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Abstract— A weakened implementation scheme for real-time
feedback controllers is proposed to reduce the conservatism
due to traditional worst-cases considerations, while preserving
the stability and control performance. Based on recent results
to assess stability of linear systems with delayed and sampled-
data inputs, this paper takes into account both the effects of
deadline misses of control tasks and uncertainties in the plant.
The methodology is applied to the pitch control of an aircraft,
showing that weakening the real-time constraints allows for
saving computing power while preserving the system’s stability.

Index Terms— Robustness, delay, real-time scheduling.

I. CONTEXT

The development process of critical avionics products are
done under strict safety regulations. These regulations in-
clude determinism and predictability of the systems’ timing.
The overall approach is based on a separation of concerns
between control design and implementation, [1], [2].

On one hand, traditional control design considers constant
sampling rates with equidistant samples (e.g. no jitter) and
negligible, or fixed and known delays. On the other hand
real-time scheduling theory has mainly focused on how to
dimension resources for meeting deadlines (or equivalently,
on the schedulability analysis for a given resource) [3].
Therefore the computer science and real-time scheduling
communities do their best to implement control tasks con-
sidering fixed periods and hard deadlines, and assuming that
the Worst-Case Execution Time (WCET) is precisely known.
This assumption has served the separation between control
and scheduling designs, but leads to an under utilization
of CPU resources, and such approach faces both technical,
economical, and industrial challenges.

One of the toughest challenges in the current approach
is the determination of the WCET, in order to correctly
size the system. The tightness of the result is related to the
predictability of the processing unit. The future generations
of processors seems to go apart from the predictability and
determinism objectives of the execution time. Processing
speeds and performances grow up very fast thanks to ac-
celerating but unpredictable mechanisms of new processors.
However it becomes difficult to foresee their effects on the
execution time considered in the worst case. Nowadays, even
if many attempts are proposed to give an upper bound of the
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WCET (e.g. [4]), both the traditional and current approaches
are difficult to be applied to modern processor generations
and produce values which are pessimistic [5].

Then, to implement the control laws the hard and costly
way consists in building a highly deterministic system so that
the actual implementation parameters meet the ideal ones. By
essence, implementations purely based on WCET and hard
deadlines considerations are conservative and lead to a large
under-utilization of the computing and networking resources
and finally ending to an oversizing of both electrical supplies,
cooling systems and aircraft weight.

Current real-time systems design methods and associated
analysis tools do not provide a model flexible enough to fit
well with control systems requirements, while classic control
theory does not give advice on how to include resource
and dependability constraints into the controller, both at the
design and implementation stage. However, as far as closed-
loop control systems are considered, more flexible solutions
can be expected by exploiting the basic features of feedback
loops, robustness w.r.t. modeling uncertainties, disturbance
rejection and adaptiveness to various operative conditions.
Indeed robustness of feedback controllers also implies some
fault-tolerance w.r.t. deviations from the ideal timing pattern,
e.g. equidistant sampling. This feature can be efficiently
used to guarantee the end-to-end control quality, i.e. stability
and performance level, under weakened real-time constraints,
therefore improving the computing power average utilization.

The remainder of the paper is organized as follows:
Section II provides the motivation of the paper and the
problem statement. This section also gives different points
of view on design assumptions concerning critical system
design. Section III formulates the problem of systems under
uncertainties and input delays. Section IV provides new
stability conditions, based on [6], for systems subject to
uncertainties, delays and varying sampling. Finally in section
V the methodology is applied to the case study of the pitch
control of an F-16 aircraft.

Notations: Throughout the article, the sets R+, Rn×n and
Sn denote respectively the set of positive scalar, the set of
n× n matrices and the set of symmetric matrices of Rn×n.
The superscript ’T ’ stands for the matrix transposition. The
notation P > 0 for P ∈ Sn means that P is positive definite.
For any matrix A ∈ Rn×n, the notation 2He{A} > 0 refers
to A+AT > 0.

II. PROBLEM STATEMENT AND PAPER CONTRIBUTION

A. WCET based assumption

Currently many control systems, e.g. flight control, brak-
ing control systems, are considered to be hard real-time,
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i.e. it is most often assumed at design time that control
tasks must be executed strictly periodically. Therefore control
tasks executions are bounded to fixed time-slots, and deadline
misses or jitter are forbidden. It is assumed that any deviation
from the ideal timing pattern inevitably leads to a failure of
the system. The implementation of such control tasks relies
on a safe evaluation of the WCET of each task, which is
used to dimension the size of the time slot allocated for the
execution of the control tasks. The execution schedule of a
control task is depicted on Figure 1.
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dedicated to control
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Fig. 1. WCET based control task execution pattern

A given task execution is strictly periodic, i.e. a time slot
Tslot = WCET is allocated to the task execution. It is
triggered at a period sk − sk−1 = T by the occurrence of
measurements x(sk) at time sk. The controller computation
takes a time Tex which is always smaller than the WCET .
To avoid jitter, the control signal U(x(sk)) is applied to the
actuators at the end of the slot, i.e. at time sk +WCET :

∀t ∈ [sk +WCET, sk+1 +WCET [, U = U(x(sk)).

Therefore, it is a periodic control system, with constant
period T , subject to a constant delay Tslot = WCET . This
implementation fits with the hard real-time assumption, and
should be applied when the controller is really hard, e.g. if it
is a Finite State Machine which may fail in an unpredicted
state in case of deadline miss and interrupted transition.

However, as the time slots are allocated based on the
WCET of the control tasks, the computations always finish
before the end of the slot. Therefore, a fraction of the
computing power is unused. The wasted computing power
is all the more important as the WCET is far from the
average value of the observed execution time Tex. Indeed,
due to an increasing demand on services, new control sys-
tems are more and more based on networked architectures
and shared off-the-shelf computing devices. However high
computing power are often based on the usage of multiple
levels of cache and pipe-lines, lowering the determinism
of the processors and increasing the difficulty of searching
for the program’s WCET, which are, in fact, approached
by increasingly conservative upper bounds [7]. Indeed the
execution times distribution plot (as shown in Figure 2 for
a dedicated embedded processor [8]) is expected to spread
out, so that approaching the worst case execution time is

foreseen to become a rare event. Therefore the amount of
wasted computing power is expected to increase, leading to
costly over-sizing of embedded computers, power supplies
and cooling systems.

Fig. 2. Typical execution time distribution

Hence it is worth to discuss and revisit the “hard real-
time” assumption and examine how it can be weakened in
the particular case of feedback control systems.

B. Robustness considerations
The design of critical systems must satisfy requirements,

specifications and certification levels. Robustness is a general
concern that grows with system complexity. For instance, it
is known that small task core execution time modifications in
systems with complex performance dependencies can have
drastic non-intuitive effects on the overall system perfor-
mance, and might lead to constraint violations. [9] claims that
robustness evaluation using simulation is a tedious tasks and
practically impossible for the reason that simulation models
do not support many of the possible property changes (for
instance, increased processor execution times or modified
communication volumes). This same paper proposes an
interesting formal approach to robustness of embedded real-
time systems with definition of robustness metrics. However
the present article uses recent developments and moreover is
more dedicated to practical industrial problems.

Robustness in control usually deals with the plant’s param-
eters uncertainties, but in the present case the insensitivity
or adaptability w.r.t. timing deviations from the theoretical
pattern, such as jitter or deadlines misses, is also investigated.
For SISO linear systems robustness can be quantified using
phase margins, delay margins and module margins. It appears
that a phase margin implies a delay margin (i.e. the maximum
unmodeled constant extra delay that can be suffered before
instability) and certainly a jitter margin, which is more
difficult to quantify ([10]) but which can be experimentally
shown ([11]). A feedback control system can be even robust
enough to tolerate missed samples, e.g. in [12], where selec-
tive data dropping is applied to lighten the computing and
networking burden while preserving closed-loop stability.
The interesting point is that a feedback control system which
is robust w.r.t. the plants parameters uncertainties is also
robust, to some extent, w.r.t. timing deviations. Hence a feed-
back control system is not as hard as it is often considered
in the literature, but should be better considered as weakly
hard, i.e. able to tolerate specified timing deviations without
leaving its requested performance [13].
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C. Weakened real-time and control objectives

To improve the average efficiency of embedded computers
while preserving the control stability and performance, and
relying on the robustness of feedback control laws, it is
proposed to weaken the usual real-time constraints according
to the following schedule and control objectives (Figure 3):
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Fig. 3. Proposed task execution pattern

The sensors data are still expected to occur at a fixed
period T , and their occurrence trigger the control tasks. The
time slot allocated to a given task Tslot < WCET is now
smaller than the worst case. As usual the control signal is
sent to the actuators at the end of the slot, i.e. U(x(sk)) is
sent at time sk + Tslot, and the delay is equal to Tslot

∀t ∈ [sk + Tslot, sk+1 + Tslot[, U = U(x(sk)).

But now it may happen that occasionally a control task
deadline is missed : in that case it is proposed to stop the
current computation, hold the current value of the control
signal for the next period and start a fresh computation
with the next sensor value. In that case, the control signal
U(x(sk)) is hold for one extra period, i.e. if the deadline
miss occur at time sk + Tslot:

∀t ∈ [sk + Tslot, sk+2 + Tslot[, U = U(x(sk)),

and for N consecutive deadline misses and data loss:

∀t ∈ [sk + Tslot, sk+N + Tslot[, U = U(x(sk)).

In other words a newly computed control signal is sent
to the actuators at non-equidistants instants tk′ only if the
control computation has been successfully carried out:

tk′ = sk + Tslot if Tex ≤ Tslot,

where k′ is a positive integer representing the number of
input values which have been implemented before sk =
kT . Then, the control input can be asynchronous since the

difference between two sampling instant tk′+1− tk′ is time-
varying but bounded by T and NT . Hence tk′+1−tk′ = αT ,
where the integer α ∈ [1, ..., N ] and the asynchronous
sampling is determined by the couple (T,N).

As already observed and reported in aforementioned ref-
erences, it is likely that a robust feedback control systems
can keep stability despite occasional data loss, at the price
of a decreased performance and robustness. Therefore, for a
given LTI plant, a given control law, a known distribution
of execution times and the weakened real-time constraint,
problems to be solved can be informally stated as :
• find N , the maximum value of consecutive data loss

before loosing the closed-loop stability;
• find an adequate value of Tslot to fulfill a given trade-off

between the control and the computing performances.
• evaluate the weakly-hard closed-loop robustness w.r.t.

the plant’s parameters uncertainties.

III. PROBLEM FORMULATION

Consider the linearized system representing the pitch con-
trol of a plane with a sampled and delayed input:

ẋ(t) = (A+ ∆µA(t))x(t) + (B + ∆µB(t))u(t), (1)

where x ∈ Rn and u ∈ Rm represent the state variable and
the input vector. The matrices A and B are constant and of
appropriate dimension. The matrices ∆µA and ∆µB repre-
sent the uncertainties of the model which can be constant or
time varying. The (time-varying) uncertainties are given in a
polytopic representation:

∆µA(t) = µ
∑M
i=1 λi(t)Ai, ∆µB(t) = µ

∑M
i=1 λi(t)Bi,

where M corresponds to the numbers of vertices. The
matrices Ai, Bi and Ci are constant and of appropriate
dimension. The scalar µ ∈ R characterizes the size of
the uncertainties. Note that when µ = 0, no parameter
uncertainty is disturbing the system. However the greater
the µ, the greater the disturbances. The functions λi(.) are
weighted scalar functions which follow a convexity property,
i.e. for all i = 1, ..,M and for all t ≥ 0, λi(t) ≥ 0
and

∑M
i=1 λi(t) = 1. In this paper it is assumed that the

control scheduling induces a constant transmission delay
Tslot and a sampling of the transmitted signal. For a given
gain K in Rn×m, the control law is a piecewise-constant
static state-feedback of the form u(t) = Kx(tk′ −Tslot), for
all t ∈ [tk′ , tk′+1]. These instants tk′ represent the instants
where the control input is updated. The closed loop system
is thus rewritten, for all t ∈ [tk′ , tk′+1], as

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′ − Tslot), (2)

where Ā(t) = A+∆µA(t) and B̄(t) = B+∆µB(t). Several
authors investigated in guaranteeing the stability of such sys-
tems. In [14], a continuous-time approach to model sampled-
data systems was developed. It allows assimilating sampling
effects as the ones of a particular delay. In [14], [15] or [16],
the authors propose an aggregated delay formulation. They
develop stability criteria which take into account the delay
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δ. However they did not consider the different natures of
the transmission and the sampling delay. More especially the
additional characteristic of sampled delay which is δ̇ = 1 has
not been included and thus leads to conservative conditions.

When µ is zero, the discrete-time modeling of such
systems is easily obtained by integrating the differential
equation (2) over the interval [tk′ , tk′ + τ ], for any τ in
[0, T̄ ],

x(tk′ + τ) = Ã(τ)x(tk′) + B̃(τ)Kx(tk′ − Tslot),
Ã(τ) = eAτ , B̃(τ) =

∫ τ
0
eA(τ−θ)dθB.

(3)

Thus, define, for all integer k′, the function χTslotk′ :
[0, NT ]× [−Tslot, 0]→ Rn such that for all τ in [0, NT ]
and all θ in [−Tslot, 0], χk′(τ, θ) = x(tk′ + τ + θ). The set
KTslot
NT represents the set of functions defined by χTslotk as

the set of continuous functions from [0, NT ]× [−Tslot, 0]
to Rn.

However, the same discretization method is not valid when
the system is subject to time-varying uncertainties. Thus
discrete-time analysis of (3) leads to unavoidable difficulties.
Thus there is a need to introduce novel stability conditions
to cope with this type of discrete-time systems.

In this paper, a novel method to assess stability of systems
subject to varying sampling, constant delay and time-varying
uncertainties is proposed. The main idea is to consider
separately the two delays types. To do so, the stability
conditions are based on the discrete-time Lyapunov Theorem
but expressed with the continuous-time model of the system.
It leads to less conservative necessary conditions.

IV. STABILITY ANALYSIS

A. System without uncertainties

In this section, a study on the asymptotic stability of the
solutions of sampled-data systems presented in (1) with µ =
0 is provided. There exist several results in the literature to
ensure asymptotic stability of linear systems with input delay
and sampling. In the present article, the contribution is based
on the asymptotic stability conditions developed in [6].

Theorem 1: Consider an integer N and two non negative
scalars Tslot and T . Assume that there exist Q > 0, R1 > 0
and R2 > 0 ∈ Sn, P > 0, U > 0 and S1 ∈ S2n and S2 and
X ∈ R2n×2n, Y ∈ R5n×2n that satisfy for j = 1, 2 :

Ψ1(A,B) = Π1(Tslot) + TjΠ2 + TjΠ3 < 0,

Ψ2(A,B)
[

Π1(Tslot)− TjΠ3 TjY
TjY

T −TjU

]
< 0, (4)

where T1 = T , T2 = NT and

Π1(Tslot) = 2He{NT
1 PN0}+MT

1 QM1 −MT
2 QM2

+MT
0 (R1 + TslotR2)M0 −MT

12R2/TslotM12

−MT
5 R1M5 −NT

12S1N12 − 2He{Y N12}
−2He{NT

2 S2N12},
Π2 = NT

0 UN0 + 2He{NT
0 (S1N12 + ST2 N2)},

Π3 = NT
2 XN2,

and
M0 = [A 0 0 BK 0] , M1 = [I 0 0 0 0] ,
M2 = [0 I 0 0 0] , M3 = [0 0 I 0 0] ,
M4 = [0 0 0 I 0] , M5 = [0 0 0 0 I]
N0 = [MT

0 MT
5 ]T , N1 = [MT

1 MT
2 ]T ,

N2 = [MT
3 MT

4 ]T , M12 = M1 −M2,
N12 = N1 −N2.

System (2) is thus asymptotically stable for any asyn-
chronous sampling defined by (T,N) and the delay Tslot.

Proof: Because of space limitations, the proof is
omitted. However the details can be found in [6].

Note that the conditions from Theorem 1 include the
robust stability properties with respect to the input delay
Tslot. This means that (4) requires the system to be stable at
least for the transmission delay Tslot and T = Ti.

B. System with uncertainties

In this section we will consider that µ 6= 0. Then we
want to extend the previous theorem to the case of time-
varying uncertainties. In the previous stability theorem, the
conditions depends almost linearly on the matrices defining
the continuous-time model. Then the following corollary
presents an extension of the previous theorem to uncertain
and time-varying model.

Corollary 1: Consider an integer N and there non nega-
tive scalars Tslot, T and µ. Assume that there exist the same
matrices Q, R1, R2, P , U , S1 and S2 as in Theorem 1 and
Xi ∈ R2n×2n, Yi ∈ R5n×2n that satisfy, for i = 1, . . . ,M
and j = 1, 2

Ψ1i(Ai, Bi) = Π1i(Tslot) + TjΠ2i + TjΠ3i < 0, (5)

Ψ2i(Ai, Bi) =
[

Π1i(Tslot)− TjΠ3i TjYi
TjY

T
i −TjU

]
< 0, (6)

where
Π1i(Tslot) = 2He{NT

1 PN0i}+MT
1 QM1 −MT

2 QM2

+MT
0i(R1 + TslotR2)M0i −MT

12R2/TslotM12

−MT
5 R1M5 −NT

12S1N12 − 2He{YiN12}
−2He{NT

2 S2N12},
Π2i = NT

0iUN0i + 2He{NT
0i(S1N12 + ST2 N2)},

Π3i = NT
2 XiN2,

and M0i and N0i are defined as M0 and N0 but with the
polytopes Ai = A + µAi and Bi = B + µBi. The system
(2) is thus asymptotically stable for for the periodic sampling
defined by T and the delay Tslot.

Proof: Consider the stability conditions from Theo-
rem 1. By noting that

M0(t) =
[
Ā(t) 0 0 B̄(t)K 0

]
=
∑M
i=1 λi(t)M0i,

N0(t) =
[
MT

0 (t)MT
5

]
=
∑M
i=1 λi(t)N0i,

and by introducing the matrices variables

Y (t) =
∑M
i=1 λi(t)Yi, X(t) =

∑M
i=1 λi(t)Xi.

Then, using the Schur complement, we note that the two con-
ditions are linear with respect to the matrices M0i and N0i so
that, for j = 1, 2, Ψj(Ā(t), B̄(t)) =

∑M
i=1 λi(t)Ψji(Ai, Bi).

This allows to conclude the proof.

2019



V. CASE STUDY

The case study applies the previous robustness approach
to a weakened scheduling scheme for the pitch controller
of an aircraft. We consider only the so-called “short period
approximation” linearized model of an aircraft around the
pitch axis. The model is given by [17]:{

Eẋ = Fx+Gu,
y = Hx.

(7)

The state vector is x =
[
α θ q

]
where α is the angle

of attack, θ is the pitch angle, q is the pitch rate, the input
vector u = δE is the elevator deflection and where

E =
[
VT − Zα̇ 0 0

0 1 0
−Mα̇ 0 1

]
, H =

[
0 0 0 180

π
0 180

π 0 0

]
,

G =
[
Zδe
0

Mδe

]
, F =

[
Zα −g′

0sinγe VT + Zq
0 0 1
Mα 0 Mq

]
.

(8)

where the E matrix is always non-singular in normal flight
conditions. The model parameters are the dimensionless
derivatives of the standard aircraft model ([17]). In practice
low-pass filtering is systematically added to the noisy α angle
of attack. State-of-the-art pitch control design also takes into
account the elevator’s dynamics, and an integrator is added in
the feed-forward channel to ensure a zero steady-state error.
The full controlled plant has an augmented state vector given
by
[
α q δE αF β

]
where αF is the filtered measure

of α and β is the output of the integrator. We can then obtain
standard state space equation of the form:{

ẋ = Ax+Bu,
y = Cx,

(9)

where A = E−1F and B = E−1G. In our case study, we
have considered the F16 aircraft with the flight conditions
given in table I. The nominal condition is: h = 0ft, xcg =

Variable Nominal xcg = 0.3c̄ xcg = 0.38c̄
VT (ft/s) 502.0 502.0 502.0
α(rad) 0.03691 0.03936 0.03544
θ(rad) 0.03691 0.03936 0.03544

Q (rad/s) 0 0 0
Thtl (0-1) 0.1385 0.1485 0.1325
El (deg) -0.7588 -1.931 -0.05590

TABLE I
FLIGHT CONDITIONS FOR SIMULATIONS

0.35c̄, θ̇ = 0. Using the nominal condition and a flight at
sea level, we obtain the following numerical values for the
pitch model:

A =

−1.01887 0.90506 −0.00215 0 0
0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0
10.0 0 0 −10 0
0 −57.2958 0 0 0

,
B =

 0
0

20.2
0
0

, C =
[
0 0 0 57.2958 0
0 57.2958 0 0 0
0 0 0 0 1

]
.

(10)

An output feedback controller u = Ky = −kααF −kqq−
kiβ is designed using standard pole placement giving K =
[−0.04238;−0.4098; 0.8426]. The control period is chosen
as T = 0.08 sec, and the nominal computing slot is chosen
as WCET = 0.02 sec (considering that the CPU is shared
by four control tasks). The matrices Ai and Bi, elements
of the convex combination ∆µA(t) and ∆µB(t) are defined
in a simple 2 vertices polytope as Ai = (−1)iA and Bi =
(−1)iB for i = 1, 2. Starting from the initial ’hard real-time’
pattern described in Figure 1, where a WCET time slot is
allocated to the control task with a period T , two weakened
scheduling schemes have been considered (Figure 4):
• Case 1: A time slot Tslot < WCET is allocated to the

control task, but the system’s period T keeps its initial
value. In that case, some extra time remains to compute
other activities before the new control activation. Some
control improvement can be expected from the reduction
of the latency from WCET to Tslot;

• Case 2: Again, a time slot Tslot < WCET is allocated
to the control task, but the system’s period is now also
reduced by the same value, while the time remaining
for computing other activities remains Tothers as in
the initial scheme. In that case control improvement
is expected from both the latency and sampling period
reduction.

Tinit Tinit

Wcet Wcet

Tslot Tslot

Tslot = WCET

Tslot < WCET

CASE 1

CASE 2

Tslot < WCET
T < Tinit

T = Tinit

T = Tinit

Initial case

Tinit Tinit

Tnew Tnew

Tslot TslotTothers

Tothers

Tothers

Tothers new

Fig. 4. Scheduling cases

The stability conditions of Theorem 1 are used to find
the relations between the computing slot value (given by the
ratio ε = Tslot

WCET and the maximum number of consecutive
deadlines misses before unstability N , for the two cases
and for several values of µ. The analysis of Case 1 (top
of Figure 5) shows that the tolerance of the controller
w.r.t. deadlines misses, measured by N , increases when
Tslot is decreased (therefore also decreasing the systematic
latency). It also shows that increasingly uncertain systems,
with growing values of µ, are less tolerant w.r.t. deadlines
misses. In Case 2, (bottom of Figure 5) the number N of
sustainable consecutive deadline misses is even improved, as
the reduction of Tslot induces a decreasing in both the delay
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and the sampling interval.

Fig. 5. Maximum allowed consecutive deadline misses

Nevertheless decreasing Tslot obviously increases the risk
of missing deadlines. For a given distribution of execution
times, the probability of missing deadlines decreases from
1 to 0 as the scheduling factor ε decreases from 1 (Tslot =
WCET ) to a minimum value where Tslot = BCET (Best
Case Execution Time), as depicted by the black plot in Figure
6. Assuming that the execution times of the task instances
are independent, the probability of reaching the maximum
tolerable number of consecutive misses are given in the
same figure for the two cases and for different values of
µ. Hence, for a given scheduling scheme and uncertainty
assumption, it is easily possible to compute the scheduling
factor ε corresponding at a given failure probability.

Fig. 6. Probability of reaching the maximum tolerable consecutive deadline
misses

VI. CONCLUSION

In this paper the hard real-time assumption has been
revisited based on robustness considerations. The theoretic
contribution provides new stability conditions for feedback
linear systems submitted to delays, varying sampling and
uncertainties. In the case of a control task miss its deadline,

the computation should be aborted and the preceding control
signal hold for an extra control period, leading to a varying
sampled system. In this framework, the stability condition
allows computing the maximum number of consecutive dead-
line misses which can be tolerated by an uncertain system
while keeping stability. Future design and implementation
rules may be investigated to find cost effective trade-offs
between embedded computing power, control performance,
control robustness and overall fault-tolerance.
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