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Abstract— In this paper we propose a novel smooth vector
field whose trajectories globally converge to the saddle point
of the Lagrangian associated with a convex and constrained
optimization problem. Under suitable assumptions, we prove
global convergence of the trajectories for the class of strictly
convex problems and we propose a vector field for linear
programs.

I. INTRODUCTION

In this paper we propose a novel way to compute saddle
points that arise in convex optimization problems of the form

inf
x
f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m
(1)

with x ∈ Rn, f : Rn → R, gi : Rn → R, f , gi convex. Un-
der the assumption of strict feasibility (Slater’s Condition),
i.e. there exists an x̃ with gi(x̃) < 0 for i = 1, . . . ,m, x∗ is
the solution of (1) if and only if (x∗, λ∗) is a saddle point
of the Lagrangian, i.e. L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for
all x ∈ Rn, λ ∈ Rm+ with

L(x, λ) = f(x) +

m∑
i=1

λigi(x). (2)

We propose a continuous-time dynamical system to find a
saddle point of the Lagrangian (2). The idea of using a
dynamical system to find a saddle point of a Lagrangian
function goes back to K. J. Arrow, L. Hurwicz and H. Uzawa
as well as to G. W. Brown and J. von Neumann who proposed
in [2] (see also [17]) and [7] respectively, a gradient-like
system. In order to assure the satisfaction of the constraints
and the positivity of the Lagrange multipliers, a method
involving a projected gradient in the vector field, i.e.

ẋ = −
(
∂L(x, λ)

∂x

)>
= −∇f(x)−

m∑
i=1

λi∇gi(x) (3a)

λ̇i = P(λi, gi(x)), i = 1, . . . ,m, (3b)

where the operator P(λi, gi(x)) := 0 if λi = 0 and
gi(x) < 0, and P(λi, gi(x)) := gi(x) otherwise, was used to
project the vector field to the cone of positive vectors in Rm+ .
The projection as it was done in the Arrow-Hurwicz-Uzawa
flow (AHU-flow) in (3) renders the vector field non-smooth.
Since the work of Arrow, Hurwicz and Uzawa, a lot of further
research in the direction of saddle point algorithms has been
done, especially in the areas of economics, optimization
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and game theory. For example, the so-called best response
dynamics [4], [14] is a continuous-time dynamical system of
the form ẋ ∈ BR1(y)−x, ẏ ∈ BR2(x)−y which converges
to a saddle point of a zero sum game. While this system is
of interest for several reasons, it does not directly yield to an
easy implementable algorithm for finding saddle points, since
the evaluation of the best response BR1(·) is an optimization
problem itself.

Increasing interest in distributed control and optimization
has recently motivated more research in the direction of
saddle point algorithms (see [10] and references therein).
For example, in [20] a discrete-time primal-dual subgradient
algorithm for saddle point problems has been proposed
which builds upon the AHU-flow. As pointed out in [20],
primal-dual methods are especially appealing in distributed
optimization over networks when the dual function cannot be
evaluated efficently. The algorithm proposed in this work is
also a primal-dual method, but it is in the following aspects
different from the work outlined above.

Firstly, in contrast to the AHU-flow, we propose a new
method to assure positivity of the Lagrange multipliers by
avoiding the (non-smooth) projection operator. Moreover, our
method can easily be extended to other cases, e.g. when the
Lagrange multipliers are elements in the positive semidef-
inite matrix cone. Furthermore, the overall idea behind the
proposed dynamics is different from the AHU-flow and im-
plicitly involves the dual function. Concerning convergence,
we establish global convergence to a saddle point under
comparable assumptions as in the AHU-flow. Additionally,
the proposed dynamics shows promising results for linear
programs and guarantees global asymptotic stability in that
case.

Secondly, in contrast to the best response dynamics, the
evaluation of the right hand-side involves no optimization
problem and is thus easy to implement. What is needed,
however, is the evaluation of a Hessian, which is dropped in
the linear programming case.

Finally, in contrast to the work of Nedić and Ozdaglar (see
[20]), our algorithm is formulated in continuous-time. While
discrete-time formulations are as powerful as a continuous-
time formulation and often more convenient to implement
on a computer, it is on the other hand often advanta-
geous to work in continuous-time, since many powerful
mathematical concepts and tools can be applied. More-
over, a differential equation is independent of its algorith-
mic realization, whereas an algorithm given in the form
xk+1 = xk + αf(xk) has a fixed realization.

Summarizing, our main contribution in this paper is a
dynamical system, given as differential equation, which
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complements the more dominating literature on discrete-time
saddle point algorithms and provides a novel, alternative
approach to the AHU-flow with guaranteed convergence
properties by avoiding the use of projection operators in the
vector field. We prove global convergence of the trajectories
to a - not necessarily unique - saddle point for a certain class
of constrained optimization problems and propose a modified
version for linear programs.

The remainder of this paper is structured as follows.
In Section II we introduce the notation and the necessary
mathematical preliminaries. In Section III we state our main
result and the corresponding proofs. In Section IV we
demonstrate some aspects of the algorithm by examples.
Finally, in Section V we conclude with a summary and
outlook.

II. BACKGROUND

We will make use of the following notation:
The norm of a vector v ∈ Rn will be denoted by ||v|| =

2
√∑n

i=1 v
2
i . A matrix A is said to be positive semidefinite

(definite), or A ≥ 0 (A > 0), if it is symmetric A = A>,
and all its eigenvalues are nonnegative (positive). A matrix
H is Hurwitz if the real parts of its eigenvalues are in the
complex open left half-plane.

Rm+ denotes the cone of nonnegative vectors in Rm and
Rm++ the interior of Rm+ , i.e. the set of positive vectors in Rm.
Define the operator diag : Rn → Rn×n that takes a vector
and maps it to a matrix with the elements of the vector on
its main diagonal and define the open ball Bε(x0) as the set
Bε(x0) = {x ∈ Rn : ||x− x0|| < ε}.

Let f : Rn → R and L : Rn × Rm → R be a C1- and a
C2-function, respectively. Then

∇f(x) =

(
∂f(x)

∂x

)>
=

[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

]>
∇L(x, λ) =

(
∂L(x, λ)

∂x

)>
=

[
∂L(x, λ)

∂x1
, . . . ,

∂L(x, λ)

∂xn

]>
∇2L(x, λ) =

∂2L(x, λ)

∂x2
.

We continue with some standard results from convex
optimization. The following three statements are equivalent:
f convex⇔ ∇f(x)>(y−x) ≤ f(y)−f(x)⇔ ∇2f(x) ≥ 0.
Furthermore we have ∀x 6= y: f strictly convex ⇔
∇f(x)>(y − x) < f(y) − f(x) and on the other hand, a
positive definite Hessian∇2f(x) > 0 implies strict convexity
of f .

A saddle point of (2) delivers always a solution to (1).
In order to guarantee that the converse is true, it suffices to
guarantee strict feasibility (Slater’s Condition).

The following theorems can be found in the standard
literature dealing with optimization. See for example [5], [9]
and [21].

Theorem 1: Suppose Slater’s Condition is satisfied and
f, gi for i = 1, . . . ,m are convex. Then x∗ is a solution
of (1) if and only if there exists a λ∗ such that (x∗, λ∗)
is a saddle point of (I) in Rn × Rm+ , i.e. (x∗, λ∗) =
arg infx∈Rn supλ∈Rm+ L(x, λ).

Another closely related result is delivered by the Kuhn-
Karush-Tucker Theorem.

Theorem 2: Suppose Slater’s Condition is satisfied and
f, gi ∈ C1 for i = 1, . . . ,m are convex. Then x∗ is a solution
of (1) if and only if there exists a λ∗ ∈ Rm+ such that the
following three conditions are satisfied:

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) = 0, (4a)

λ∗i gi(x
∗) = 0, i = 1, . . . ,m, (4b)

gi(x
∗) ≤ 0, i = 1, . . . ,m. (4c)

The conditions are also often referred to as KKT-Conditions.

III. MAIN RESULTS

We propose the following equations to find a saddle point
of the Lagrangian (2):

ẋ =−∇L(x, λ)−∇2L(x, λ)−1
m∑
i=1

λigi(x)∇gi(x) (5a)

λ̇i =λigi(x), i = 1, . . . ,m (5b)

with initial conditions x(0) = x0 ∈ Rn and λi(0) = λi0 ∈
R++ for i = 1, . . . ,m.

Before we prove the main results, we briefly discuss the
structure of these equations and the underlying ideas.

Firstly, we observe that the equilibrium points of (5a) and
(5b) in Rn × Rm+ are the points which satisfy the KKT-
Conditions (4a) and (4b).

Secondly, comparing the equations with the AHU-flow (3),
we see a modification in the λ-dynamics in (5b). The idea
behind (5b) is to guarantee non-negativity of the Lagrange
multipliers in a natural way and to avoid switching (pro-
jection) as it was done in the AHU-flow. Notice that the
λi’s stay non-negative if initialized in Rm++. It is also not
difficult to see that (5b) can be generalized to other conic
constraints, e.g. when dealing with positive semidefinite
Lagrange multiplier matrices. In that case one can imagine
to replace (5b) by the matrix equation Λ̇ = 1

2 (G>Λ + ΛG)
with Λ > 0 (for further information on dynamical systems
involving matrices see e.g. [1] and [13]).

Thirdly, we see an additional expression on the right hand
side in the x-dynamics (5a). This expression arises from the
following idea which leads to the system in (5). The task of
the x-dynamics (5a) is to minimize L(x, λ). If λ(t) was con-
stant, then the right hand side of (5a) would just consist of the
negative gradient of L(x, λ), but since λ(t) itself is evolving,
its dynamics have to be taken into account, which leads to
the additional term −∇2L(x, λ)−1

∑m
i=1 λigi(x)∇gi(x).

The overall idea underlying the dynamics of system (5) is
illustrated in Fig. 1. The system is designed in such a way
that the x-dynamics will minimize L(x, λ) with respect to
x, i.e. by zeroing

V1(x, λ) =
1

2
∇L(x, λ)>∇L(x, λ) (6)

while the λ-dynamics will maximize the (dual) function

V2(λ) = −L(x̄(λ), λ) (7)
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(x∗, λ∗)

(x(t), λ(t))

L(x, λ)

x

λ

(x̄(λ(t)), λ(t))

Fig. 1: Tracking of x̄(λ)

on Rm+ , with x̄(λ) as the minimizer x of L(x, λ) with respect
to some λ ∈ Rm+ . In the following, we prove convergence
to a saddle point of L(x, λ) in (2), assuming that Slater’s
Condition is satisfied, f , gi’s are strictly convex and possess
a minimum.

Hereby, we proceed in several steps. In Lemma 1
we show that x̄c(λ) (see (8), (9), (10)) with respect to
λ ∈ Rm+ is always bounded. In Lemma 2 we establish
radially unboundedness of V1(x, λ) with respect to x by
introducing an auxiliary optimization problem. Lemma 3
states that under the assumption of forward completeness of
(x(t), λ(t)), x(t) converges to the set V1(x, λ) = 0 whereas
the existence and boundedness of x(t) and λ(t) is established
in Lemma 4. Finally in Theorem 3 we prove convergence of
trajectories to a saddle point.

Global convergence of the trajectories to a saddle-point is
established under the assumptions (A1) – (A3).

Assumptions:
(A1) f , gi, i = 1, . . . ,m, are twice continuously differen-

tiable and strictly convex. Moreover ∇2f(x) > 0.
(A2) The functions fc(x) = f(x) − c>x, gi, i = 1, . . . ,m

possess a minimum for any c ∈ Rn.
(A3) ∃x̃ ∈ Rn such that gi(x̃) < 0, i = 1, . . . ,m.

Assumption (A2) is necessary since strict convexity of
a function does not imply compact level sets, as e.g. the
function − ln(x) is strictly convex, but does not admit a
minimum. Since we need compact level sets, we restrict f
and all gi’s to be strictly convex and additionally fc and
all gi’s must admit a minimum. The additional linear term
−c>x appearing in fc is a technical assumption needed in
the proof and assures, loosely speaking, that f grows faster
than a linear function.

We now introduce an auxiliary optimization problem,
whose link to problem (1) will be clear immediately.
Consider the following optimization problem

inf
x
f(x)− c>x

s.t. gi(x) ≤ 0, i = 1, . . . ,m
(8)

with c ∈ Rn. Observe that the Lagrangian

Lc(x, λ) = f(x)− c>x+

m∑
i=1

λigi(x) (9)

associated with problem (8) is strictly convex in x. Before
we state our main results, we introduce the quantity x̄c(λ)

that is implicitly defined by

∇Lc(x̄c(λ), λ) = ∇f(x̄c(λ))− c+

m∑
i=1

λi∇gi(x̄c(λ)) = 0.

(10)
Obviously, the Lagrangian L(x, λ) in (2) associated with
problem (1) coincides with the Lagrangian Lc(x, λ) in (9)
for c = 0, i.e. L(x, λ) = L0(x, λ). Therefore, we can also
state that x̄(λ) as the minimum of L(x, λ) for some λ ∈ Rm+
coincides with x̄0(λ), i.e. x̄(λ) = x̄0(λ).
Lc(x, λ) is strictly convex in x. This implies that

x̄c(λ) is the unique solution of the implicit equation (10)
for any λ ∈ Rm+ and c ∈ Rn. Due to assumption
(A2) and the Implicit Function Theorem, x̄c(λ) is
finite for any finite λ ∈ Rm+ and is a C1-function. Its
derivative is given by (see Appendix VI-A) ∂x̄c(λ)

∂λ =

−
(
∇2L(x̄c(λ), λ)

)−1 [∇g1(x̄c(λ)), . . . ,∇gm(x̄c(λ))
]
.

Lemma 1: Let assumptions (A1) – (A3) be satisfied and
suppose x̄c(λ) is the unique minimizer of Lc(x, λ) for a
given λ ∈ Rm+ and c ∈ Rn. Then

∑m
i=1 λigi(x̄c(λ)) < 0

whenever
∑m
i=1 λi is sufficiently large. In particular, ∃j ∈

{1, . . . ,m} such that gj(x̄c(λ)) < 0.
Proof: We prove the result by contradiction. Suppose∑m

i=1 λigi(x̄c(λ)) ≥ 0 whenever
∑m
i=1 λi is sufficiently

large. By optimality of x̄c(λ), we must have Lc(x̄c(λ), λ) ≤
Lc(x, λ), ∀x 6= x̄c(λ) and by assumption (A3) ∃x̃ such that
gi(x̃) < 0, ∀i ∈ {1, . . . ,m}. Then Lc(x̄c(λ), λ)−Lc(x̃, λ) =
f(x̄c(λ)) − c>x̄c(λ) +

∑m
i=1 λigi(x̄c(λ)) − f(x̃) + c>x̃ −∑m

i=1 λigi(x̃) ≥ f(x̄c(λ)) − c>x̄c(λ) − f(x̃) + c>x̃ −
maxk gk(x̃)

∑m
i=1 λi.

By assumptions (A1) and (A2) x̃ lies in a compact set,
furthermore f(x̄c(λ))−c>x̄c(λ) and f(x̃)−c>x̃ are bounded
from below, since by (A2) they possess a minimum. We see
that Lc(x̄c(λ), λ)−Lc(x̃, λ) > 0 whenever

∑m
i=1 λi has been

chosen sufficiently large. This contradicts the assumption that∑m
i=1 λigi(x̄c(λ)) ≥ 0 whenever

∑m
i=1 λi is large.

Since
∑m
i=1 λigi(x̄c(λ)) < 0 and λi ≥ 0, we conclude

that ∃j ∈ {1, . . . ,m} such that gj(x̄c(λ)) < 0.
In order to use the previously defined Lyapunov function
V1(x, λ) in (13), we first show that it is radially unbounded
in x, i.e. V1(x, λ) → ∞ whenever ||x|| → ∞. For this
purpose, we introduce a set containing all x belonging to
the level sets of V1(x, λ) and prove that this set is always
compact. Let Mα denote the set Mα = {x ∈ Rn :
||∇L(x, λ)|| = α, λ ∈ Rm+}.

Lemma 2: Let assumptions (A1) – (A3) be satisfied, then
for any fixed α ≥ 0 the set Mα is nonempty and compact.
Furthermore, V1(x, λ) is radially unbounded in x.

Proof: We will first proof that the set

Nc = {x ∈ Rn : x = x̄c(λ), λ ∈ Rm+}
= {x ∈ Rn : ∇L(x, λ) = c, λ ∈ Rm+}

(11)

is compact. In order to prove that Nc is compact, we will
make use of the fact that x̄c(λ) defined by (10) is unique and
exists for all λ ∈ Rm+ . By assumptions (A1) and (A2), x̄c =
x̄c(λ) is a well-defined continuous function and therefore
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there exists a unique and bounded x̄c(λ) for
∑m
i=1 λi being

in a compact set. Hence, it remains to show that x̄c = x̄c(λ)
is bounded whenever

∑m
i=1 λi → ∞. This directly follows

from Lemma 1, since for
∑m
i=1 λi sufficiently large ∃j ∈

{1, . . . ,m} s.t. gj(x̄c(λ)) < 0 and since the functions gi
admit compact level sets due to assumptions (A1) and (A2),
x̄c(λ) must be bounded.

Observe now that Mα =
⋃
||c||=αNc, since

x̃ ∈ {x ∈ Rn : ||∇L(x, λ)|| = α, λ ∈ Rm+}
if and only if

x̃ ∈
⋃
||c||=α

{x ∈ Rn : ∇L(x, λ) = c, λ ∈ Rm+}
(12)

and since ||c|| = α defines a compact set, we conclude that
Mα is nonempty and compact.

Finally, we prove that V1(x, λ) admits compact level
sets in x. Equivalently to radially unboundedness,
i.e. ||x|| → ∞ ⇒ V1(x, λ) → ∞, we can also write
V1(x, λ) ≤ α ⇒ ||x|| ≤ γ. The latter follows immediately
from the obtained result, since Mα denotes the set of x
contained in a level set of V1(x, λ) and as Mα is bounded
for all λ ∈ Rm+ and any fixed α ≥ 0, we conclude that
V1(x, λ) is radially unbounded in x.
We are now ready to prove the existence and
boundedness of x(t) and λ(t) using the Lyapunov
function V1(x, λ). A crucial issue in the proof is
the existence of trajectories, especially of λ(t),
as V1(x, λ) is only radially unbounded in x,
i.e. a negative derivative of V1(x, λ) along the trajectories
of (5) does not imply boundedness of λ(t) but only of x(t).

Lemma 3: Let assumptions (A1) – (A3) be sat-
isfied. Moreover, suppose a solution of (x(t), λ(t))
of (5) initialized in Rn × Rm++ is forward com-
plete. Then limt→∞ ||∇L(x(t), λ(t))|| → 0, equivalently
limt→∞ ||x(t)− x̄(λ(t))|| = 0.

Proof: Consider the Lyapunov function V1(x, λ) =
1
2∇L(x, λ)>∇L(x, λ) that is by Lemma 2 radially un-
bounded in x.
The derivative along the trajectories of (5) yields

V̇1 = (∇L(x, λ))>

(
∇2L(x, λ)ẋ+

m∑
i=1

λ̇i∇gi(x)

)
= −∇L(x, λ)>∇2L(x, λ)∇L(x, λ).

(13)

Since ∇2L(x, λ) is positive definite and x(t) is forward
complete by assumption, x(t) converges to ∇L(x, λ) = 0.
We conclude that x(t) approaches x̄(λ(t)) as t → ∞
and furthermore limt→∞ ||∇L(x, λ)|| → 0 which implies
limt→∞ x(t) ∈M0 = N0.

Lemma 4: Let assumptions (A1) – (A3) be satisfied. Then
any solution (x(t), λ(t)) of (5) initialized in Rn × Rm++ is
forward complete and bounded.

Proof: First, we show that the solution (x(t), λ(t)) is
forward complete. Due to Lemma 3, x = x(t) is bounded

over the maximal interval of existence of λ = λ(t) since
h(t) := ||∇L(x(t), λ(t))|| is bounded and monotonically
decreasing and thus x(t) ∈ Mh(t) is always bounded as
long as the solution λ(t) exists. Therefore, the solution is
forward complete (bounded), if λ = λ(t) exists for all t ≥ 0
(is bounded).

The existence of λ = λ(t) follows by integrating (5b), that
yields λi(t) = λi0e

∫ t
0
gi(x(τ))dτ , i = 1, . . . ,m.

Since x(τ) stays bounded for τ ∈ [0, t], the integral∫ t
0
gi(x(τ))dτ has a finite value for any t ≥ 0. Hence, λ(t)

is forward complete.
Finally we show that

∑m
i=1 λi(t) is bounded. Consider the

Lyapunov function W (λ) =
∑m
i=1 λi that is positive definite

on Rm+ and radially unbounded. The derivative along the
trajectories yields Ẇ =

∑m
i=1 λ̇i =

∑m
i=1 λigi(x). Substi-

tuting x = ξ + x̄(λ), we obtain Ẇ =
∑m
i=1 λigi(ξ + x̄(λ)).

Due to Lemma 1 we have
∑m
i=1 λigi(x̄(λ)) < 0 whenever∑m

i=1 λi is sufficiently large. Moreover, due to Lemma 3 we
have limt→∞ ||ξ(t)|| = 0, and with forward completeness
of (x(t), λ(t)), we conclude that there exists a time t1 > 0
such that ∀t > t1 we have Ẇ =

∑m
i=1 λigi(ξ + x̄(λ)) < 0

whenever
∑m
i=1 λi is sufficiently large. Thus, since W (λ) is

radially unbounded on Rm+ , λ = λ(t) stays bounded.
As seen before, a crucial issue in this work is to establish

forward completeness and boundedness of the solutions. In
the proof, the use of assumptions (A2) and (A3) plays an
important role. The fact that

∑m
i=1 λigi(x̄(λ)) is strictly

smaller than zero assures that there exists a finite time such
that Ẇ < 0.

We are now ready to state our main result, namely the
convergence of (x(t), λ(t)) to a saddle point (x∗, λ∗) of
L(x, λ) in (2) and therefore to the solution of (1).

Theorem 3: Let assumptions (A1) – (A3) be satisfied,
suppose f and gi, i = 1, . . . ,m are analytic functions and let
(x∗, λ∗) be the unique saddle point of L. Then any solution
of (x(t), λ(t)) of (5a) and (5b) initialized in Rn × Rm++

converges to a single connected component Ei of the set

E =
{

(x, λ) ∈ Rn × Rm+ : x = x̄(λ), λigi(x) = 0
}
. (14)

Furthermore there exist finitely many connected components
Ei, where all of them are unstable except the singleton E0

containing the saddle point (x∗, λ∗) that is asymptotically
stable.

Proof: Step 1: We show that all points (x̄∗, λ̄∗) with
x̄∗ = x̄(λ̄∗) and λ̄∗ = arg maxλ∈Rm+ L(x̄(λ), λ) are saddle
points. This can be verified using the necessary condition for
a function having a maximum at λ̄∗ ∈ Rm+ (see [5] , p. 177,
Ex. 1.1):(
∇L(x, λ)

∂x̄(λ)

∂λ
+
∂L(x, λ)

∂λ

)
|x̄(λ̄∗) = gi(x̄(λ̄∗)) ≤ 0

λ̄∗i gi(x̄(λ̄∗)) = 0, i = 1, . . . ,m.
(15)

With this and since x = x̄(λ) all KKT-Conditions are
fulfilled and all (x̄(λ̄∗), λ̄∗) are saddle points of L. Since
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(x∗, λ∗) is unique, the maximum of L(x̄(λ), λ) is unique
and (x̄∗, λ̄∗) = (x∗, λ∗).

Step 2: We conclude with assumptions (A1) – (A3)
and by Lemma 4 that x(t) and λ(t) are bounded.
Choose M := Rn × Rm as the manifold with
the standard Euclidian metric and define the set
S =

{
[x, λ]> : x = x̄(λ), λ ∈ Rm+

}
∩ Ω with Ω a

compact set containing the ω-limit set of (x(t), λ(t))
initialized at Rn × Rm++. Obviously, we have S ⊂ M. By
Lemma 3 we conclude that the set S is attractive for
solutions of (5).

We introduce the height (dual) function V2(λ) :=
−L(x̄(λ), λ) and calculate the derivative V̇2 along
the trajectories of (5) on the set S. This yields
V̇2 = −

(
∇L(x, λ)∂x̄(λ)

∂λ + ∂L(x,λ)
∂λ

)
|x̄(λ)λ̇ =

−∑m
i=1 gi(x̄(λ))2λi.

Define the set E := {[x, λ]> : x = x̄(λ), λ ∈ Rm+ , e(λ) = 0}
with e(λ) : λ 7→ [λ1g

2
1(x̄(λ)), . . . , λmg

2
m(x̄(λ))]. Observe

that E is the set where V̇2 = 0, i.e. V̇2 < 0 on S\E
and it contains the set of equilibrium points satisfying the
KKT-Conditions (4a), (4b).

Step 3: Define the set Eλ := {λ ∈ Rm+ : e(λ) = 0} and
notice that every connected component of Eλ is contained in
a level set of V2(λ) if and only if every connected component
of E is contained in V2(λ), since V2(λ) = L(x̄(λ), λ).

In order to apply Theorem 6 in [3] (see Appendix VI-
B), we will now show that every connected component
of Eλ is contained in a level set of V2(λ). In order to
prove this, we show that V2(λ) is constant in directions
of the tangent cone TCλ Eλ at any point λ ∈ Eλ, i.e.
d
dεV2(λ + εw)|ε=0 = ∂V2(λ)

∂λ w = 0,∀w ∈ TCλ Eλ with
∂V2(λ)
∂λ = ∂L(x,λ)

∂λ |x̄(λ) = [g1(x̄(λ)), . . . , gm(x̄(λ)], because
∇L(x, λ)|x̄(λ) = 0. Since (see e.g. [12, p. 44]) TCλ Eλ ⊆
RλEλ = {v ∈ Rm : ∂e

∂λ |λ∈Eλv = 0}, it suffices to prove
that ∂V2(λ)

∂λ v = 0,∀v ∈ RλEλ. This implies that we stay on
a level set of V2(λ) for a small perturbation in the direction
of v ∈ RλEλ, and therefore also for any w ∈ TCλ Eλ. The set
Eλ contains all points with λig2

i (x̄(λ)) = 0. We distinguish
between two cases:

1) ∀i ∈ {1, . . . ,m} : gi(x̄(λ)) = 0.
It follows that ∂V2(λ)

∂λ = 0. Since the dual function is
concave (V2(λ) is convex, see [5]) each point where
the gradient vanishes is a global maximizer of the dual
function, and consequently the connected components
where the gradient vanishes, must all lie on the same
level set1.

2) ∃i ∈ {1, . . . ,m} : gi(x̄(λ)) 6= 0.
Without loss of generality, we relabel all gi(x̄(λ)) such
that:
• gi(x̄(λ)) 6= 0, i = 1, . . . , k
• gi(x̄(λ)) = 0, i = k + 1, . . . ,m

with 1 ≤ k ≤ m. Then, the Jacobian of e(λ) at λ ∈ E

1The convexity condition is needed, since there exists (non-convex and
non-concave) functions not constant on a connected set of points where its
gradient vanishes (see [22]).

yields:

∂e

∂λ
|λ∈E =

[
diag[g2

1(x̄(λ)), . . . , g2
k(x̄(λ))] 0

0 0

]
. (16)

Therefore, all vectors in RλEλ must be of the form:

v =
[
0, . . . , 0, vk+1, . . . , vm

]>
, (17)

and the directional derivative of V2(λ) along the ele-
ments in RλEλ yields ∂V2(λ)

∂λ v =
∑m
i=k+1 gi(x̄(λ))vi =

0,∀v ∈ RλEλ.
Therefore, all vectors v ∈ RλEλ are perpendicular to the
gradient on the level set of V2(λ) and since TCλ E ⊆ RλEλ
all points of a connected component of E lie in a level set
of V2(λ). Thus, Eλ is contained in a level set of V2(λ).

The set E can be decomposed such that E =
⋃
i∈I Ei

with {Ei}i∈I denoting the connected components in E
and let νi ∈ V = V2(E) denote the image of of E
under V2(λ) (we write V2(E) instead of −L(E)), i.e.
νi = V2(Ei). Since all {Ei}i∈I are contained in the
level sets of V2(λ), we conclude that different νi’s must
posses different preimages with zi = [xi, λi]> ∈ Ei.
Remember that xi is uniquely defined for a fixed λi, since
zi ∈ Ei with x = x̄(λ), therefore E = {[x, λ]> :
∇f(x) +

∑m
i=1 λi∇gi(x) = 0, λigi(x) = 0, i = 1, . . . ,m},

and thus zi is a zero of an analytic function. We will
now exclude the existence of accumulation points in V .
Suppose, there exists an accumulation point ν∞, i.e. there
exists a sequence {νk}, with distinct νk such that (see [19])
limk→∞ νk = ν∞. Let zk denote some preimage of νk,
i.e. zk ∈ Ek. The set E is compact, so there exists a
converging subsequence {z̃j} ⊆ {zk} (Thm. of Bolzano-
Weierstrass, [19]) with distinct z̃j such that limj→∞ z̃j =
z̃∞, z̃∞ ∈ V −1

2 (ν∞). Since z̃∞ is the accumulation point
of {z̃j}, there exists for every ε > 0 a p ∈ N such that
z̃j ∈ Bε(z̃∞),∀j > p , i.e. for any ε > 0 there exist infinitely
many distinct z̃j ∈ Bε(z̃

∞) and therefore infinitely many
distinct connected components Ej (z̃j ∈ Ej) intersect with
an ε-ball Bε(z̃∞). This leads to a contradiction since f and
gi, i = 1, . . . ,m are analytic and not identically zero (there
exists an x and d such hat h(α) = f(x+αd) 6≡ 0) it follows
by Lojasiewicz’s Theorem (see Thm. 6.3.3 in [18]) that the
zero set of a real valued analytic functions is locally a union
of a finite number of connected components. This contradicts
the assumption that an accumulation point z̃∞ exists. We
conclude that the connected components in E are isolated
and are embedded in the level sets of V2(λ).

We are now ready to apply Theorem 6 in [3] (see Ap-
pendix VI-B), concluding that the trajectories of (5) approach
a connected component Ei of E with t→∞.

Observe furthermore that E contains all equilibrium points
of (5) which satisfy (4a) and (4b) but not necessarily (4c).

Step 4: We will now show by using Chetaev’s Insta-
bility Theorem that all Ei are unstable except the single-
ton E0 containing the saddle point (x∗, λ∗). Take again
V2(λ) = −L(x̄(λ), λ) and define Wi(λ) = −V2(λ) + ci
with (xi, λi) ∈ Ei, i ≥ 1 and the constant ci = L(xi, λi).
Obviously Wi(λ

i) = 0. Define B̄ε := Bε(x
i, λi)∩N0×Rm+ ,
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(xi, λi) ∈ Ei, i ≥ 1 with N0 as in (11). Since Wi(λ
∗) >

Wi(λ
i), i ≥ 1 and Wi, i ≥ 0 are concave, it follows

that for every ε there exists a subset D of B̄ε such that
Wi(λ) > 0 for all λ ∈ D\λi. Now since N0 is invariant
and Ẇi =

∑n
i=1 gi(x̄(λ))2λi > 0, for all (x̄(λ), λ) ∈ B̄ε

(and therefore also on D) it follows by Chetaev’s Instability
Theorem (see [16]) that the sets Ei, i ≥ 1 are unstable.

In the following we use Theorem 11 in [15] in order to
show that E0, i.e. the saddle point, is asymptotically stable.
Note that V1 in (13) is a positive semi-definite Lyapunov
function on Rn × Rm+ that vanishes on the set N0. In
order to show that the saddle-point (x∗, λ∗) is asymptotically
stable it is sufficient to show that the restriction of (5) is
asymptotically stable on the set N0

2. Using the Lyapunov
function −W0 that is positive definite on N0 and vanishes
only at the saddle-point, the Lie-derivative yields Ẇ0 =
−∑n

i=1 gi(x̄(λ))2λi and is strictly negative definite for all
λ 6= λ∗. This proves that the saddle point (x∗, λ∗) ∈ E0 is
asymptotically stable on N0. Using the results of Theorem
11 in [15] we can conclude from the asymptotic stability of
(x∗, λ∗) on N0 that (x∗, λ∗) is asymptotically stable.
In the following, we discuss the main result and the as-
sumption under which it has been established as well as the
applicability of (5) to linear programming.

First note that the existence of a unique saddle point of
L is assumed to be able to use Theorem 11 in [15], since
it is formulated such that it is valid for a point. It can be
expected however that this is also valid in the case that E0

is not a singleton.
Second it is important to point out that the system con-

verges to E0 for practically every initial condition. The
convergence to an unstable connected component Ei is
highly unlikely, but possible in some pathological cases.

We restrict the functions f and gi, i = 1, . . . ,m to be
analytic because a finite number of accumulation points
in V2(E) is required for Theorem 6 in [3]. Since analytic
functions can have only isolated connected components, we
assure the non-existence of accumulation points. On the other
hand, infinitely many accumulation points can only occur
in highly degenerated cases. As pointed out in [11], most
nonlinear differentiable programs are well-behaved. Further-
more, a finite number of accumulation points still leads to
a guaranteed convergence but there is no general criteria
known to the authors that gives a reasonable characterization
of such functions.

Finally, the assumptions (A1) – (A3) are conservative but
needed in our current proof, mainly in order to establish
boundedness of solutions. From a practical point of view, one
might expect that (5) will converge in more general situations
when the assumptions are not satisfied.

The application of (5) can be extended to linear programs.
The proof in this special case can be established using a
single Lyapunov-function and under less strict assumptions
as those needed in Theorem 3.

2In terms of Theorem 11 in [15]: V1 = V and N0 = L with L being
the largest invariant set contained in {x : V̇ (x) = 0}.
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Fig. 2: Feasible Sets and Trajectory (x1(t), x2(t))

In the following we will present the structure of the
dynamical system for linear programs.

First recall a linear program in inequality form:

inf
x
c>x

s.t. a>i x− bi ≤ 0, i = 1, . . . ,m.
(18)

We propose the following vector field for this type of
problems:

ẋ =− c−
m∑
i=1

λiai(a
>
i x− bi + 1) (19a)

λ̇i =λi(a
>
i x− bi), i = 1, . . . ,m. (19b)

This system is a special realization of (5) for linear programs
where ∇2L(x, λ)−1 was substituted by the identity matrix.
Under the assumption that the saddle point (x∗, λ∗) of
L(x, λ) = c>x +

∑n
i=1 λi(a

>
i x − bi) is unique, it can be

shown that the trajectories of (19) initialized in Rn × Rm++

converge to (x∗, λ∗) and that it is exponentially stable. Thus,
the system converges to the solution x∗ of (18). The proof
can be found in [8].

IV. EXAMPLE

In the following we show two examples. In the first
example we apply the algorithm (5) to the optimization
problem

min
x

(x1 − 1)2 + (x2 − 2)2

s.t. (x1 − 1)2 + x2
2 − 2 ≤ 0

(x1 + 1)2 + x2
2 − 2 ≤ 0.

(20)

The trajectory of the x-coordinate as well as the feasible
set and the level sets of the objective function are shown in
Fig. 2. One can also see the trajectory of x̄(λ(t)) and its
tracking by x(t).

We emphasize, that there is no need to choose an initial
condition in the feasible set, but only positive initial condi-
tions λi0.

V. SUMMARY AND FUTURE WORK

We proposed the vector field (5) whose trajectories con-
verge globally to a saddle point of the Lagrangian function
(2) belonging to the constrained optimization problem (1).
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Under suitable assumptions such as strict convexity and
strict feasibility it is well known that the saddle point of
the Lagrangian coincides with the solution of a convex
optimization problem. Thus, (5) provides a novel way to
solve convex optimization problems of type (1).

One nice feature of system (5) is that the well-known
regularity and optimality conditions from optimization theory
do not only guarantee well-posedness of the problem but
also dictate local and global qualitative behavior of the
vector field (5). The main focus of our future research lies
in the relaxation of the conditions on the functions f and
gi, i = 1, . . . ,m, such that we are able to prove global
convergence for other classes of optimization problems.

Another interesting research point is to study the un-
derlying geometry of (5). Saddle point problems possess
interesting geometric properties (see [6] and [11]). As shown
in [6], saddle point algorithms like the AHU-flow have a
gradient-like structure using a suitable (indefinite) metric. It
is interesting in that respect that the λ-dynamics of (5) can
be interpreted as a gradient flow for the dual function with
the definite (but singular) metric diag[λ−1

1 , . . . , λ−1
m ].

VI. APPENDIX

A. Derivative of x̄c(λ) with respect to λ

Lemma 5: Suppose (A1) and (A2) are satisfied
and let x̄c(λ) denote the unique minimizer of
Lc(x, λ) for a given λ ∈ Rm+ . Then ∂x̄c(λ)

∂λ =

−
(
∇2L(x̄c(λ), λ)

)−1 [∇g1(x̄c(λ)), . . . ,∇gm(x̄c(λ))
]
.

By abuse of notation, we write ∇2L(x̄c(λ), λ) instead of
∂∇L(x,λ)

∂x |x̄c(λ).
Proof: The minimizer x̄c(λ) is implicitly defined as the
unique solution of the equation (10). Due to (A1) and (A2),
the minimizer exists and is unique. Moreover, due to the
Implicit Function Theorem, the derivative of x̄c(λ) with
respect to λ exists and can be calculated by differentiating
both sides of (10) with respect to λ

∂∇L(x, λ)

∂x
|x̄c(λ)

∂x̄c(λ)

∂λ
+
∂∇L(x, λ)

∂λ
|x̄c(λ) = 0, (21)

where ∂∇L(x,λ)
∂x |x̄c(λ) coincides with ∇2L(x, λ)|x̄c(λ). This

yields ∂x̄c(λ)
∂λ = −

(
∇2L(x̄c(λ), λ)

)−1 ∂∇L(x,λ)
∂λ |x̄c(λ) =

−
(
∇2L(x̄c(λ), λ)

)−1 [∇g1(x̄c(λ)), . . . ,∇gm(x̄c(λ))
]
.

B. Theorem 6 in [3]

The following assumptions are needed for the Theorem:
1. Consider a manifold M⊆ RN of class C2 with standard
metric on which a locally Lipschitz continuous vector field
ẋ = f(x) is given; 2. The solution x(t) is bounded; 3. The
ω-limit set Ω(x(0)), which is a compact and connected set,
is contained in a closed embedded submanifold S ⊂ M.
Equivalently, assume that S is attracting for x(t) starting at
x(0); 4. Call O an open tubular neighborhood of S in M
and assume that there exists a real-valued C1 height function
W : O → R and such that Ẇ ≥ on S (or Ẇ ≤ 0 on S),
where Ẇ is the derivative of W (x) along the trajectory (Lie
derivative). Moreover, let E := {x ∈ S : Ẇ = 0} so that
Ẇ > 0 on S\E (or Ẇ = 0 on S\E).

Definition: Let {Ei}i∈I be the connected components
of E. Given a height function W (x) as in the assumptions
above, say that the components {Ei}i∈I are contained in
W (x) if each Ei lies in a level set of W (x), and the
subset {W (Ei)}i∈I ⊂ R has at most a finite number of
accumulation points in R.

Theorem 4: Assume the assumptions above hold. If the
components {Ei}i∈I are contained in W (x) according to
the foregoing Definition, then Ω(x(0)) ⊂ Ei for a unique
i ∈ I .
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zum Lösen von Linearen Programmen und Sattelpunktproblemen.
17. Steirisches Seminar über Regelungstechnik und Prozessautoma-
tisierung, Graz, Austria, 2011.

[9] K. H. Elster. Nichtlineare Optimierung. Harri Deutsch, 1978.
[10] D. Feijer and F. Paganini. Stability of primal-dual gradient dynamics

and applications to network optimization. Automatica, 46(12):1974–
1981, 2010.

[11] O. Fujiwara. Morse Programs: A topological approach to smooth con-
strained optimization. Mathematics of Operations Research, 7(4):pp.
602–616, 1982.

[12] C. Geiger and C. Kanzow. Theorie und Numerik restringierter
Optimierungsaufgaben. Springer, 2002.

[13] U. Helmke and J. B. Moore. Optimization and dynamical systems.
Springer, 1994.

[14] J. Hofbauer. Best response dynamics for continuous zero–sum games
best response dynamics for continuous zero–sum games best response
dynamics for continuous zero–sum games. Discrete and Continuous
Dynamical Systems, 6(1):215–224, 2006.

[15] A. Iggidr and G. S. Sallet. On the stability of nonautonomous systems.
Automatica, 39(1), 2003.

[16] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.
[17] T. Kose. Solutions of saddle value problems by differential equations.

Econometrica, 24(1):pp. 59–70, 1956.
[18] S. Krantz and H. R. Parks. A Primer of Real Analytic Functions.
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