
  

 

Abstract— As a result of different environmental issues, 

especially global warming and the greenhouse effect, 

biotechnology using microalgae has become a very promising 

alternative for carbon dioxide mitigation. Indeed, these 

unicellular microorganisms reduce efficiently carbon dioxide 

emissions through their photosynthetic activity. In order to 

maximize the efficacy of this biological process, one of the 

challenges is the efficient on-line estimation of the microalgae 

biomass for control strategies. In this context, several studies 

have established the performance and robustness of the 

interval observer for biomass estimation. This paper proposes a 

method of optimization of the gains tuning of the interval 

observer for the biomass concentration of Chlorella vulgaris 

culture in a continuous photobioreactor, using Total Inorganic 

Carbon measurements. This study provides two procedures for 

choosing the gains of the estimation strategy under a specific 

operating condition. The optimization methodology is validated 

by numerical simulations in the presence of uncertain model 

parameters and noisy measurements. 

I. INTRODUCTION 

s a consequence of global warming and the greenhouse 

effect, research on CO2 mitigation technologies have 

been investigated in order to reduce carbon dioxide emission 

into the atmosphere [1]. Biological carbon dioxide 

sequestration has recently become a very attractive proposal 

allowing biotransformation of carbon dioxide into biomass 

and other high value molecules through photosynthesis [1]. 

Among these biological processes, culture of microalgae has 

received renewed attention as an effective method for CO2 

bio-fixation. These photosynthetic microorganisms are able 

to assimilate carbon dioxide and bicarbonate ions as source 

of inorganic carbon to produce a storable form of renewable 

energy, biomass. The major advantages of using microalgae 

for this purpose are a high photosynthetic efficiency and a 

fast growth rate; additionally the possibility of controlling 

the growth conditions in “photobioreactors” is very 

attractive [2]. These unicellular microorganisms present 

higher CO2 fixation abilities than higher plants [1] [3]. Thus, 

using microalgae biotechnology for CO2 sequestration 

purposes is believed to be a globally significant and 
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economically viable environmental technology. 

The optimization of this biological process is related to the 

characteristics of the culture system design, the selection of 

appropriate microalgae and the operating conditions. Several 

authors have been interested in the selection of microalgae 

species with high CO2 fixation ability [4-5]. Indeed, 

Chlorella species are considered very promising candidates 

for CO2 fixation, converting significant levels of carbon 

dioxide in the airstream of photobioreactors into biomass. In 

this context, Chlorella sp. is one of the most studied algae 

for bio-fixation of carbon dioxide [6]. In the same way, the 

implication of the green unicellular species Chlorella 

vulgaris for the CO2 sequestration technology has been 

highlighted [6-7].  

A fundamental step for the implementation of an effective 

control strategy is based on choosing a reliable model that 

can effectively describe the biochemical dynamics of 

microalgae growth. Numerical models have been used for 

predicting microalgae growth rate and cellular concentration 

in a given environment. This mathematical equation 

highlights the influence of light intensity [8], and/or carbon 

source for growth [9]. Another important step for control 

purposes is the estimation methods required to overcome the 

lack of physical sensors. The cellular concentration (or 

biomass) is an important parameter for CO2 bio-fixation by 

microalgae. Thus, designing a robust biomass observer 

against model and kinetic parameter uncertainty represents a 

real challenge in bio-processes. Several studies have tackled 

biomass estimation through the extended Kalman filter [10] 

and the asymptotic estimator methods [11]. However, 

several research works have focused on the efficiency of a 

new estimation approach for microalgal cultures based on 

the interval analysis method [12-13]. In fact, it allows 

reconstruction of a guaranteed interval of the unmeasured 

state from the knowledge of the interval-bounded initial 

condition, model parameters and on-line available 

measurements. In the same way, the interval observer can 

provide upper and lower bounds of the state trajectory from 

the measurements of total inorganic carbon concentration 

and environmental parameters such as pH, temperature, light 

intensity, dilution rate and partial pressure of CO2. In this 

regard, the aim of this study is to improve the interval 

estimation of Chlorella vulgaris biomass through 

optimization of the estimator gains. 

The paper is organized as follows: the first section 

introduces the mathematical growth model for Chlorella 
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vulgaris and its kinetic expression. The second section is 

devoted to describing the general structure of the proposed 

interval observer and the optimization approach of the 

observer gains. Several simulations are presented in the third 

section to validate this optimization methodology for 

biomass estimation against the uncertainty of model 

parameters. Concluding remarks are stated in the last 

section. 

II. MICROALGAL BIOREACTOR MODEL 

The following section provides details of the governing 

equations and growth model parameters of Chlorella 

vulgaris. To accurately describe the growth behavior of this 

green microalga in a photobioreactor, a specific model based 

on the one proposed by Nouals, cited in [9] [14], by 

neglecting the substrate inhibition term, implies the 

association of the Monod model for the light effect and the 

Contois model for limitation effect by a substrate as the total 

inorganic carbon [9] [11]. The dynamics of the bioreactor is 

described by a set of two differential equations. Units of all 

parameters are given in the Table I. 

Biomass evolution is obtained by a standard mass balance 

in the photobioreactor assuming perfectly-stirred conditions 

under continuous mode (CSTR): 

DXX
dt

dX
   (1) 

where µ is the specific growth rate of algae, X is the cellular 

concentration (biomass in billion cells per liter) in the 

photobioreactor and D is the dilution rate, i.e. the ratio of the 

flow rate of medium to culture volume in the 

photobioreactor. 

Total Inorganic Carbon (TIC in mole per liter) is the sum 

of carbon dioxide (CO2), bicarbonate (HCO3

) and carbonate 

ion (CO3
2

) species in the medium. The predominance of 

one form is dictated by the pH of the culture. The dynamics 

behavior of TIC consumption is obtained by a mass balance 

for a CSTR:  
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where Y and kLa are the biomass conversion yield which 

represents the amount of biomass produced to the amount of 

total inorganic carbon consumed and the gas-liquid transfer 

coefficient of carbon dioxide, respectively.  

The equilibrium carbon dioxide concentration is defined as: 
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where 
2COP  and H represent the partial pressure of carbon 

dioxide (0.05 atm under our experimental conditions) and 

Henry’s constant for carbon dioxide for Bristol 3 N medium 

at 25°C (29 atm.L.mole
1

), respectively. Furthermore, the 

carbon dioxide concentration in the culture is calculated by 

the following expression: 
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where K1 (pK1 = 6.35 at 25°C) and K2 (pK2= 10.3 at 25°C) 

are the dissociation constants of the chemical equilibriums 

between (CO2/HCO3

) and (HCO3


/CO3

2
) 

 
respectively. 

Concentration of hydrogen ions in the culture is given by: 

pHH  10][  (5) 

The following model presents the specific growth rate for 

Chlorella vulgaris as a function of light intensity limitation 

and substrate limitation effect (see [9] for more details): 
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where µmax, KE and KCL are the maximal specific growth 

rate, the half saturation constant for light intensity available 

per cell (denoted by E) and the half saturation constant for 

TIC, respectively. These model parameters were identified 

and validated, through Matlab
TM

 environment, with 

experimental data of Chlorella vulgaris cultures operating in 

batch and continuous [9]. 

The light intensity accessible per cell is described as 

following: 
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where Iin, Iout and Ar are the incident, outgoing light intensity 

and the bioreactor illuminated area, respectively.  

The outgoing light intensity can be calculated by an 

analytical expression as a function of biomass and the 

incident light intensity according to the following relation 

(see [14] for more details): 

2
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C
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with C1 and C2 constants depending essentially on the 

reactor geometry. 

This work proposes a robust interval observer of biomass 

estimation from TIC measurements and with the model 

parameter uncertainty. The main goal is the accurate choice 

of the observer gains in order to optimize the biomass 

estimation of Chlorella vulgaris. 

III. DESIGN OF THE INTERVAL OBSERVER 

A. Estimation methodology 

In this section, a robust interval observer for biomass 

estimation will be proposed using the model structure shown 

in Section II. This approach is based on the interval analysis, 

i.e. reconstruction of an upper and lower bound of the 

missing state. In this direction, the developments below are 

an extension of the application and results obtained in [13]. 

The design of this observer is based on the properties of the 

monotone dynamical systems [15], i.e. the missing state 

must be bounded by a solution of dynamical systems that 

fulfills the condition of “cooperative systems”. This 
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“cooperativity” concept is achieved by the condition for 

which the non-diagonal terms of the Jacobian matrix are 

positive [15]. 

However, using the classical state representation given by 

the two mass balances (1) and (2), the cooperativity 

condition is not fulfilled, i.e. one of the non-diagonal terms 

of the Jacobian matrix of the observer is negative. A state 

transformation based upon Bastin and Dochain [11] is then 

used: 

SYXZ   (9) 

Thus, the new state representation of the biological process 

is defined by the following differential equations:  
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Then, standard observer equations are obtained by 

introducing a correction step between the measurement and 

the estimation of total inorganic carbon concentration (TIC): 
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where g1 and g2 represent the observer gains and y is the TIC 

measurement, respectively .  

By defining the estimation error of the system as:  

XXeZZe Xz  ˆˆ  

the Jacobian matrix of the estimation error dynamics (i.e. the 

first derivative of the dynamics (11) with respect to the 

states) is expressed by: 
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Through this matrix and the cooperativity theory on the 

estimation error dynamics, the observer gains g1 and g2 must 

satisfy the following conditions: 
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The following bounds are considered for the initial 

condition of cellular concentration such that: 

  000 XXX  

The general structure of the interval observer is presented as:  
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where g1
+
, g1


, g2

+
and g2

 
are the gains of the interval 

observer, that guarantee the stability and the performance of 

estimation. 

States are initialized as follows: 
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Assuming a positive dilution ratio, the stability of this 

observer is guaranteed by checking that the same solution is 

obtained between equations (10) and the system with the 

correction terms weighted by the gains g1 and g2. 

Thus, considering an approach for the upper observer (Z
+
, 

X
+
) (similarly for the lower observer), the observation error 

dynamics is defined by: 
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Since from [6], the specific growth rate µ
+ 

has an upper 

bound 
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Through the condition on the observer gains cited 

previously (13), the system (15) is cooperative and the 

positive error is bounded by: 

ttete   ,)()(0  

where e
++

(t) is the solution of the system: 

),( max
  XeJe  (18) 

with the initialization step given by:  

)0()0(   ee  
The term Λ remains bounded as follows: 
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The stability of the error is guaranteed if the matrix J
++

 is 

Hurwitz, leading to the following conditions: 
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Thus, the stability of the error dynamics is fulfilled as long 

as the condition of cooperativity (13) and stability (20) on 

the observer gains are satisfied: 
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The interval observer design (14) allows reconstructing a 

stable and guaranteed interval of the biomass through the 

estimation of lower and upper bounds, described by: 
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Moreover, from (18) and (19), an upper bound for the 

biomass estimation error can be derived as follows:  
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B. Gain design and optimization approach 

The objective of this part is to optimize the interval 

approach of biomass estimation of Chlorella vulgaris 

through an optimized choice of observer gains g1 and g2. 

Thus, in order to ensure the exponential convergence of 

this observer, g1 and g2 must be tuned in order to fulfill the 

cooperative condition and to minimize the guaranteed 

interval between the upper and lower bounds. This technique 

considers that the error dynamics applied to the two states 

(Z, X) is governed by a second order system. In the same 

way, the aim is to set the convergence dynamics across the 

tuning of eigenvalues of the Jacobian matrix (17). 

Consequently, calculating the characteristic polynomial of 

J
++

, the tuning of the interval observer gain g1 and g2 is 

performed by the following equation: 










































Y
akµDY

akY
µ

DD
Y

g

Lg

Lg

1
0max2

max

0
2
0

2

1

22

2






 (24) 

where ω0 and ξ represent the natural frequency and damping 

coefficient of the second order system, respectively. 

From (21) and (24), the cooperativity condition on g1 gives 

conditions on values of ω0 and ξ:  
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It can be noticed from (25) that the natural frequency has a 

minimum bound equal to the dilution rate D. Thus, the 

observer convergence speed is limited by the value of the 

dilution rate. Consequently, eigenvalues of the error 

dynamics are chosen so that the estimation error behavior 

has good convergence properties. 

Another way to tune the observer’s convergence consists in 

choosing its gains (g1, g2) so that the estimation error 

respects a given accuracy. Indeed, (23) gives an upper bound 

on the biomass steady state error. Thus, estimator gains are 

determined by minimizing this steady state error under 

constraints that the system is cooperative and the error 

dynamics is stable: 
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However, the solution of problem (26) is to set 2g . 

To fix a finite value of g2, one can either choose a desired 

error value and solve (25) so that the criterion is equal to this 

value; or deal simultaneously with the observer’s 

convergence and the steady state error value. In the next 

section, this optimization problem is solved so that a given 

steady error value is guaranteed. 

C. Estimator robustness w.r.t. model uncertainties 

Previously, only uncertainties in growth rate parameters 

were considered. However, other parameters can affect the 

estimator efficiency, namely the biomass conversion yield Y 

and the gas-liquid transfer coefficient of carbon dioxide kLa. 

Estimator dynamics equations (14) were modified in order 
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to introduce lower and upper bounds of these parameters, 

leading to similar error dynamics as (17).  

In this case, the bound of the steady state error (23) 

depends on the difference of the upper and lower bounds of 

kLa and Y. The minimum value reached by the new steady 

state error bound could not be decreased as desired and 

depends on the culture conditions and on the model 

accuracy. For instance, in case of kLa mismatch only, the 

upper bound of biomass steady state estimation error tends 

to a nonzero value, leading to the following relationship:  

 *2)( CO
D

akak
Ye LL

X 





 (27) 

Thus, depending on   akak LL , Y and D, the estimator 

gains could be optimized if the desired error is bigger than 

the limit given in (27). A similar result has been found for 

biomass conversion yield Y. In the general case, this error 

cannot be reduced as desired since this upper bound is fixed 

by culture conditions. In the next section, this phenomenon 

will be highlighted by simulation results. 

IV. NUMERICAL SIMULATION 

The validation of this study was provided by numerical 

simulation based on the model parameters of Chlorella 

vulgaris presented in Table I. An identification and 

validation phase of the growth model parameters (6) was 

carried out in the Matlab
TM

 environment through a set of 

batch and continuous cultures of Chlorella vulgaris in a 

photobioreactor of 9.6 L under optimal growth conditions 

[9]. In the following, 30% mismatch on the growth rate 

model parameters is considered. Simulations also consider a 

measurement noise acting on the substrate measurement of 

zero means and 0.01 standard deviation. The initialization 

step is given by: 
19 L.cell10.20)0( X     

13mole.L10)0( TIC  
with an initialization error of biomass selected to be more or 

less 20 billion cells per liter.  

 

The main simulation parameters consider a 90 µmole. m
2

. 

s
1

 incident light intensity, a constant pH value of 6 

(experimentally, the pH is stabilized around this value) and 

PCO2 fixed at 0.05 atm. The sampling period is set to 10 

minutes. 

The major purpose of this study is to enhance the 

performance of the interval observer previously described, in 

Section III, through an optimization of the gains design. The 

performance analysis is evaluated by the monitoring of the 

biomass evolution and the efficient study of estimation 

through an optimized, stable and robust guaranteed interval 

against uncertainties of model parameters.  

A. Biomass estimation with uncertainties on growth rate 

parameters  

During this part, improving the performance of the interval 

observer was analyzed through a study of the impact of an 

optimal choice of the natural frequency of the error 

dynamics on the efficiency of biomass estimation. 

First, the importance of the cooperativity condition is 

showed in simulation and is illustrated in Fig. 1. Two cases 

are considered: a first observer which does not respect the 

cooperativity condition (by setting the damping factor
7.0 ), and a second one with 2  which is thus 

cooperative. The two observers have the same natural 

frequency satisfying (25). As shown in Fig. 1, the second 

observer helps to estimate the real biomass concentration, by 

giving good upper and lower estimation bounds. Conversely, 

the loss of the cooperativity condition leads to an inversion 

of these upper and lower bounds. Thus, choosing estimator 

eigenvalues according to (25) helps to guarantee the 

cooperativity condition.  
Fig. 2 illustrates the influence of the natural frequency on 

the transient behavior of the interval estimation. Three 

values of the natural frequency ω0 are tested, chosen 

according to (25) (5D, 10D and 15D, denoted respectively as 

cases 1 to 3 in the figure). It can be noticed that upper and 

lower estimators converge to the real biomass concentration, 

despite the growth rate model uncertainties. On the other 

hand, it can be highlighted that the steady state biomass 

estimation error depends on the estimator gains chosen. 

 
Fig. 1: Observer simulation with 30% model mismatch: influence of 
damping factor of error dynamics.  

In order to decrease the steady state error, the estimator 

gains are optimized by solving problem (26). The aim is to 

ensure a steady state error less than 2 billion cells per liter 

(i.e. about 2% error).  
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TABLE I 

GROWTH MODEL AND SIMULATION PARAMETERS FOR CHLORELLA 

VULGARIS IN A PHOTOBIOREACTOR 

parameter Unit Value 

µmax h1 0.08 

KE µE.s1.109. cell1 0.14 

KCL mole.109. cell1 1.28  105 

C1 
 0.49 

C2  0.92 

V L 9.6 

Ar m2 0.31 
kLa h1 1.36 

Y 109 cell.mole TIC1 3555 

H atm.L.mole1 29 

D h1 0.01 
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Fig. 2: Observer simulation with 30% model mismatch: influence of natural 
frequency of error dynamics.  

Results with the obtained optimal estimator are shown in 

Fig. 3, as well as those found in case 3 of Fig. 2. It can be 

noticed that the optimized estimator presents the best 

convergence and accuracy properties. In fact, the 

optimization algorithm decreases the gain g2 until the desired 

accuracy is fulfilled. 

 
Fig. 3: Biomass estimation and its error: real (dotted red line), imposed 
eigenvalues (blue dashed line), optimized gains (black full line).  

Finally, Fig. 4 illustrates the estimator behavior with both 

growth rate parameters and kLa mismatch about 30% and 

10%, respectively), with different initialization errors (resp. 

5, 10 and 20.10
9
 cells/L). The same final accuracy is reached 

(about 10 billion cells per liter), and the final value depends 

only on the accuracy of the kLa value and of the dilution rate.  

 
Fig. 4: Biomass estimation and its error: growth rate model parameters and 

kLa mismatch, with different initialization errors.  

V. CONCLUSION 

In this paper, an enhancement of the interval observer 

performance for the biomass Chlorella vulgaris estimation 

was studied. This optimization approach concerns the design 

of the observer gains, which can be tuned by choosing error 

dynamics or by optimizing estimator gains so that a steady 

state error level is reached. This study showed, through 

several simulations, that the interval observer is robust 

against uncertainties of the model parameters, which is not 

the case of the classical asymptotic observer. Further work 

will involve the experimental validation of this approach for 

biomass estimation. It will also examine the improvement of 

biomass estimation in case of uncertainties on the mass 

conversion yield Y and on the gas-liquid mass kLa 

considering other robust estimator structures. 
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