σ(k)uk + Ēd,σ(k)dk,σ(k) +E f σ(k) fk(1)

yk = C̄σ(k)xk + D̄σ(k)uk + F̄d,σ(k)dk,σ(k) +Ff σ(k) fk (2)

where, x ∈ Rn is the system state vector, y ∈ Rm is the

measurement output vector and u ∈ R p is the input vector.

dσ(k) ∈ Rkd represents the disturbance vector for each sub-

system and f ∈ R
k f is the vector of faults to be detected.

Switching signal σ(k) can be classified as: time dependent,

state dependent and control input or output signal. In this

study, it is assumed that, the switching signal is unknown a

priori but its value is real-time available. The switching rule

σ(k), which decide the active linear vector field at a certain

time instant, takes values in the finite set i = {1,2, ...,N}, i.e.

σ(k) ∈ i.

The indices of i related to the subsystem in the

switched systems, are follows: Āi ,
{

Ā1, Ā2, ..., ĀN

}
, B̄i ,

{B̄1, B̄2, ..., B̄N}, C̄i ,
{

C̄1,C̄2, ...,C̄N

}
, D̄i , {D̄1, D̄2, ..., D̄N}.

These matrices are known and in appropriate dimension.

In the switched systems, each linear model may be af-

fected by different disturbances and faults. Therefore, the

disturbance and fault matrices are known and defined as

follows: Ēdi , {Ēd1, Ēd2, ..., ĒdN}, E f i ,
{

E f 1,E f 2, ...,E f N

}
,

F̄di , {F̄d1, F̄d2, ..., F̄dN} and Ff i ,
{

Ff 1,Ff 2, ...,Ff N

}
.

Model uncertainties can be represented in different forms,

[11]. For the switched systems the polytopic uncertainty is

used, where:

Āi = Ai +∆Ai, B̄i = Bi +∆Bi, Ēdi = Edi +∆Edi,

C̄i = Ci +∆Ci, D̄i = Di +∆Di and F̄di = Fdi +∆Fdi.

with

[
∆Ai ∆Bi ∆Edi

∆Ci ∆Di ∆Fdi

]

=
m

∑
l=1

η l

[
Al

i Bl
i ∆E l

di

Cl
i Dl

i ∆F l
di

]

,

i ∈ {1,2, ...,N},
m

∑
l=1

η l = 1, η l ≥ 0, l ∈ {1,2, ...,m}.

Residual signal can be generated using a fault detection

filter (FDF), see e.g. [11] and [12]. The FDF structure for

discrete-time linear switched systems is as follows:

x̂k+1 = Aσ(k)x̂k +Bσ(k)uk +Lσ(k)(yk − ŷk), (3)

ŷk = Cσ(k)x̂k +Dσ(k)uk, (4)

rk,σ(k) = Gσ(k)(yk − ŷk). (5)

where x̂k ∈ Rn is the estimation of the state vector

xk, ŷk ∈ Rm is the estimation of the output vector

yk and σ(k) ∈ i. L ∈ Rm×m is the observer gain and

Li , {L1,L2, ...,LN}, rσ(k) ∈ Rm is the residual vector for

each subsystem, and G ∈ Rm×m, is the post filter matrix,

and Gi , {G1,G2, ...,GN}, the indices {1,2, ...,N} decide

the active FDF.

To design a RFDF, H−/H∞ performance index will

be used in order to reduce the effects of the unknown

inputs on the residual signal, and simultaneously increase

the system sensitivity to the faults. It is assumed that, the

unknown inputs d and the faults f are L2 −norm bounded.

The performance of switched systems can be expressed in

two forms:

• The performance index for each subsystem can be

taken individually. So if there is γ-performance index,

then it will be defined for each local subsystem γi,

i ∈ {1,2, ...,N}.

• The maximum performance index among all subsystems

can be considered for the whole switched systems, i.e.

γ = max
i∈{1,...,N}

{γi} .

In this study, the local performance index for each subsystem

is considered see e.g. [13] and [14]. Based on this property,

H−/H∞ performance index of system (1)-(2) can be written

as follows:

||r f ,σ(k)||2 > ασ(k)|| f ||2 (6)

||rd,σ(k)||2 < βσ(k)||dσ(k)||2 (7)

where rd,σ(k) = rσ(k)| f =0 , r f ,σ(k) = rσ(k)|d=0, σ(k) ∈ i, and

the scalars ασ(k) > 0, βσ(k) > 0.

III. PRELIMINARIES

A. Average Dwell-time

One of the constrains on the switched systems is slow

switching criteria, which ensure the global stability if it is

set to an appropriate value, see e.g. [3] and [15]. Dwell-time

and average dwell-time can be defined with the concept of

slow switching. In this paper, the average dwell-time will be

considered.

Definition 1: [16] Average dwell-time in the discrete-time

domain

For the switching signal σ(k) and for any kt > ks > k0, let

Nσ (ks,kt) be the switching numbers of variations of σ(k)
over the interval [ks,kt ]. If for any given N0 > 0,τa > 0, we

have

Nσ (ks,kt) ≤ N0 +
(kt − ks)

τa

(8)

then τa and N0 are called average dwell-time and chatter

bound, respectively.
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Based on this definition, the slow switched systems are

denoted by the systems which have at least τa between any

two consecutive switching interval.

To this end, consider the following lemma,

Lemma 1: [17]

Consider the discrete-time switched systems given by (1)-(2),

σ(k)∈ i and let 0 < ζ < 1,µ > 1 be given constants. Suppose

that there exists a candidate Lyapunov function V (x) =
{Vσ(k)(x), σ(k) ∈ i}, satisfying the following Properties:

∆Vi(xk) , Vi(kk+1)−Vi(xk) ≤ −ζVi(xk) (9)

Vj(xk) ≤ µVi(xk) (10)

then the system is globally asymptotically stable for any

switching signals with average dwell-time

τa ≥ τ∗a = − lnµ

ln(1−ζ )
(11)

Remark 1:

• τa must be rounded to the nearest integer, due to working

in the discrete-time domain, i.e. it is related to fixing sample

number.

• i and j in the previous lemma means that, at time k the

switched systems will be in mode i, and at time k + 1 it

will be in mode j, where i 6= j and (i, j) ∈ I ×I , I =
{1,2, ...,N}.

B. Multiple Lyapunov Functions (MLF)

The existence of a common Lyapunov function for all the

subsystems in the switched systems is too conservative (or

it may not exist). Therefore, MLF are a useful tool to prove

the stability of the switched systems, see e.g. [4], where the

general form of MLF is defined as follows:

V (xk) = xT
k Pσ(k)xk, σ(k) ∈ i i = {1,2, ...,N}

{P1,P2, ...,PN} are symmetric positive definite matrices. The

most distinct character of MLF is the decreasing behavior

of Lyapunov function values during the active subsystems.

Moreover, at each switching instant its value is not increas-

ing.

For the stability of the switched systems, it is assumed that

• for each mode, the pairs (Ai,Bi) is stabilzable.

• the MLF can be set as follows:

1) Pi > 0 ,

2) Vi(xk) is a positive definite and decreasing function,

3) and ∆Vi(xk) is negative definite.

4) when switching occurs, the MLF should satisfy the

following conditions:

• Pi > 0 and Pj > 0,

• Vi and Vj are positive definite,

• ∆Vi and ∆Vj are negative definite,

• switching condition: as set in Lemma 1, at

switching time instance the following conditions

must be satisfied, 1) ∆Vi(xk) ≤ −ζVi(xk). 2)

Vj(xk) ≤ µVi(xk), which can be written as

xT
k Pjxk ≤ µxT

k Pixk.

In the following, the design of the RFDF for the switched

systems will be analyzed in the discrete-time domain.

IV. RFDF DESIGN

The dynamics of the residual generator (3)-(5) is governed
by:

xk+1 = Āσ(k)xk + B̄σ(k)uk + Ēd,σ(k)dk,σ(k) +E f ,σ(k) fk (12)

ek+1 = (Aσ(k) −Lσ(k)Cσ(k))ek +(∆Aσ(k) −Lσ(k)∆Cσ(k))xk

+(∆Bσ(k) −Lσ(k)∆Dσ(k))uk +(Ēd,σ(k) −
Lσ(k)F̄d,σ(k))dk,σ(k) +(E f ,σ(k) −Lσ(k)Ff ,σ(k)) fk (13)

rk,σ(k) = Gσ(k)(Cσ(k)ek +∆Cσ(k)xk +∆Dσ(k)uk

+F̄d,σ(k)dk,σ(k) +Ff ,σ(k) fk) (14)

where ek is the estimation error ek = xk − x̂k.
Model uncertainties can be transformed into the unknown
inputs as follows:

xk+1 = Āσ(k)xk +

[
B̄σ(k) 0

0 Ēd,σ(k)

]

︸ ︷︷ ︸

Eσ(k),u,d

[
uk

dk,σ(k)

]

︸ ︷︷ ︸

du,d

+E f ,σ(k) fk

(15)

ek+1 = (Aσ(k) −Lσ(k)Cσ(k))ek +(∆Aσ(k) −Lσ(k)∆Cσ(k))xk

+

[
∆Bσ(k) −Lσ(k)∆Dσ(k) 0

0 Ēd,σ(k) −Lσ(k)F̄d,σ(k)

]

︸ ︷︷ ︸

Fσ(k),u,d

.

[
uk

dk,σ(k)

]

︸ ︷︷ ︸

du,d

+(Ē f ,σ(k) −Lσ(k)F̄f ,σ(k)
︸ ︷︷ ︸

Fσ(k)

) fk (16)

rk,σ(k) = Gσ(k)Cσ(k)ek +∆Gσ(k)Cσ(k)xk +Gσ(k)Ff ,σ(k) fk

+
[

Gσ(k)∆Dσ(k) Gσ(k)F̄d,σ(k)

]

︸ ︷︷ ︸

D∗
σ(k)

du,d (17)

The dynamics of the residual generator can be rewritten as
follows:
[

xk+1

ek+1

]

︸ ︷︷ ︸

xo,k+1

=

[
Aσ(k) +∆Aσ(k) 0

∆Aσ(k) −Lσ(k)∆Cσ(k) Aσ(k) −Lσ(k)Cσ(k)

]

︸ ︷︷ ︸

A∗
σ(k)

.

[
xk

ek

]

︸ ︷︷ ︸

xo,k

+

[
Eu,d
Fu,d

]

︸ ︷︷ ︸

E∗
σ(k)

du,d +

[
E f ,σ(k)

F

]

︸ ︷︷ ︸

F∗
σ(k)

fk (18)

rk,σ(k) =
[

∆Cσ(k) Gσ(k)Cσ(k)
]

︸ ︷︷ ︸

C∗
σ(k)

[
xk

ek

]

︸ ︷︷ ︸

xo,k

+D∗
σ(k)du,d +(Gσ(k)Ff ,σ(k))

︸ ︷︷ ︸

H∗
σ(k)

fk (19)

Finally, it can be presented in the compact form:

xo,k+1 = A∗
σ(k)xo,k +E∗

σ(k)du,d +F∗
σ(k) fk (20)

rk,σ(k) = C∗
σ(k)xo,k +D∗

σ(k)du,d +H∗
σ(k) fk (21)

The following Theorem presents the sufficient conditions

for design RFDF of switched systems (1)-(2) with average

dwell-time and satisfying H−/H∞ performance index given

in (6) and (7).

5469



Theorem 1:

The system (20)-(21) is asymptotically stable and satisfies

||r f ,σ(k)||2 > ασ(k)|| f ||2
||rd,σ(k)||2 < βσ(k)||du,d ||2

for any switching signal satisfying (11), if there exist matrices
Pi > 0 and Qi > 0, and scalars ασ(k) > 0, βσ(k) > 0, so that





−Pj PjA
∗ PjE

∗

A −(1−ζ )Pi +C∗TC∗ C∗T D∗

A A D∗T D∗−β 2
σ(k)I



 < 0 (22)

Pj −µPi < 0 (23)





Q j Q jA
∗ Q jF

∗

A (1−ζ )Qi +C∗TC∗ C∗T F∗
f

A A F∗T
f F∗

f −α2
σ(k)I



 > 0 (24)

Q j −µQi < 0 (25)

for all i, j ∈ {1,2, ...,N}, l ∈ {1,2, ...,m} and i 6= j where
µ > 1 and 0 < ζ < 1 are given constants and σ(k) ∈ i.
Proof:
Define the following MLF

V (xo,k) = xT
o,kPσ(k)xo,k σ(k) ∈ i, i = {1,2, ...,N} (26)

Formulate ∆V for (20)-(21) in a quadratic form gives:

∆V =
[

xT
o dT

u,d f T
]

[M]





xo

du,d
f



 < 0 (27)

M =





A∗T PjA
∗− (1−ζ )Pi A∗T PjE

∗ A∗T PjF
∗

A E∗T PjE
∗ E∗T PjF

∗

A A F∗T PjF
∗



 < 0 (28)

The robustness index:

H∞ : ||rd ||2 < βσ(k)||du,d ||2, rd = r| f =0

⇒ rT
d rd −β 2

σ(k)d
T
u,ddu,d < 0

⇒ rT
d rd −β 2

σ(k)d
T
u,ddu,d =

[

xT
o dT

u,d

][
C∗TC∗ C∗T D∗

A D∗T D∗−β 2
σ(k)I

][
xo

du,d

]

< 0

It can be concluded that:

∆ V | f =0 + rT
d rd −β 2

i dT
u,ddu,d < 0 (29)

After some mathematical manipulations and using the Schur
complement lemma, it leads to:





−Pj PjA
∗ PjE

∗

A −(1−ζ )Pi +C∗TC∗ C∗T D∗

A A D∗T D∗−β 2
σ(k)I



 < 0 (30)

Pj −µPi < 0 (31)

where Pj =

[
Pj1 0
0 Pj2

]

> 0, Pi =

[
Pi1 0
0 Pi2

]

> 0, βσ(k) > 0

And for the H−index:

H− : ||r f ||2 > ασ(k)|| f ||2 r f = r|du,d=0

⇒ rT
f r f −α2

σ(k) f T f > 0

⇒ rT
f r f −α2

σ(k) f T f =

[
xT

o f T
]
[

C∗TC∗ C∗T H∗

A H∗T H∗−α2
σ(k)I

][
xo

f

]

> 0

Set the following MLF:

V (xo,k) = xT
o,kQσ xo,k σ(k) ∈ i, i = {1,2, ...,N} (32)

it turns out:

−∆ V |du,d=0 + rT
f r f −α2

σ(k) f T f > 0 (33)

Consequently, using the Schur complement lemma will lead
to the following matrix inequality:





Q j Q jA
∗ Q jF

∗

A (1−ζ )Qi +C∗TC∗ C∗T F∗
f

A A F∗T
f F∗

f −α2
σ(k)I



 > 0 (34)

Q j −µQi < 0 (35)

where Q j =

[
Q j1 0

0 Q j2

]

> 0, Qi =

[
Qi1 0
0 Qi2

]

> 0,

ασ(k) > 0.

This completes the proof. 2

The following figure shows the scheme of FDF for switched

systems.

Fig. 1. Scheme of FDF for Hybrid Switched Systems

Remark 2:

• Matrix inequalities (22) and (24) are nonlinear matrix

inequalities (NMI)s. It can be transformed to LMIs by using

following definitions:

Pj2L j = X j ⇒ L j = (Pj2)
−1X j (36)

Q j2L j = Yj ⇒ L j = (Q j2)
−1Yj (37)

• In addition, G j is a square matrix, so it can be formulated

as follows:

GT
j G j = M j ⇒ G j = (M j)

1/2, M j > 0 (38)

• Equations (36) and (37) give two values for observer

gain L j, one solution to this problem is to set Pj2 = Q j2, so

that the observer gain matrix will be L j = (Pj2)
−1X j.

The previous results can be summarized by the following

algorithm.

Algorithm 1: Computation of the mixed H−/H∞ FDF

for switched systems under average dwell-time switching
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• Step 0: Rewrite the residual dynamics to the form (20)-

(21), give the scalar values of µ and ζ , and set the

disturbance attenuation level β to some value.

• Step 1: Set Pj2 = Q j2. Solve the matrix inequalities

(22)-(25) based on the definitions (36)-(38), so that the

sensitivity level α is maximized.

• Step 2: Set the final value of the observer gain as L j =
(Pj2)

−1X j, and the post filter matrix as G j =
√

M j.

• Step 3: Construct the residual generator (3)-(5).

Remark 3: This algorithm is for the off-line calculations,

where the design parameters of the RFDF are found. There-

fore, this algorithm will be repeated N(N−1)l times to find

these parameters, which will be saved and used in the on-

line running of the system.

In order to achieve a successful fault detection, it is required

to distinguish faults from unknown inputs and model uncer-

tainties. This purpose can be achieved by residual evaluation

and threshold setting, which will be given in the following

section.

V. RESIDUAL EVALUATION AND THRESHOLD SETTING

Depending on the system under consideration, different

strategies for residual evaluation and threshold setting can

be used, see e.g. [11]. In this paper, the Root Mean Square

(RMS) function as a norm based evaluation function will be

used to evaluate the switched residual signal, and an adaptive

switched threshold will be set to detect the faults.

A. RMS evaluation function for switched systems

RMS value measures the average energy of a signal over a

time interval (k,k+T ). The RMS evaluation function of the

residual signal for switched systems is set for each subsystem

as follows:

Jσ(k),RMS = ||rσ(k)(k)||RMS =

√

1

T

T

∑
t=1

||rσ(k)(k + t)||2 (39)

Remark 4: RMS value of a signal is related to L2-norm of

this signal, as follows:

||rσ(k)(k)||RMS ≤
1√
T
||rσ(k)(k)||2

This evaluation function is chosen for switched systems for

the following reasons:

1) It is widely used in practice.

2) It reduces the effect of unknown inputs, because of

the average of the instantaneous value of the residual

signal over the time window T.

3) RMS evaluation produces smoothness in residual sig-

nal over the moving time window.

After the residual signal has been evaluated, a threshold value

should be set. Threshold setting will be explained in the

following subsection.

B. Threshold Setting

Threshold is the tolerant limit for unknown inputs and

uncertainties during the fault free operation. This limit value

can be computed as a constant or adaptive or dynamic value,

see e.g. [11], [12], [18], [19] and the references therein.

The threshold computation will be based on the maximum

change in the (average) energy level of r in response to

the disturbances and model uncertainties for each subsystem.

In constant threshold computation, the maximum effect

of the unknown inputs and model uncertainties for all

subsystems (worst case) will be set as threshold value,

where the disturbances and the control input are considered

as unknown bound values. Since the control input u is

available online during system operation, it is evident to

consider the instantaneous values of u in the calculation of

the threshold. Furthermore, the adaptation in the threshold

can be achieved by considering the different bound values

of the disturbances and the local performance index for

each subsystem of the switched systems. Thereby, the fault

detection rate will be enhanced.

To this end, the threshold value for switched systems is set

as follows:

Jth,σ(k),RMS = sup
‖d(u,d)‖RMS

<δ(dσ(k),2)+‖u‖2,T

η l ,l={1,...,m}, f=0

Jσ(k),RMS (40)

where σ(k) ∈ i. As a result, the switch decision logic for

detecting a fault for each subsystem is given as follows:

Jσ(k),RMS > Jth,σ(k),RMS ⇒ fault− alarm

Jσ(k),RMS ≤ Jth,σ(k),RMS ⇒ fault− free

Therefore, the adaptive threshold for switched systems is

defined as follows:

Definition 2: Adaptive Threshold

Assume that du,d is bounded for each subsystem in the sense

of

∥
∥d(u,d)

∥
∥

2
≤

∥
∥dσ(k)

∥
∥

2
+‖u‖2 ≤ δ(dσ(k),2) +‖u‖2,T (41)

Then the threshold can be set for each subsystem by

Jth,σ(k),RMS,2 = sup
‖d(u,d)‖RMS

<δ(dσ(k),2)+‖u‖2,T

η l ,l={1,...,m}, f =0

Jσ(k),RMS (42)

where δ(dσ(k),2) is the L2-norm of the disturbance for each

subsystem, i.e. {δd1,δd2, ...,δdN}.

The threshold computation is formulated as an optimiza-

tion problem of finding minimum βσ(k), as follows:

Theorem 2: Computation of adaptive threshold

Given the system (20)-(21) with polytopic uncertainties, and

βσ(k) > 0, σ(k) ∈ i, i = {1,2, ...,N}, and the evaluation

window T , then the adaptive threshold is set to

Jadap.th,σ(k),RMS,2(k) =
βσ(k)√

T
(δ(dσ(k),2) + ||u(k)||2,T ) (43)
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where βσ(k) should satisfies

||r(k)||2 ≤ βσ(k)||d(u,d)(k)||2 (44)

The proof of this theorem is derived from definition 2 and

theorem 1.

Remark 5:

• The optimization problem (44) is already solved in the

designed of residual signal, i.e. in solving the matrix

inequality (22). Then the threshold is set by simple

computation of equation (43).

• The threshold given in (43) consists of two time-varying

parts: the first part depends on the bounds of the disturbances

and individual performance index for each subsystem. The

second part depends on the instantaneous energy change of

the input signal.

Equations (41)-(43) showed that, the proposed idea of

using the bound values of disturbances and the local

performance index for each subsystem will reduce the

threshold size and thus enhance the fault detectability. This

result will be explained as follows:

• due to the nature of switched systems, the disturbance

bound on each subsystem can be less than or equal the worst

case disturbance δdmax, which affects the whole system, i.e.

δd,σ(k) ≤ δdmax.

• the local performance index satisfies βσ(k) ≤ βmax.

Therefore, instead of using the worst performance index

βmax for all subsystems, the local performance index will

be used for each subsystem.

The following algorithm summarizes the design procedure:

Algorithm 2: Computation of adaptive threshold for switched

systems

• Step 0: The unknown input for each subsystem is

assumed to be bounded by (δdσ(k)
), σ(k) ∈ i, i =

{1,2, ...,N}.

• Step 1: solve the optimization problem

minβσ(k)

subject to matrix inequalities (22) where βσ(k) > 0, Pj >
0, Pi > 0, and given constant 0 < ζ < 1. This step can

be done off-line.

• Step 2: compute

Jadap.th,σ(k),RMS,2(k) =
βσ(k)√

T
(δ(dσ(k),2) + ||u(k)||2,T )

where ||u||2,T is the instantaneous energy change of the

switching signal, and T is the evaluation window.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed the design of RFDF with H−/H∞

index for switched systems by considering the individual per-

formance index of each subsystem. MLF with average dwell-

time is used to ensure the stability of the switched systems.

On the other hand, using the bounds of the disturbances and

local performance index for each subsystem give the oppor-

tunity to design an adaptive threshold. The advantages of

the adaptive threshold proposed in this paper is summarized

as: 1) reduce of the threshold size, which increase the fault

detection capability. 2) it can be implemented on-line easily,

and it does not require too many on-line computations. The

proposed theory has been successfully applied to the lateral

vehicle dynamics benchmark (given in [11]:Chapter 3), but

due to the space limitation, this example cannot be presented

in this paper. The LMI which is used in this work can be

relaxed by using the methods in [13], [20], and [21], which

can be considered as an extension to this work.
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