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Abstract—In previous work we modeled the real-time power
market as a dynamic system and presented an “efficiency-
volatility” trade-off theorem stating that in markets with supply
friction, an efficient market must have volatile prices. In this
paper we introduce a novel market mechanism for power markets
where there are two prices: one for the real-time power market
for suppliers who have friction and another for frictionless
ancillary supply with a marginal cost higher than that of regular
suppliers. We show that for a given level of acceptable price
volatility the double price system with the ancillary supplier is
more efficient than the single price system without the frictionless
ancillary supplier.

I. INTRODUCTION

Deregulation of power industry has been long-awaited [1],
[2], and in theory was supposed to increase efficiency, gen-
erator availability, and investment in the sector, and would
provide protection against theft of service, and even would
have positive environmental impacts [3]. The privatization
attempts took place in the late 1990s in North America,
starting with California, New England and Pennsylvania, New
Jersey, Maryland (PJM) Independent System Operators (ISO).
The results did not turn out as expected in the beginning;
for instance, in the PJM market while the average price of
electricity was $26.04 per MWh in Summer 1998 before
deregulation, it was $37.97 per MWh the following summer,
right after deregulation [4].

In the following years the deregulation of the electricity
market became widespread in North America, even though the
distribution and transmission sectors mostly remain regulated.
During these years, volatility of the electricity prices, which
was considered to be a temporal effect, became an epidemic
matter [5]. Volatility is a major global problem as for instance,
in China, the dominant source of energy consumed in the
manufacturing sector is electricity with 40%. Even though
one certainly can not neglect the exercise of market power
in infamous cases such as Enron, relating volatility to mainly
market power exercise [4], [6]–[13] might be a misjudgment.

Electricity markets have distinct features. The constraints
due to transmission congestion, voltage and thermal con-
straints, Kirchoff’s Laws, non-convex start-up and shut-down
costs are the main reasons behind excess and lack of supply
[14]. There is also the locality feature: production costs, fuel
prices, and the overall demand vary due to location. For
instance, California and New England faced very high prices in
2000-2001, whereas PJM faced relatively cheaper prices in the
same period [15]. Taking into account all the characteristics of
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the market naturally leads to a very complex model, and may
turn out to be analytically intractable, even in the relatively
simpler static case.

Static optimization tools provide solutions to linear and non-
linear problems with many equality and inequality constraints.
Dynamic optimization goes a step further and takes dynamics
into account where optimization is applied on a trajectory, in-
creasing the complexity of the problem for the sake of superior
comprehension. Efficiency in power markets is studied in [4]
and [16], whereas a dynamic competitive equilibrium for a
stochastic market model is studied and the role of volatility
for the value of wind generation is presented in [17]. The
development and the implementation of a decision tool for the
coordination of electrical vehicle battery charging in a dynamic
setting is studied in [18].

In a stylized dynamic model, it was shown in [19] that the
occurrence of choke-up prices (the maximum price a consumer
is willing to pay) is intrinsic to markets with friction, and
the market is efficient. In our previous work, we modeled
the power market as a dynamic optimization problem, where
dynamics are subject to friction, and have shown that there
is a trade-off between efficiency and non-volatility [20] such
that penalizing volatility is equivalent to penalizing efficiency.
Then, we have shown that the trade-off theorem also applies
to a dynamic game market model where agents are coupled
in their cost functions and dynamics through the price process
[21].

The major factor leading to volatile prices in the analysis of
[19]–[22] is friction. In this paper, we discuss a new market
mechanism in order to mitigate the volatility problem. We
define two price processes: the first one, pe is the market
equilibrium price, which is the market clearing price. The
second one is the ancillary price, pa, which reflects the unit
price of the electricity supplied by a hypothetical frictionless
ancillary power generator. We model the power market through
continuous dynamics and an integrated cost function. The
problem is presented as an optimal control problem, and the
control action is defined as an increment process applied by
the regulator on the equilibrium price process and the ancillary
supply process. The HJB Equation is solved and the resulting
optimal control is presented. We first show that efficiency is a
monotonically decreasing function of the volatility coefficient,
which penalizes volatility. We then compare two markets: with
and without the frictionless supplier. We show that efficiency
in the former market is higher than the latter one for any finite
volatility coefficient. Moreover, when volatility coefficient
tends to ∞, the efficiency in the former market equals the
efficiency in the latter market.

The rest of the paper is organized as follows. In Sec. II we
introduce the model. The demand (dt; t ≥ 0), supply (st; t ≥
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0), ancillary supply (sat ; t ≥ 0) and the equilibrium price
(pet ; t ≥ 0) processes are defined for the social cost optimizer
regulator agent R with the corresponding cost function. In Sec.
III we present the optimal control that leads to a volatile price
process. In Sec. IV we define volatility and modify the social
cost function to account for it. We solve the dynamic stochastic
optimization problem for linear dynamics and a quadratic cost
function and present the closed form solution. We show that
there is a trade-off that can be quantified between efficiency
and non-volatility, and present supporting simulations. In Sec.
V we compare two markets presenting the two comparative
theorems described in the previous paragraph. We present
supporting simulations in Sec. VI and conclude in Sec. VII.

II. MODEL

In this section we define the optimization problem for
the social cost optimizer, the regulator agent R, in the
power market. We define the four dimensional state pro-
cess ((dt, st, s

a
t , p

e
t )
>; t ≥ 0). We have the demand process

(dt; t ≥ 0), the supply process (st; t ≥ 0), the ancillary
supply (sat ; t ≥ 0), the equilibrium price process (pet ; t ≥ 0),
and the ancillary price process (pat ; t ≥ 0). Also, the initial
values {d0, s0, s

a
0 , p

e
0, p

a
0 ∈ R}, are bounded, independent of

the standard Wiener processes (wdt , w
s
t ; t ≥ 0). Demand,

supply and the ancillary supply dynamics are defined as

ddt =fd(dt, p
e
t )dt+ σddw

d
t , t ≥ 0,

dst =fs(st, p
e
t )dt+ σsdw

s
t , t ≥ 0,

dsat =uat dt, |uat | ≤ uamax, t ≥ 0,

(1)

using deterministic continuous functions fd(·) and fs(·) with
(wdt ; t ≥ 0) and (wst ; t ≥ 0), standard Wiener processes. The
function fd(·) is allowed to be a function of d and pe, values of
demand and the equilibrium price, and fs(·) is allowed to be a
function of s and pe, values of supply and the equilibrium price
processes. We adopt the stepwise adjustment model for the
ancillary supply, where the bounded input control process ua

controls the amount of the increment. Note that the ancillary
supply dynamics are deterministic and directly tied to the
control action to be applied by the regulator.

We employ the following assumptions on the functions
fd(·) and fs(·) which are both subject to friction:

A1: For constant C1 > 0, fd(0, 0) ≤ C1, f
s(0, 0) ≤ C1

and ∣∣∣∣∂fd∂p
∣∣∣∣+

∣∣∣∣∂fs∂p
∣∣∣∣ ≤ C1.

This assumption assures that the instantaneous change in
demand and supply processes is constrained. This is one
of the key properties of power dynamics; the suppliers and
consumers are unable to respond to abrupt changes in the
system. The reason for the supplier’s sluggishness is the slow
ramp up in power production, whereas for the consumers it is
usually not handy or very complicated and costly to startup
and shutdown a running machine or a household. Note that
the ancillary supply dynamics are not subject to friction.

A2: fd(·) is a strictly decreasing function of p, whereas
fs(·) is strictly increasing.

This assumption ensures that an increase in price is reflected
on the deterministic portion of decreasing demand dynamics
and increasing supply dynamics.

We also adopt the assumption below for initial values of the
processes and the disturbance process:

A3: {d0, s0, s
a
0 , p

e
0, p

a
0 ∈ R} are bounded, and {wd, ws ∈

R} are mutually independent and independent of the initial
conditions. Instantaneous variances of the disturbance pro-
cesses, σ2

d, σ
2
s , are bounded.

For the equilibrium price we adopt the stepwise price
adjustment model [23] for the optimizer (so called regulator
agent R), where the bounded input control process (uet ; t ≥ 0)
controls the amount of the increment. The ancillary price is not
controlled, that is, it is equal to the marginal cost of ancillary
supply production. The price processes are defined as

dpet =uetdt, |uet | ≤ uemax, t ≥ 0,

pat =ca′(sat ), t ≥ 0.
(2)

The actions of R is the set {u = [ue, ua]> : [|ue|, |ua|]> <
[uemax, u

a
max]>, u ∈ R2, uemax, u

a
max > 0} which is simply

constrained adjustment. R looks at the demand, supply, ancil-
lary supply, price dynamics and taking into consideration their
dynamics, cost function and the constraints, takes an action
in terms of increasing or decreasing the power price and the
current ancillary supply. This action is intended to linearly
control market dynamics by only applying increments.

Following [19], the individual loss functions of the con-
sumer, supplier and the ancillary supplier are defined respec-
tively:

gd(·) = pe · s+ pa · sa − v ·min(d, s) + cbo(r),

gs(·) = c(s)− pe · s,
ga(·) = ca(sa)− pa · sa.

Here, c(s), ca(sa) ∈ C2
b : R → R+, where C2

b denotes the
family of all bounded functions which are twice differentiable.
The function c(s) is the production cost, and is convex and
strictly increasing with respect to s. One needs to find a
realistic production cost function in order to have a reasonable
power market model. We note that in real power markets,
production cost is not a convex function. The startup and
shutdown costs, transmission line constraints, weather fluc-
tuations all affect the production cost function. However, if
one neglects the startup and shutdown costs, the cost function
resembles a convex function. For our model we will assume
a continuous convex cost. The constant v ∈ (0,∞) is the
value the consumer obtains for a unit of power. The blackout
cost function cbo(r) ∈ C2

b : R → R+ is the cost paid by
the consumer in case of an unmet demand, convex, zero on
[0,∞) and strictly decreasing on (−∞, 0), where r denotes
the reserve, r := s+sa−d. In the spot market, the consumer,
D, pays pe · s+ pa · sa, the price of all the supply bought, to
the supplier, S and the ancillary supplier Sa. Note that v is
multiplied by the supplied portion of the consumer’s demand.

34



Further note that the suppliers S and Sa pay for all the cost of
production, and gain unit price multiplied with all the units of
supply bought by the consumer agent D. Finally, we employ
the following social cost function that is simply the addition
of loss functions of D, S and Sa integrated in time:

J(·) = E
∫ ∞

0

e−ρt[−v ·min(dt, st + sat ) + c(st)

+ ca(sat ) + cbo(rt)]dt. (3)

In the section that follows, we consider the optimality of
the cost function presented above with the dynamics (1), the
control (2) and the cost function (3) under A1, A2 and A3.

III. CENTRALIZED CONTROL FORMULATION

In this section we analyze the optimal control problem in
terms of the state vector x := [d, s, sa, pe]>. As stated before,
this is a centralized control problem for the regulator agent R.
In principle, R’s objective is to regulate demand, supply and
the ancillary supply processes so that the best social outcome
is achieved. In this section we show that the optimal control
of the regulator is a “bang-bang” control. We rewrite (1) and
(2) in vector form with stochastic dynamics as

dx = ψdt+Gdw, t ≥ 0, (4)

where w is a 4 × 1 standard Wiener process. We set x :=
[d, s, sa, pe]>, and write

ψ =


fd(d, pe)
fs(s, pe)
ua

ue

 , G =


σd 0 0 0
0 σs 0 0
0 0 0 0
0 0 0 0

 .

The loss function of (3) is rewritten here as g(x) =
g(d, s, sa, pe) = −v · min(d, s + sa) + c(s) + ca(sa) +
cbo(s + sa − d). The admissible control for the regulator is
specified as U = {u : u adapted to σ(xs, s ≤ t), t ≥ 0,
[|ue|, |ua|]> < [uemax, u

a
max]>}. Therefore, the regulator can

at most increase or decrease the price and ancillary supply
with unit umax and −umax at each iteration. Finally, the
cost associated with (4) and a control u is specified to be
J(x, u) = E[

∫∞
0
e−ρtg(dt, st, s

a
t , p

e
t )dt]. Further, we set the

value function
V (x) , inf

u∈U
J(x, u). (5)

The theorem that follows claims the existence and uniqueness
of the optimal control to the problem (5).

Theorem 3.1: There exists a unique û ∈ U such that
J(x, û) = infu∈U J(x, u), and if ũ ∈ U is another control
such that J(x, ũ) = J(x, û), then PΩ(ũs 6= ûs) > 0 only on
a set of times s ∈ [0, T ] of Lebesgue measure zero.

Proof: For (vt, ηt; t ≥ 0) two standard mutually inde-
pendent Wiener processes, we can define alternative control
actions in the form of two stochastic differential equations
d(pet )

p
= uetdt + εdvt, d(sat )

p
= uat dt + εdηt. The resulting

value function can be shown to be a viscosity solution to an
HJB Equation, and this solution is unique (see Chapter 4,
[24]). For fixed ua and ue, we have P{limε→0 supt≥0|(sa)

p−

sa| = 0} = 1, and P{limε→0 supt≥0|(pe)
p − pe| = 0} = 1,

and Lebesgue’s Dominated Convergence Theorem is employed
to obtain |Jp(x, u) − J(x, u)| → 0, as ε → 0. Therefore,
V p(x) → V (x) as ε → 0 follows. An application of Arzela-
Ascoli Theorem leads to V p(x)→ V (x), as ε→ 0.

Now that we have shown the existence and uniqueness of
the optimal control, we consider approaches for computing the
optimal solution. For a function class G: (i) V ∈ C1,2([0,∞)×
R4), (ii) |V | ≤ C(1 + dk1 + sk2 + (sa)

k3) where C, k1, k2, k3

depend on V , we write the HJB Equation

ρV + sup
u∈U

{
−∂
>V

∂x
ψ

}
− 1

2
Tr

(
∂2V

∂x2
GG>

)
− g(·) = 0. (6)

A classical solution to the HJB Equation (6) may not exist
as GG> is not of full rank in (4) [25]. Therefore, viscosity
solutions are adopted.

A. Perturbation Method

Following [23] in order to make the GG> matrix full rank,
we add (1/2)ε2(∂2V/∂sa2) + (1/2)ε2(∂2V/∂pe2) to (6). For
the function class G:

ρV − ∂V p

∂d
fd(d, p)− ∂V p

∂s
fs(s, p)

+ sup
u∈U

{
−∂V

p

∂sa
ua − ∂V p

∂pe
ue
}
− 1

2
σ2
d

∂2V p

∂d2
− 1

2
σ2
s

∂2V p

∂s2

− 1

2
ε2
∂2V p

∂sa2 −
1

2
ε2
∂2V p

∂pe2 − g(d, s, p) = 0. (7)

It can be easily shown that Equation (7) has a solution with
an argument similar to Theorem 3.1. Also, it can be proved
that |Jp(x, u) − J(x, u)| → 0 uniformly as ε → 0 and using
Lebesgue’s dominated convergence theorem. Therefore, one
can prove that V p(x) → V (x) as ε → 0. This gives us the
result below.

Corollary 1: For the function class G the solution u∗ ∈ U
to the perturbed HJB Equation (7) is found as:

u∗ = arg min
u∈U

∂>V p

∂x
ψ =

[
−sgn

(
∂V p

∂pe

)
· uemax

−sgn
(
∂V p

∂sa

)
· uamax

]
, (8)

where {ue, ua} were previously defined as dsat = uat dt, dp
e
t =

uetdt, t ≥ 0, |ut| ≤ umax.
Hence, the optimal control is found as a double switch. When
we look at the the perturbed HJB Equation (7), the value
function is differentiable everywhere in the function class
G, and due to the constraint defined on the control action,
the optimal control is represented as a bang-bang control.
The bound |V | ≤ C(1 + dk1 + sk2 + sak3) is a direct
estimate, and V ∈ C1,2([0,∞) × R4) is satisfied due to the
stochasticity of the dynamics (4) with the full rank disturbance
process [24]. One can numerically solve the value function for
implementation.
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IV. EFFICIENCY–VOLATILITY TRADE-OFF

Efficiency and non-volatility are two desirable properties
of power markets. In this section we show that these two
notions contradict each other in a market model with friction.
Therefore, one has to trade-off efficiency and non-volatility in
designing the market mechanism.

The optimal control policy for the system (1) and the price
processes due to the nature of the optimal control (8) were
shown in the previous section. Since the demand and supply
processes are defined by stochastic differential equations, they
fluctuate on their trajectories and the regulator modifies the
ancillary supply and the equilibrium price process for the
optimal outcome.

We consider an objective function that penalizes the control
action

u := [ue, ua]>. (9)

Recall the loss function defined in (3) and the input control
process (ut; t ≥ 0) defined in (2). The cost associated with
the system is defined as

J(x, u) = E
∫ ∞

0

e−ρt[g(dt, st, s
a
t , p

e
t ) + u>t Rut]dt, (10)

where we add u>t Rut to the term (3). We have R > 0 in the
form of

R ,

[
re 0
0 ra

]
, (11)

where re is the volatility coefficient. We will show that if the
volatility coefficient decreases, the expected cost decreases. In
other words, if high volatility is not penalized, the social cost
defined in (3) increases.

We define efficiency as the quantity obtained when the
expected cost is multiplied by −1 and the control action
penalizing part is taken out: −E

∫∞
0
e−ρt[g(dt, st, s

a
t , p

e
t )]dt.

Volatility on the other hand is defined by the price fluctuation
measured by E

∫∞
0
e−ρt‖uet‖2dt.

We require two more assumptions here:
A4: The supply process (st; t ≥ 0) and the demand process

(dt; t ≥ 0) are linear mean-reverting processes that have
bounded variances.

A5: The production costs c(·), ca(·) and the blackout
cost cbo(·) functions are convex functions in the form of
c(·), ca(·), cbo(·) ∈ C2

b : R→ R+.
As a special case, we study quadratic cost functions and

introduce a penalty term for u in the cost function, removing
the bound on the control input:

J(x, u) = E
∫ ∞

0

e−ρt[x>t Qxt + 2x>t D + u>t Rut]dt, (12)

where x := (d, s, p)>, Q ≥ 0, R > 0 and D is a continuous
vector valued function. Employing A4, we have the dynamics

dx(t) = (Ax(t) +Bu(t) + c) dt+Gdw, t ≥ 0, (13)

where Ψ(x, u) , (Ax(t) +Bu(t) + c), w is a 4× 1 standard
Wiener process, x(0) = x0, and A,B,G are in the form of

A =

 ∗ 0 0 ∗
0 ∗ 0 ∗
0 0 0 0

 , B =


0 0
0 0
0 1
1 0

 ,

c =


∗
∗
0
0

 , G =


σd 0 0 0
0 σs 0 0
0 0 0 0
0 0 0 0

 .

(14)

The coefficients θ = [A,B, c] ∈ Θ ∈ Rn(n+m+1), will be
called the dynamics parameters.

A. Existence and Uniqueness of the Optimal Control

From now on, we will work on (12) and (13). We take the
admissible control set U2 = {u : u adapted to σ(xs, s ≤
t), t ≥ 0,

∫ T
0
e−ρt‖ut‖2dt < ∞, ρ > 0}. The minimum

cost-to-go from any initial state (x) is described by the value
function which is defined by V (x) = infu∈U2 J(x, u). The
optimal control problem is well defined with the Hamilton-
Jacobi-Bellman (HJB) Equation,

ρV + sup
u∈U2

{
−∂V
∂x

>
Ψ− r‖u‖2

}
− 1

2
Tr

(
∂2V

∂x2
GG>

)
− x>Qx− 2x>D = 0. (15)

Theorem 4.1: Equation (15) has a unique solution for the
admissible control set U2.
Proof: The proof follows a generic argument. A typical
treatment can be found in [26].

B. Closed Form Solution

Standard arguments due to Anderson and Moore (1989)
[27] show that J(x, u) is quadratic in x. Furthermore, at
any point x ∈ R4, the minimum cost-to-go is quadratic in
x. Consequently, one can model V of the form V (x) =
x>Kx + 2x>S + q, for all x ∈ R4. Substituting V (x) in
(15) and applying first order optimization gives

u∗(t) = −R−1B>[Kx(t) + S]. (16)

Solving the closed loop expression we get the Algebraic
Riccati Equation and the two equations:

− ρK +KA+A>K −KBR−1B>K +Q = 0, (17)

− ρS + (A−BR−1B>K)>S +Kc+D = 0, (18)

− ρq + 2S>c− S>BR−1B>S + Tr(KGG>) = 0. (19)

The linear quadratic optimal control problem admits a unique
optimum feedback controller given by (16) which obtains the
minimum value of the cost function: J(x, u∗) = x>Kx +
2x>S + q.
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C. Efficiency–Volatility Trade-off
We would like to look at the relation between re (11), the

volatility coefficient and the state penalizing part of the cost
function obtained when the volatility term is removed from
the cost function. We define the state penalizing cost as

J∗sp(x, u
∗) , E

∫ ∞
0

e−ρt[x>(t)Qx(t)+2x>(t)D]dt, (20)

which is termed efficiency when multiplied by −1.
Theorem 4.2: Suppose A1-A5 hold. For all x ∈ R4, the

state penalizing cost portion (20) of the cost function (12)
applying the optimal control u∗ is an increasing function of
re. Moreover limre→∞ J∗sp(x, u

∗) <∞.
Proof: First we show that Jsp(x, u∗; re) ∈ Cb. The

quadratic cost function was shown (12) to be J(x, u∗) =∫ T
0
{x∗>(t)Qx∗(t)+2x∗>(t)D+‖u∗>(t)Ru∗‖2}dt. We seek

to compute dJsp(x, u
∗)/dre. However, the calculations are

easier for dJsp(x, u∗)/dγ, where γ = r−1
e . We have

dJ∗sp
dt

∣∣
t=T

= fJ(x) =(
x∗>(t, γ)Qx∗(t, γ) + 2x∗>(t, γ)D

) ∣∣
t=T

, (21)

with the initial condition J∗sp(0) = 0. We solve the stochastic
differential equation, arrange the terms, and obtain

R1(t) =

∫ t

s

e(A−BγB
>K(τ,γ))

>
(τ−s)

(
− BγB>

dK(τ, γ)

dγ

− BB>K(τ, γ)
)>
· e(A−BγB

>K(τ,γ))
>

(s−τ)dτ,

R2(t) =

∫ t

0

e(A−BγB
>K(τ,γ))(t−s)GG>R1(t)

e(A−BγB
>K(τ,γ))

>
(t−s)ds,

dJsp(x, u
∗)

dγ
= 2

∫ T

0

Tr(R2(t) ∗Q)dt.

(22)
All the terms in (22) are positive except for

(−BγB>dK(τ, γ)/dγ − BB>K(τ, γ))>. Using a similar
approach shown in [22] we get R1(t) < 0. Therefore,
one obtains dJsp(x, u

∗)/dγ < 0 for all γ > 0. As
dJsp(x, u

∗)/dre = −(dJsp(x, u
∗)/dγ)r−2

e , one obtains
dJsp(x, u

∗)/dre > 0 for all re > 0. Also, due to A4,
the system is a mean reverting process. Therefore, in the
open loop, the system is non-divergent. The argument
limre→∞ J∗sp(x, u

∗) <∞ follows.
Increasing the volatility coefficient increases social cost,

therefore decreases efficiency, while decreasing the coefficient
decreases the cost, hence increases efficiency. On the other
hand increasing the volatility coefficient decreases volatility,
whereas decreasing volatility coefficient increases volatility.
Therefore, there is a trade-off between social efficiency and
non-volatility.

V. COMPARISON WITH SINGLE PRICING SCHEME
In our previous work [20] we introduced the three dimen-

sional market model where we proved the efficiency non-
volatility trade-off. In this paper, we extend the model by

adding an extra state, the supply of a hypothetical friction-
less ancillary supplier that produces electricity by a higher
marginal cost than the regular supplier. From now on we will
call the model without the ancillary supplier the single price
model and the one with the ancillary supplier the double price
model, due to the two price processes involved in the system:
pe and pa. In this section we present the main theorem of
the paper: we show that even though the marginal cost of
production of the ancillary supplier is uniformly higher than
that of the regular one, the efficiency obtained in the double
price model is higher than that of the single price model for
a given level of acceptable volatility.

First we introduce two new assumptions for the system:
A6: c′(s) < ca′(s) for all s ≥ 0.
A7: The set of dynamics parameters Θ is a compact set in

the form of Θ ⊂ Rn(n+m+1).
Recall (11), and let us denote the efficiency function E1(re)

for the single price model described in [20], and E2(re) for
the double price model described in this paper. We first show
that these two functions are continuous and bounded:

Lemma 5.1: Under A1-A7, the functions E1(re) ∈
Cb[0,∞) and E2(re) ∈ Cb[0,∞).
Plan of the Proof: First we show that

|E(re)− E(re
′)| ≤ CB(|re − re′|),

where re, re
′ ∈ QB , {re : re > 0, |re| ≤ B}, B > 0.

By extending the time horizon to infinite, it can be verified
that E(re) = limT→∞ET (re) for all re. The upper bounds
for K(x), S(x), q(x) are obtained by direct estimates of the
growth rate of E.

Next we show that the efficiency for the double price model
described in this paper, E2 is uniformly higher than the single
price model, E1:

Theorem 5.2: Let A1-A7 hold, and sa(0) = 0. We have
E2(re) > E1(re) for all re ∈ (0,∞).

Proof: The proof has three steps. Recall that ua is
defined as in (9), and we denote u∗ (16) as the optimal
control action that minimizes (12). First, we show that for
u∗, P (E

∫∞
0
e−ρt1ua

t 6=0dt > 0) = 1 on the probability space
(Ω,F , P ). Secondly, we show that ua(t) = 0, t ∈ [0,∞)
implies E2(re) = E1(re) for any re > 0. Lastly, it is shown
that the unique minimizing control solution u∗ can not have
ua(t) = 0, t ∈ [0,∞).

Step 1: In this step we show that there exists a neighborhood
Nre such that d, s, sa ∈ Nre implies ua > 0. Then we show
that E

∫∞
0
e−ρt1st,dt∈Nre

dt > 0 w.p.1.
It can be shown that ua is a function of K and S defined in

(17) and (18), therefore a function of d, s, sa. Employing A4
for demand and supply processes we have the mean reverting
processes with time varying means

dd(t) = [θd(t)− ρdd(t)]dt+ σddwd(t), (23)
ds(t) = [θs(t)− ρss(t)]dt+ σsdws(t), (24)

where wd(t), ws(t) are mutually independent Wiener pro-
cesses due to A3. Note that θd(t) and θs(t) are correlated
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and adapted to σ(d(s), s(s), s ≤ t). The mean reversion
friction parameters ρd, ρs and the volatility parameters σd, σs

are assumed to be constant, while θd(t), θs(t) are bounded
functions for re > 0. Solving the Itō formula, the unique
solutions are given by the Gaussian processes

d(t) = e−ρ
dtd0 + e−ρ

dt

∫ t

0

eρ
dτθd(τ)dτ

+ e−ρ
dtσd

∫ t

0

eρ
dτdwd(τ),

s(t) = e−ρ
sts0 + e−ρ

st

∫ t

0

eρ
sτθs(τ)dτ

+ e−ρ
stσs

∫ t

0

eρ
sτdws(τ),

(25)

with mean and covariance functions

E[d(t)] = e−ρ
dtd0 + e−ρ

dt

∫ t

0

eρ
dτθd(τ)dτ,

Cov[d(τ), d(t)] =
σd

2

2ρd
(e−ρ

d|τ−t| − e−ρ
d(τ+t)),

E[s(t)] = e−ρ
sts0 + e−ρ

st

∫ t

0

eρ
sτθs(τ)dτ,

Cov[s(τ), s(t)] =
σs2

2ρs
(e−ρ

s|τ−t| − e−ρ
s(τ+t)).

(26)

We make the observation that for an arbitrary re > 0, there
exists a neighborhood Nre such that d, s, sa ∈ Nre implies
ua > 0. We want to show that E

∫∞
0
e−ρt1st,dt∈Nre

dt > 0
w.p.1 given σd, σs > 0. On the probability space (Ω,F , P )
we define the random variable

ω :=

(
E
∫ ∞
s

e−ρt1st,dt∈Nre
dt|ds = d, ss = s

)
, (27)

such that P (ω > 0) ≥ P (ω1 > 0) where P (w1 > 0) =
min[P (ω2 > 0), P (ω3 > 0)], and ω2 and ω3 are defined as

ω2 :=

(
E
∫ ∞
s

e−ρt1dt,1,dt,2∈Nre
dt|ds,1 = d, ds,2 = d

)
,

ω3 :=

(
E
∫ ∞
s

e−ρt1st,1,st,2∈Nre
dt|ss,1 = s, ss,2 = s

)
,

(28)
where d1, d2 are two distinct realizations of (23) and s1, s2

are distinct realizations of (24). As the probability is shown
to be positive for a single realization, due to the mutual
independence of the two realizations for ω2 and ω3, employing
(26) we obtain P (ω2 > 0) = 1 and P (ω3 > 0) = 1, which
implies

P (ω1 > 0) = 1. (29)

Therefore P (ω > 0) = 1, and consequently we have
E
∫∞

0
e−ρt1ua 6=0dt > 0 w.p.1.

Step 2: The next thing is to show that ua(t) = 0, t ∈ [0,∞)
implies E2(re) = E1(re) for any re > 0. Remember that
B is in the form given in (14), therefore sa(0) = 0 implies
sa(t) = 0, t ∈ [0,∞) given ua(t) = 0, t ∈ [0,∞). Therefore,
E2(re) = E1(re) for any re > 0 given that ua(t) = 0, t ∈
[0,∞).

Step 3: In Step 1 we have shown that for σd, σs > 0, we
have E

∫∞
0
e−ρt1ua 6=0dt > 0. The term (16) is the unique min-

imizing control, u∗, therefore ua(t) = 0, t ∈ [0,∞) can not
be the unique minimizing control. Hence, E2(re) > E1(re)
for all re ∈ (0,∞).

Finally, we show asymptotically, as the volatility coefficient
tends to 0, that means as volatility tends to infinity, the
efficiency obtained in both systems are equal to each other:

Theorem 5.3: Let A1-A7 hold. We have

lim
re→0+

sup
θ∈Θ

E1(re; θ) = E∗1 <∞, and, (30)

lim
re→0+

sup
θ∈Θ

E2(re; θ) = E∗2 <∞, (31)

for all θ ∈ Θ; and moreover, limre→0+ E1(re; θ) =
limre→0+ E2(re; θ) for all θ ∈ Θ.

Proof: The system is [Aθ, Bθ] controllable and [Aθ, Q
1/2]

observable due to the specific structure of the matrices given
in (14). Therefore for any re > 0, E1(re), E2(re) ∈
Cb[0,∞). It was shown in Theorem 4.2 that (20) is
an increasing function of re and limre→∞ J∗sp(x, u

∗) <
∞. Therefore, limre→0+ J∗sp(x, u

∗) < ∞ follows which
implies limre→0+ E(re) < ∞ , and E1 and E2 are
monotonically decreasing functions of re. This proves
the claim limre→0+ supθ∈ΘE1(re) = E∗1 < ∞ and
limre→0+ supθ∈ΘE2(re) = E∗2 < ∞. We employ A7, there-
fore the suprema exist. Also, due to the particular structure
of the matrices (14) ua can be shown to be a function of re

through K and S such that all the third row entries of K and
S decay to 0 as re → 0+. One can partition the Q matrix as
follows:

Q =


q11 q12 q13 0
q21 q22 q23 0
q31 q32 q33 0
0 0 0 0

 ,
where q33 > q11 due to A6. The solution to the algebraic
Riccati equation gives the matrix K, a 4 × 4 matrix, where
k44 > k34 and k44 > k33 such that k44/k33→∞ as re →
0+. In the closed loop the control action affects the system
dynamics with BR−1B>(Kx + S), therefore as re → 0+,
u4/u3 →∞. As the system is controllable and observable in
the defined set Θ, we have u4 <∞, therefore u3 → 0. Also,
as shown in the proof of Theorem 5.2, E2(re; θ) = E1(re; θ)
for any re > 0 given that ua(t) = 0, t ∈ [0,∞). Hence,
E∗1 (θ) = E∗2 (θ) for all θ ∈ Θ.

These results can be summarized as follows: for the models
described, friction leads to volatility. A new model was in-
troduced in this paper by adding an ancillary power producer,
which produces power with a very high cost, but is not subject
to friction, and does not affect the future dynamics of the
supply and demand processes. It has been shown that this
new system performs better in terms of efficiency even though
the marginal cost of production is higher for the introduced
ancillary supplier. Moreover, it was shown that if volatility
is allowed to swing freely, then the systems have the same
performance. The intuition for this is as follows: there is a
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Fig. 1. Marginal Costs

very high correlation between friction and volatility, therefore
if volatility is allowed to go very high, not punished, then
the problem due to friction disappears, as the system will
be practically frictionless. Hence, there is no incentive to use
expensive ancillary power generators.

VI. SIMULATIONS
The suppliers’ marginal production cost functions, con-

sumer’s unit valuation and the marginal blackout cost in case
of an unmet demand are depicted in Fig. 1. The dynamics of
the consumer, supplier, ancillary supplier, equilibrium price
and the ancillary price are:

dk+1 = dk − ρd (dk − (β − pek)) ∆t+ σwdk
√

∆t,

sk+1 = sk − ρs (sk − (pek − γ)) ∆t+ σwsk
√

∆t,

sak+1 = sak + uak∆t,

pek+1 = pek + uek∆t,

pak+1 = ca′,

where ρd = ρs = 0.05, ∆t = 0.001, β = 100, γ = 0,
σ = 4, tfinal = 500, with the initial conditions x0 =
(d0, s0, s

a, p0)> = (50, 50, 0, 50)>.
In Fig. 2 and Fig. 3 we present the trajectories of a single

realization of demand, supply, ancillary supply and the price
processes for a double price system. Fig. 2 shows the dynamics
when re = 0.01 and Fig. 3 displays for re = 100. We see that
for a low value of re, the equilibrium price is very volatile,
but the ancillary price moves within a short range, whereas for
a high value of re, the system is less volatile at the expense
of very high ancillary supply prices.

In Fig. 4 and Fig. 5 we compare two systems: the single
price system with only supply and demand processes and the
double price system with the addition of the ancillary supply
and the corresponding ancillary price process. Same variables
presented are used for both systems with re = 1. We see that
the double price system heavily uses the ancillary supplier
despite its very costly production, and moreover as proved in
Theorem 5.2, the efficiency in Fig. 5 is higher than in Fig. 4.

Lastly in Fig. 6 we compare the efficiencies for the single
price system and the double price system for any given

Fig. 2. re = 0.01

Fig. 3. re = 100

Fig. 4. Single Pricing re = 1

volatility obtained analytically via Theorem 5.3. One can
clearly see that for any given volatility the double price system
performs better than the single price system. The asymptotical
equality of the systems as shown in Theorem 5.3 also can be
seen.
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Fig. 5. Double pricing re = 1
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Fig. 6. Trade-off Comparisons

VII. CONCLUSION

This paper extends the model given in [20] by adding
an ancillary supplier to the system. It is shown that even
though the ancillary supplier’s marginal cost of production
is considerably higher than regular producers, its ability to
respond to abrupt changes quickly makes it very useful. Note
that in a static system, it would by no means be advantageous
to let the ancillary supply price spike up, while keeping the
real-time equilibrium within reasonable limits. However, a
dynamic analysis of the system shows that this action is
indeed the optimal solution, as it is commonly applied by
the regulator as shown in the simulation results, once more
showing that a static analysis of the dynamic grid system might
be misleading.
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