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Abstract— This paper deals with optimal scheduling of de-
mand response in a residential setup when the electricity prices
are known ahead of time. Each end-user has a “must-run”
load, and two types of adjustable loads. The first type must
consume a specified total amount of energy over the scheduling
horizon, but its consumption can be adjusted across the horizon.
The second type of load has adjustable power consumption
without a total energy requirement, but operation of the load
at reduced power results in dissatisfaction of the end-user. Each
adjustable load is interruptible in the sense that the load can be
either operated (resulting in nonzero power consumption), or
not operated (resulting in zero power consumption). Examples
of such adjustable interruptible loads are charging a plug-
in hybrid electric vehicle or operating a pool pump. The
problem amounts to minimizing the cost of electricity plus
user dissatisfaction, subject to individual load consumption
constraints. The problem is nonconvex, but surprisingly it is
shown to have zero duality gap if a continuous-time horizon is
considered. This opens up the possibility of using Lagrangian
dual algorithms without loss of optimality in order to come up
with efficient demand response scheduling schemes.

I. INTRODUCTION

The smart grid vision is to modernize the aging power

grid infrastructure by capitalizing on the proven sensor,

communication, and control technologies of today to address

the pressing issues of environment, consumer demand, secu-

rity and stability of energy generation, transportation, and

consumption. One of the directions that are expected to be

advanced toward this vision is enabling interaction of end-

users with the grid [1].

A resource management task enabling interaction of end-

users with the grid of the future is demand response (DR),

also known as demand-side management [2]. DR aims to

adapt the end-user power consumption in response to time-

varying (or time-based) energy pricing, which is judiciously

controlled by the utility companies to elicit desirable energy

usage. On the one hand, end-users are well-motivated to shift

nonurgent power consumption to periods of lower electricity

price in order to reduce their utility bills. The utility com-

pany, on the other hand, benefits from smoothing out the

peak demand, which has major impact on system reliability,

generation cost, and meeting the pollution mandates.

DR is facilitated by deployment of advanced metering

infrastructure (AMI), which comprises a two-way commu-

nication network between utility companies and the end-

users [3]. Smart meters installed at end-users’ premises are
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the AMI terminals at the end-users’ side. These measure

not just the total power consumption, but also the power

consumption profile throughout the day, and report it to the

utility company at regular time intervals. The utility company

sends pricing signals to the smart meters through the AMI

(real-time pricing), for the smart meters to adjust power con-

sumption profiles of the various residential electric devices,

in order to minimize the electricity bill and maximize end-

user satisfaction.

This paper deals with optimal energy scheduling of in-

terruptible devices in a residential setup. The interruptibility

alludes to the fact that the device can be turned off and

then on depending on the electricity cost, until it provides

its service to the end-user.

Energy scheduling of noninterruptible devices, which can

lead to convex problems, has been dealt with in [4]–

[7]. Interruptible devices with discrete power consumption

levels—leading to nonconvex problems—have also been

considered using different optimization approaches [5], [7]–

[10]. Stochastic counterparts where the task requests or the

electricity prices are modeled as random processes have also

been considered [7], [11].

The present work considers scheduling of two types of

adjustable loads. The first must consume a specified total

amount of energy over the scheduling horizon, but the

consumption can be adjusted across the horizon. The second

type of load has adjustable power consumption without

a total energy requirement, but operation of the load at

reduced power results in dissatisfaction of the end-user. Each

adjustable load is interruptible in the sense that the load can

be either operated (resulting in a nonzero power consumption

in a continuous interval), or not operated (resulting in zero

power consumption). An example of the first type is charging

a plug-in hybrid electric vehicle; while an air conditioning

unit (A/C) provides an example of the second type. The

resulting formulation is nonconvex, and distinct from the

problems with discrete energy levels. Different from other

works in the literature, the approach taken here relies on

Lagrangian duality. The main findings are that: (a) formu-

lating the problem over a continuous time horizon has zero

duality gap; and (b) if the time is discretized, the problem

has vanishing duality gap as the discretization becomes finer.

The rest of this paper is organized as follows. Section II

formulates the continuous-time and discrete-time optimiza-

tion problems, and provides the duality gap results. The

subgradient method is used to solve the dual problem in Sec-

tion III. Section IV presents numerical tests, and Section V

concludes this paper, and gives pointers to future directions.
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II. PROBLEM FORMULATION AND DUALITY PROPERTIES

A. Continuous-Time Formulation

Consider a residence with a smart meter communicating

with various devices at the residence. The smart meter

also communicates with the utility company through the

AMI. The utility company has announced the prices for

the scheduling horizon (e.g., next day) ahead of time. Let

[0, T ] denote the scheduling horizon, and C(s(t), t) the

cost charged to the end-user at time t, where s(t) is the

total residential power consumption. Note that the cost is

time-varying, and hence explicitly incorporates the real-time

pricing paradigm of the future grid.

In the DR formulation, it is imperative to capture diverse

end-user requirements, as well as different classes of devices

and tasks involved in the scheduling. Here, we consider a

base residential load that is not to be shifted, and two classes

of interruptible devices, denoted respectively as K1 and K2.

The base load is denoted by p0(t), and can be lights or

computers. Moreover, let pk(t) be the power consumption of

device k, where k ∈ K1 or k ∈ K2 (by convention, 0 /∈ K1

and 0 /∈ K2). The particular characteristics of those classes

are as follows:

1) Class K1 contains devices with a prescribed energy

requirement Ěk that has to be completed over a dura-

tion Ťk, starting from time α̌k. The power consumed

is constrained to {0}∪ [p̌kmin, p̌kmax] with p̌kmin > 0
capturing the situation that a device cannot operate at

arbitrarily low power. Examples are operating a pool

pump or charging a PHEV. The energy constraint can

be written as

1

T

∫ α̌k+Ťk

α̌k

pk(t)dt = Ěk, k ∈ K1 (1)

where due to the normalization factor 1/T , the quan-

tities pk(t) and Ěk have units of power.

2) Class K2 includes devices operating with power in

{0}∪ [p̌kmin, p̌kmax]. There is no total energy require-

ment, but instead, a disutility function Vk(pk(t), t) that

is introduced to capture dissatisfaction of the end-user

for operating away from a nominal point, as in Fig. 1

for example. The premise is that the end-user may

choose to operate away from a nominal point, if this

can reduce the electricity bill, as will be seen shortly in

the optimization formulation. An example in this class

is an A/C unit. As with class K1, it is possible to define

an interval [α̌k, α̌k+ Ťk] over which the device is to be

operated. In this case, we have that Vk(pk(t), t) = 0
for t < α̌k or t ≥ α̌k + Ťk.

The interruptible nature is apparent due to the constraint

set {0} ∪ [p̌kmin, p̌kmax] for the instantaneous power con-

sumption. The case of noninterruptible tasks can be accom-

modated by considering a constraint set [p̌kmin, p̌kmax] with

p̌kmin > 0 over the desired hours of operation.

Let K denote the set of all adjustable devices (K1∪K2) and

the base load. The continuous-time residential DR scheduling

0

p̌k min p̌k max

pk

Vk

Fig. 1. Example of a convex disutility function. The point where the
function achieves is minimum can be a desirable set-point by the end-user.

amounts to solving the following optimization problem:

P = min
1

T

∫

T

0

C

(

∑

k∈K

pk(t), t

)

dt

+
1

T

∫ T

0

∑

k∈K2

Vk(pk(t), t)dt (2a)

subj. to
1

T

∫

T

0

pk(t)dt ≥ Ěk, k ∈ K1 (2b)

pk(t) ∈ {0} ∪ [p̌kmin, p̌kmax],

t ∈ [α̌k, α̌k + Ťk], k ∈ K1 ∪ K2 (2c)

pk(t) = 0, t /∈ [α̌k, α̌k + Ťk], k ∈ K1 ∪ K2 (2d)

variables pk(t) (0 ≤ t ≤ T, k ∈ K1 ∪ K2).

The optimization variables in (2) are the power consumptions

of the adjustable devices (k ∈ K1∪K2), and are functions of

time over the interval [0, T ], as indicated in the last line of

formulation (2). As such, they are infinite-dimensional. Note

that (1) has been relaxed to inequality in (2b)—this is valid

in practice under condition C1, which will be given shortly.

The factor (1/T ) multiplying all integrals in (2) is only for

symmetry with the discrete-time case, as will be seen later.

Regarding units, pk(t) and Ěk have units of power.

Problem (2) is nonconvex due to constraint (2c). The

following assumptions are made:

C1. Functions C (
∑

k
pk, t) and Vk(pk, t) with respect to

their first argument are defined, continuous, and convex,

over ×k∈K1∪K2
[0, pkmax] for all t ∈ [0, T ]. Function

C (
∑

k
pk, t) is also strictly increasing in its first argument.

Moreover, functions C (
∑

k
pk(t), t) and Vk(pk(t), t) are

integrable whenever the functions pk(t) are (Borel) measur-

able. Finally, for constraint (2b) to be practically meaningful,

the condition p̌kminŤk < ĚkT is supposed to hold.

C2. There exist {pk(t)}, k ∈ K1 satisfying (2c) and (2d) so

that (2b) holds as strict inequality.

Both conditions are mild and are expected to hold in DR

setups. The fact that C(s, t) is strictly increasing in s together

with the condition p̌kminŤk < ĚkT imply that (2b) holds

as equality at the optimal point. The inequality p̌kminŤk <

2



ĚkT essentially means that operating the device k ∈ K1

at its lowest power level over the specified interval is not

enough in order to provide the required energy. Condition C2

corresponds to the standard Slater constraint qualification.

Taking a Lagrangian dual approach, let λk denote the

Lagrange multiplier corresponding to (2b); λ be a vector

collecting all Lagrange multipliers; and p(t) be a vector

collecting all power consumptions pk(t), k ∈ K1 ∪ K2.

Let Π(t) denote the (|K1| + |K2|)-dimensional region rep-

resenting the instantaneous constraints (2c) and (2d). This

region is a function of t because for each k, the constraint

set may change depending on whether t ∈ [α̌k, α̌k + Ťk].
Keeping those constraints implicit, the Lagrangian function

corresponding to (2) takes the following form, after straight-

forward arrangements:

L(λ,p(t)) =
1

T

∫ T

0

(

C

(

∑

k∈K

pk(t), t

)

+
∑

k∈K2

Vk(pk(t), t)−
∑

k∈K1

λkpk(t)

)

dt+
∑

k∈K1

λkĚk. (3)

The dual function and the dual problem are, respectively,

q(λ) = min
p(t)∈Π(t)

L(λ,p(t)) (4)

D = max
λ≥0

q(λ). (5)

Weak duality implies that D ≤ P. Despite nonconvexity,

the following result asserts that there is no duality gap.

Proposition 1. Strong duality holds under conditions C1 and

C2, i.e.,

D = P. (6)

Intuitively, continuous-time averaging smooths out the

non-convexity, and thus eliminates the duality gap induced

by (2c). The proof is tailored after a related result in wireless

networking [12, Lemma 1], and is presented in [13]. Propo-

sition 1 implies that solving the dual problem is optimal.

Two questions arise naturally: (a) how the dual problem

can be solved efficiently, and (b) how the solution of the

dual problem can be leveraged in order to give a solution

of the primal problem. These questions are addressed in

Section III. To this end, it will be helpful to examine the

duality properties of a discretized version of (2), and this is

the subject of the ensuing subsection.

B. Discrete-Time Formulation

Consider a partition of [0, T ] into N intervals,

{0, T

N
, 2T
N
, . . . , T }. Let pn

k
:= pk[(n − 1)T/N ], Cn(.) :=

C[., (n − 1)T/N ], and V n

k
(.) := Vk[., (n − 1)T/N ], for

n = 1, . . . , N . It is supposed that the partition is fine enough

so that the time instants α̌k and α̌k+ Ťk are members of the

partition. The discrete-time version of (2) is formulated by

replacing the integrals with left Riemann sums, and takes the

following form

PN = min
1

N

N
∑

n=1

Cn

(

∑

k

pnk

)

P = D

0 ≤ PN −

?

OO

DN

?

OO

→ 0

Fig. 2. Primal and dual values of continuous- and discrete-time problems

+
1

N

N
∑

n=1

∑

k∈K2

V n

k
(pn

k
) (7a)

subj. to
1

N

N
∑

n=1

pnk ≥ Ěk, k ∈ K1 (7b)

pnk ∈ {0} ∪ [p̌kmin, p̌kmax], k ∈ K1 ∪K2,

n ∈
N

T
· {α̌k, . . . , α̌k + Ťk − 1} (7c)

pnk = 0, k ∈ K1 ∪ K2,

n /∈
N

T
· {α̌k, . . . , α̌k + Ťk − 1} (7d)

variables pn
k

(n ∈ {1, . . . , N}, k ∈ K1 ∪ K2).

Problem (7) is nonconvex in general, due to con-

straint (7c). Nevertheless, it is a mixed integer program with

special separable structure [14, Sec. 5.6.1]. The dual problem

can be formulated analogously to the continuous-time case

by introducing a Lagrange multiplier for constraint (7b), and

keeping the rest of the constraints implicit. Let DN denote

the optimal value of this dual problem. The following duality

gap estimate asserts that the duality gap vanishes as the

partition size increases.

Proposition 2. For the duality gap of (7), under conditions

C1 and C2, it holds that

0 ≤ PN − DN = O

(

1

N

)

. (8)

Proposition 2 asserts that the duality gap of (7) vanishes

as N → ∞. The proof amounts to showing that prob-

lem (7) satisfies certain conditions which guarantee vanishing

duality gap [14, Sec. 5.6.1], [13]. It is worth noting that

Proposition 2 does not imply that PN converges to the

optimal value P of (2) as N → ∞; see also Fig. 2. This

result would be useful in approximating the continuous-time

problem with the discrete-time one. Nevertheless, the results

of Propositions 1 and 2 illustrated in Fig. 2 point to this

direction. Motivated by these duality gap results, the next

section develops an algorithm to solve (5), which relies on

the discretized problem (7).

III. SUBGRADIENT METHOD

The subgradient method will be employed to solve the dual

problem (5); see e.g., [15, Sec. 8.2]. The motivation is that

solving the dual problem is optimal due to Proposition 1. The

method iterates between two steps, namely (a) Lagrangian

minimization, in the same fashion as (4); and (ii) Lagrange

multiplier update.

Let ℓ be the iteration index, and λ(0) ≥ 0 be the initial

Lagrange multiplier vector. The Lagrangian minimization
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step takes the form

p†(t; ℓ) ∈ arg min
p(t)∈Π(t)

L(λ(ℓ),p(t)) (9)

The Lagrange multiplier λ(ℓ) is constant for the minimiza-

tion in (9). Note also that a function of time is sought at

each iteration.

The following lemma asserts that the minimization decom-

poses into minimizations per time instant t.

Lemma 1. The value p†(t; ℓ) can be obtained as the solution

of the following optimization problem at t ∈ [0, T ]

min C

(

∑

k∈K

pk, t

)

+
∑

k∈K2

Vk(pk, t)

−
∑

k∈K1

λk(ℓ)pk (10a)

subj. to pk ∈ {0} ∪ [p̌kmin, p̌kmax],

t ∈ [α̌k, α̌k + Ťk], k ∈ K1 ∪ K2 (10b)

pk = 0, t /∈ [α̌k, α̌k + Ťk], k ∈ K1 ∪ K2 (10c)

variables pk (k ∈ K1 ∪ K2).

The key idea to note is that the optimization variable

in (10) is a vector, as opposed to a function in (9). Lemma 1

relies on minimizing the integrand in the Lagrangian function

per t, which is reminiscent of the procedure to obtain the

well-known waterfilling in wireless communications [16,

Ch. 4]. The proof of Lemma 1 follows next.

Proof of Lemma 1. Let t ∈ [0, T ] be arbitrary, and let

p†(t; ℓ) be the solution of (10) given λ(ℓ) for the particular t.
Moreover, let p(t) ∈ Π(t) be arbitrary. It holds by definition

that

C

(

∑

k∈K

p†
k
(t; ℓ), t

)

+
∑

k∈K2

Vk(p
†
k
(t; ℓ), t)−

∑

k∈K1

λk(ℓ)p
†
k
(t; ℓ)

≤ C

(

∑

k∈K

pk(t), t

)

+
∑

k∈K2

Vk(pk(t), t)−
∑

k∈K1

λk(ℓ)pk(t)

(11)

Integrating the latter over [0, T ] yields

L(λ(ℓ),p†(t; ℓ)) ≤ L(λ(ℓ),p(t; ℓ)) (12)

Therefore, p†(t; ℓ) is the function minimizing the Lagrangian

in (9).

It is difficult to perform the minimization for all t ∈ [0, T ]
in practice, and we will shortly attempt to bypass this issue

by performing the minimization over a partition of [0, T ].
Regarding solvers of (10), note that if the function C(., t)

is linear, then the minimization also decomposes into per

device problems, which are straightforward to solve in closed

form.

For more general costs, problem (10) becomes a convex

optimization problem if the on/off status of devices (pk = 0
or pk ∈ [p̌kmin, p̌kmax]) per device is fixed. The number

of on/off combinations is in general 2|K1|+|K2 |, which may

TABLE I

ALGORITHM FOR LAGRANGIAN MINIMIZATION FOR 2 DEVICES GIVEN

LAGRANGE MULTIPLIERS

1: if 1 is on and 2 is off then

2: p
†
1 =

[

λ−b
2a

− p0(t)
]p̌1max

p̌1min

3: end if

4: if 2 is on and 1 is off then

5: p
†
2 =

[

2wp̌2 max−(b+2ap0(t))
2a+2w

]p̌2max

p̌2min

6: end if

7: if 1 and 2 are on then

//Case 1: Check if p̌1min < p
†
1 < p̌1max

8: p2 =
[

p̌2max − λ
2w

]p̌2max

p̌2min

9: p1 = λ−b
2a

− (p0(t) + p2)
10: if p̌1min < p1 < p̌1max then

11: p
†
1 = p1; p

†
2 = p2

12: end if

//Case 2: Check if p
†
1 = p̌1max

13: p2 =
[

2wp̌2 max−[b+2a(p0(t)+p̌1max)]
2a+2w

]p̌2max

p̌2min

14: if 2a(p0(t) + p̌1max + p2) + b− λ ≤ 0 then

15: p
†
1 = p̌1max; p

†
2 = p2

16: end if

//Case 3: Check if p
†
1 = p̌1min

17: p2 =
[

2wp̌2 max−[b+2a(p0(t)+p̌1min)]
2a+2w

]p̌2 max

p̌2 min

18: if 2a(p0(t) + p̌1min + p2) + b− λ ≤ 0 then

19: p
†
1 = p̌1min; p

†
2 = p2

20: end if

21: end if

not be prohibitively large. The convex problem that has to be

solved given the on/off status has special structure which can

further be leveraged to devise an efficient solution. Specifi-

cally, it involves box constraints and typically a combination

of linear, piecewise linear, or quadratic functions as objective.

It is also possible to obtain a (nearly) closed-form solution

if the cost is quadratic, C(s, t) = as2 + bs for all t, the

disutility function is quadratic, Vk(pk, t) = w(p̌kmax−pk)
2,

and there are two interruptible devices, one per class with

consumptions p1(t) and p2(t), respectively. Table I lists

the related expressions, which are not difficult to derive

from the optimality conditions of convex problems with box

constraints [17, Example 2.1].

Having determined the primal minimizers p†(t; ℓ), the La-

grange multipliers are updated as follows (βℓ is the iteration-

dependent stepsize):

λk(ℓ+1) = max

{

λk(ℓ)− βℓ

(

1

T

∫

T

0

p†
k
(t; ℓ)dt− Ěk

)}

.

(13)

In order to evaluate the integral in (13), the functions p†
k
(t; ℓ)

are needed. The integral can be approximated from values

of p†
k
(t; ℓ) at the partition {0, T

N
, 2T
N
, . . . , T } as follows:

∫

T

0

p†
k
(t; ℓ)dt ≈

1

N

N
∑

n=1

p†
k
[(n− 1)T/N ; ℓ]. (14)

The approach of partitioning [0, T ] in order to facilitate (9)

and (13) can be interpreted as application of the subgradient
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method to the dual of the discrete-time problem. If a non-

summable but square-summable stepsize is used, the method

will converge to the optimal Lagrange multipliers for (7) [15,

Sec. 8.2]. The final step is to recover a primal solution from

the dual solution.

This is an issue that requires further research. A possible

approach is to substitute the optimal Lagrange multipliers

into (10) and minimize the Lagrangian function at a chosen

partition. The power consumption schedule obtained this

way will be optimal if it satisfies any of the following

two conditions: (a) it is primal feasible, and satisfies the

complementary slackness condition [17, Prop. 5.1.4]; or (b) it

is the unique minimizer of the Lagrangian [18, p. 248]. This

schedule can be considered to be piecewise constant over

the continuous time-interval [0, T ]. The challenge facing this

method is that it is not straightforward to show satisfaction

of either condition in the general case. Numerical tests

illustrating the merits of this method are presented in the

ensuing section.

Remark. There are types of residential loads, most notably

loads with intertemporal constraints, that cannot be classified

under the interruptible loads analyzed in this paper. Naturally,

results like Proposition 1 or Lemma 1 may not hold in

such cases. See also [19] for a recent development based

on Lagrangian duality which focuses on deferrable loads,

i.e., loads whose starting time can be variable, but they are

not interruptible.

IV. NUMERICAL TESTS

Scheduling of 2 devices (one from each class) over T =
5 hours is considered here. The power consumptions are

denoted as p1(t) and p2(t). There is also a base load,

p0(t) = 0.2 kW for 0 ≤ t < 2, and p0(t) = 0 otherwise.

The device parameters are p̌1min = p̌2min = 0.1 kW,

p̌1max = p̌2max = 1kW, and Ě1 = 0.3 kW. The cost is

C(s, t) = 0.01s2+0.8s for all t (where s is in kW). Device

2 is constrained to be off during the first and the last hour,

i.e., α̌2 = 1 and α̌2 + Ť2 = 4. The disutility function is

V2(p2, t) = (p̌2max − p2)
2 for 1 ≤ t < 4, and 0 otherwise.

The stepsize is selected to be βℓ = 10/(ℓ+ 10), ℓ ≥ 1, and

the partition size N = 10. The algorithm of Table I was used

for minimizing the Lagrangian. There is a single Lagrange

multiplier in this problem. Fig. 3 depicts the convergence of

the subgradient method.

The final schedule is obtained by minimizing the La-

grangian function given the optimal Lagrange multipliers,

and is depicted in Fig. 4. It can be observed that for both

devices the instantaneous power consumption constraints are

satisfied. Device 1 is off between hours 1 and 2, because the

total power consumption from the base load and device 2 is

already high. It is interesting to note that the area under the

grey curve normalized by T has the value of Ě1 = 0.3.

Therefore, the solution is feasible, and also satisfies (7b)

and (2b). The power consumption schedule in this case is

optimal for (7), since it satisfies the necessary and sufficient

optimality conditions [17, Prop. 5.1.4].
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Increasing the partition size is also investigated. The

results are shown in Fig. 5. For all partition sizes, the

resulting power consumption schedule is feasible, and in fact

optimal (as in the previous discussion related to Fig. 4). The

dual value is obtained in a straightforward manner from the

subgradient method. It is observed that the two values are

identical even for finite N . If these are the same as P, then the

behavior depicted in Fig. 5 indicates that there is a piecewise

constant solution to (2) in the present case. The behavior in

Fig. 5 is consistent with Proposition 2.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper deals with optimal residential energy schedul-

ing. The end-user has a “must-run” load, and two types of

adjustable loads. The first type must consume a specified

total amount of energy over the scheduling horizon, but the

consumption can be adjusted across the horizon. The second

type of load has adjustable power consumption without

a total energy requirement, but operation of the load at
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Fig. 5. Duality gap between primal value PN and dual value DN .

reduced power results in dissatisfaction of the end-user. Each

adjustable load is interruptible in the sense that the load can

be either operated (resulting in nonzero power consumption),

or not (resulting in zero power consumption). The on/off

feature of the problem results in nonconvexity. Two issues

regarding duality of this problem are positively resolved.

First, the problem is shown to have zero duality gap, if

it is formulated over a continuous time interval. Second, a

regular discretized version of the problem is shown to have

vanishing duality gap as the partition size of the continuous

time-interval grows. Numerical experiments illustrate the

usefulness of the subgradient method as a solver leveraging

these results.

Two immediate research goals are identified. The first is to

further investigate the relationship between formulations (2)

and (7). Specifically, for the purpose of approximating the

continuous-time problem with its discretized version, it is

useful to establish that PN approaches P. Propositions 1 and

2 illustrated in Fig. 2 and the numerical results are positive

indicators of this fact. Related results developed for difficult

nonconvex programs or other continuous-time formulations

may be useful to this end; see e.g., [20], [21], and references

therein. As a refinement of this issue, it is useful to examine

when the solutions of (2) can be piecewise constant, in which

case (7) can yield a schedule which is optimal for (2) as well.

The duality gap results motivate the use of dual methods

for efficient solutions to energy scheduling. Therefore, the

second research issue amounts to recovering primal solutions

(energy schedules) from dual solutions. This is a general

issue with Lagrangian duality in integer programming, but

the important feature here is to leverage the vanishing duality

gap. Tricks for related separable mixed integer programs may

be useful [14, Sec. 5.6].

The aforementioned research goals rely on the duality gap

results established here, and will be undertaken in future

submissions. The underpinning idea is to reveal “hidden con-

vexity” structures, which can be instrumental in developing

efficient solutions to practical home automation systems.
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