
A PI Controller based on Asymmetric Gossip Communications for
Clocks Synchronization in Wireless Sensors Networks

Ruggero Carli Edoardo D’Elia Sandro Zampieri

Abstract— In this paper a distributed clock synchronization
algorithm is proposed. The algorithm requires asymmetric
gossip communications between the nodes of the network, and is
based on an PI-like consensus protocol where the proportional
part compensates the different clock speeds while the integral
part eliminates the different clock offsets. Convergence of the
algorithm is proved and analyzed with respect to the controller
parameter, when the underlying graph is the complete graph.
Simulations results show the effectiveness of the proposed
strategy also for more general communication topologies.

I. INTRODUCTION

The recent technological advances in wireless commu-
nication and the decreasing in cost and size of electronic
devices have promoted the appearance of large inexpensive
interconnected systems, each with computational and sensing
capabilities. These complex networks of agents are used
in a large number of applications covering a wide range
of fields, such as, surveillance, targeting systems, controls,
communications, monitoring areas, intrusion detection, ve-
hicle tracking and mapping. One key problem in many
of these applications is clock-synchronization. Indeed, very
often, it is essential that the agents act in a coordinated and
synchronized fashion requiring global clock synchronization,
that is, all the agents of the network need to refer to a
common notion of time. A wide variety of clock synchroniza-
tion protocols have been proposed recently in the literature.
Depending upon the architectures adopted, these protocols
can be divided into three categories: tree-structure-based,
cluster-structure-based, and fully-distributed.

Tree-structure-based protocols [1], [2] consist in electing
a reference node and creating a spanning tree rooted at this
reference node, where each children synchronizes itself with
respect to its parent. In cluster-structure-based protocols [3],
the network is divided into distinct clusters, each with an
elected cluster-head. All nodes within the same cluster syn-
chronize themselves with the corresponding cluster-head, and
each cluster-head synchronizes itself with an another cluster-
head. Although these two strategies have been experimentally
tested showing remarkable performance, they suffer from
robustness and scalability issues. For instance, if a node dies,
then it is necessary to rebuild the tree or the clusters, at
the price of additional implementation overhead and possibly
long periods in which the network is poorly synchronized.
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Fully distributed algorithms for clocks synchronization
have appeared in [4], [5], [6], [7]. The authors in [5]
introduced a protocol inspired by the fireflies integrate-
and-fire synchronization mechanism, able to compensate for
different clock offsets but not for different clock skews. On
the opposite, the algorithm proposed in [4] adopting a P-
controller, compensates for the clock skews but not for the
offsets. Distributed protocols that can compensate for both
clock skews and offsets have been proposed in [6], [7]. The
first one is based on the cascade of two distributed least-
squared algorithms, while the second one is based on the
cascade of two first order consensus algorithms [8], [9]. Of
note is the fact that both these strategies are highly non-linear
and do not lead to a simple characterization of the effects of
noise on the steady-state performance.

Differently, [10], [11] proposed a synchronization algo-
rithm that can be formally analyzed not only in the noiseless
scenario in terms of rate of convergence but also in a
noisy setting in terms of the steady-state synchronization
error. This algorithm compensates for both initial offsets
and differences in internal clock speeds and is based on
a Proportional-Integral (PI) controller that treats the dif-
ferent clock speeds as unknown constant disturbances and
the different clock offsets as different initial conditions for
the system dynamics. Both convergence guarantees as well
optimal design using standard optimization tools when the
underlying communication graph is known, can be provided
[12]. It is important to remark that the time-synchronization
algorithm proposed by [11] requires each node to perform
all the operations related to the k-th iteration of the algo-
rithm, including transmitting messages, receiving messages
and updating estimates, within a short time window. This
pseudo-synchronous implementation might be very sensitive
to packet losses, node and link failure.

In this paper we developed and analyzed a far more
practical version of the PI synchronization algorithm, as-
suming that clocks can communicate by an asymmetric
gossip protocol. That is, at each iteration only one node can
establish a directional communication with only one of its
neighbors. This applies very well to real sensor networks,
and drastically reduces the network requirements in terms
of reliability, bandwidth, and synchronization. Theoretical
results are provided when the underlying communication
topology is given by the complete graph, while more general
families of graphs are considered by means of simulations.

A. Mathematical preliminaries

Before proceeding, we collect some useful definitions and
notations. In this paper, G = (V, E) denotes a directed
graph where V = {1, . . . , N} is the set of vertices and
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E is the set of directed edges, i.e., a subset of V × V .
We assume that no self-loops are contained in E . Given
a node i, by Ni we denote the neighbors of i, namely,
Ni = {j ∈ V | (j, i) ∈ E , i 6= j}. Moreover, by di we
denote the cardinality of Ni, i.e., di = |Ni|. Given a vector
v ∈ RN and a matrix M ∈ RN×N , we let v∗ and M∗

respectively denote the transpose of v and of M . With the
symbols 1 we denote the N -dimensional vector having all
the components equal to 1. Given v = [v1, . . . , vN ]∗ ∈ RN ,
diag{v} or diag{v1, . . . , vN} mean a diagonal matrix having
the components of v as diagonal elements. The vector ei ∈
RN denotes the i-th vector of the canonical basis, i.e., ei =
[0, . . . , 0, 1, 0, . . . , 0]∗ with the i-th component equal to 1.
The matrix I ∈ RN×N denotes the N -dimensional identity
while with the symbol Ω we denote the N -dimensional
matrix I − 1

N 11
∗.

II. PROBLEM FORMULATION

A. Mathematical modeling of a clock

We start by proposing a model of each local clock which
is simple enough but which captures the main difficulty of
the problem we want to solve, namely the fact that the time
is an unknown variable, which has to be estimated.

Assume that each unit has a clock, which is an oscillator
capable to produce an event at time t(k), k = 0, 1, 2, . . .
The clock has to use these clicks in order to estimate the
time. The following cumulative function well describes the
time evolution of the tick counter that can be implemented
in the clock

s(t) =
∫ t

−∞
f(σ)dσ,

where

f(t) =
∞∑
k=0

δ(t− t(k)). (II.1)

In this way the counter output is a step shaped function.
In case the clock period is small, in order to simplify the
analysis, it is convenient to approximate step shaped function
s(t) with a continuous one by approximating the delta shaped
function f(t) with a regularized version. One way is to take

f(t) :=
1

t(k + 1)− t(k)
for all t ∈ [t(k), t(k + 1)[

(II.2)
The graphs of the stepwise and of the regularized version of
s(t) is shown in Figure 1. Notice that f(t) can be interpreted
as the oscillator frequency at time t. Typically an estimate f̂
of f(t) is available and it is known that f(t) ∈ [fmin, fmax].
From the counter one can build a time estimate t̂(t) by letting

t̂(t) = t̂(t0) + ∆̂(t)[s(t)− s(t0)] = t̂(t0) + ∆̂(t)
∫ t

t0

f(σ) dσ

(II.3)
where ∆̂(t) is an estimate of the oscillation period 1/f(t).
It is reasonable to initialize ∆̂(t) to 1/f̂ .

Both t̂(t) and ∆̂(t) can be modified when the unit obtains
information allowing it to improve its time and oscillator fre-
quency estimates. Assume that these corrections are applied

t(0) t(1) t(2) t(k) t(k+1) t

s(t)

Fig. 1. The graphs of of s(t) resulting from the impulse shaped version
of f(t) given in (II.1) (continuous line) and from the regularized version
of f(t) given in (II.2) (dashed line).

at time instants Tup(h), where h = 0, 1, . . . , called updating
time instants. In this case we have 1{

t̂(T+
up(h)) = t̂(T−up(h)) + u′(h)

∆̂(T+
up(h)) = ∆̂(T−up(h)) + u′′(h)

where u′ and u′′ denote the control inputs applied to t̂ and
∆̂, respectively. For t ∈

[
T+

up(h), T−up(h+ 1)
]

the estimates
evolve according to{

t̂(t) = t̂(T+
up(h)) + ∆̂(T+

up(h)) (s(t)− s(Tup(h)))
∆̂(t) = ∆̂(T+

up(h))
(II.4)

or according to{
t̂(t) = t̂(T+

up(h)) + ∆̂(T−up(h)) (s(t)− s(Tup(h)))
∆̂(t) = ∆̂(T+

up(h))
(II.5)

Intuitively the updating rule (II.4) should perform better than
the updating rule (II.5). However, in this paper we assume
that the units adopt the updating rule (II.5). We will clarify
later in Remark 5.2 the reasons of this choice.

B. Clock synchronization
Assume now that we have a network composed by N

clocks. For i ∈ {1, . . . , N}, let fi(t) be the evolution
of the oscillator frequency of the clock i. Moreover, for
i ∈ {1, . . . , N}, let xi(t) = [x′i(t) x

′′
i (t)]∗ = [t̂i(t) ∆̂i(t)]

∗

denote the local state of the clock i. The objective is to
synchronize the variables x′i(t), i ∈ {1, . . . , N}, namely, to
find a law which allows the clocks to obtain the same time
estimate.

Assume that the clocks can exchange their local state
according to a graph G = (V, E), where V = {1, . . . , N}
and where (i, j) ∈ E whenever the clock i can send its state
xi to the clock j. Specifically, each clock i, i ∈ {1, . . . , N},
transmits its state xi(t) at some time instants Ttx,i(h), h =
0, 1, . . . , and can use any information it receives from the
neighboring nodes to perform a control at the time instants
Tup,i(h), h = 0, 1, . . . . More precisely

xi(T+
up,i(h)) = xi(T−up,i(h)) + ui(h), (II.6)

1Given the time t, with the symbols t+ and t− we mean, respectively,
the time instant just after t and time instant just before t.
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where ui(h) = [u′i(h) u′′i (h)]∗ is the control action applied
at time Tup,i(h). Moreover for t ∈

[
T+

up,i(h), T−up,i(h+ 1)
]

we assume that the state xi is updated according to (II.5).
For simplicity in this paper we assume the following

properties.
Assumption 2.1: The oscillator frequencies fi are con-

stant, i.e., for i ∈ {1, . . . , N}, fi(t) = f̄i for all t ∈ R>0.
Assumption 2.2: The transmission delays are negligible,

namely, if clock i perform its h-th transmission to clock j,
then clock j receives the information xi(Ttx,i(h)) exactly at
time Ttx,i(h) 2.

From Assumption 2.1 and from (II.3), it follows that (II.5),
for the i-th clock, can be equivalently rewritten as{

x′i(t) = x′i(T
+
up(h)) + x′′i (T−up(h)) f̄i (t− Tup(h))

x′′i (t) = x′′i (T+
up(h)) (II.7)

The objective is to find a control strategy yielding the
clock synchronization, namely such that there exist constants
a ∈ R>0 and b ∈ R such that synchronization errors

ei(t) := x′i(t)− (at+ b), i = {1, . . . , N} (II.8)

converge to zero or remain small.

III. PI CONTROLLER BASED ON ASYMMETRIC GOSSIP
COMMUNICATIONS

To properly describe the control law we propose in this
paper, we first need to introduce the data transmission
and communication models the clocks adopt to exchange
information with each other. Informally, we assume that
the transmission’s time instants are the sample times of N
independent Poisson processes having all the same intensity
and that the nodes communicate with each other through an
asymmetric gossip communication protocol. In more formal
terms, the data transmission and communication models are
described as follows
• for i ∈ {1, . . . , N}, the time instants Ttx,i(h), h =

0, 1, . . . are the samples time of a Poisson process of
intensity λ > 0;

• for i ∈ {1, . . . , N} and for h ∈ N, node i sends, at
time Ttx,i(h), only the information related to the first
component of its state, i.e., x′i(Ttx,i(h));

• for i ∈ {1, . . . , N} and for h ∈ N, the information
x′i(Ttx,i(h)) is sent by node i to only one of its
neighbors, which is randomly selected with probability
1/di within the set Ni.

Now, without loss of generality, assume that node i
transmits, at time Ttx,i(h), the information x′i(Ttx,i(h)) to
node j. Based on the information received, node j instanta-
neously applies to its current state xj(Ttx,i(h)) the following
correction

u =
[
u′

u′′

]
=

1
2

[
1
α

] (
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
2In general, the information xi(Ttx,i(h)) is received by clock j ∈ Ni

at a delayed time Trx,i,j(h) ≥ Ttx,i(h) where Trx,i,j(h) = Ttx,i(h) +
γi,j(h) being γi,j(h) a nonnegative real number representing the deliver
delay between i and j.

where α is a parameter control such that α > 0. From (II.6),
it follows that

x′j(T
+
tx,i(h)) =

1
2
(
x′j(Ttx,i(h)) + x′i(Ttx,i(h))

)
x′′j (T+

tx,i(h)) = x′′j (Ttx,i(h))+ (III.1)

+
α

2
(
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
Observe that, according to the above model, we have that
Ttx,i(h) represents an update time instant for node j, i.e.,
Ttx,i(h) = Tup,j(h′) for some h′ ∈ N.

Remark 3.1: Observe that the control above introduced
can be seen as a PI controller where u′ = x′i(Ttx,i(h)) −
x′j(Ttx,i(h)) and u′′ = α

(
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
rep-

resent, respectively, the proportional and the integral part. It
is worth mentioning that this strategy has been inspired by
the PI consensus controller strategy proposed in [10]. How-
ever, in [10] the synchronization protocol is analyzed in its
synchronous implementation, i.e., assuming that all the nodes
perform the transmitting and updating actions synchronously.
The aim of this paper is to adapt the PI synchronization
algorithm to the more practical scenario where the nodes
are assumed to exchange information through an asymmetric
gossip communication protocol.
Now let {Tup(h), h ∈ N} be the set of all the updating time
instants of the clocks’ network, i.e.,

{Tup(h), h ∈ N} =
N⋃
i=1

{Tup,i(h), h ∈ N}.

Notice that, for any h ∈ N, there exist i, j ∈ {1, . . . , N} and
h′, h′′ ∈ N with h′ ≤ h, h′′ ≤ h, such that

Tup(h) := Tup,j(h′) = Ttx,i(h′′).

Moreover observe that, since the N Poisson processes gen-
erating the transmission’s time instants are independent from
one another, the updating time instants {Tup(h), h ∈ N} can
be seen as the sample times of a Poisson process of intensity
Nλ.

Next we provide a convenient vector-form description of
the evolution of the clocks’ network. To do so, we need some
auxiliary definitions. First, let us introduce

x′ := [x′1, . . . , x
′
N ]∗ ∈ RN , x′′ := [x′′1 , . . . , x

′′
N ]∗ ∈ RN

x = [x′1, . . . , x
′
N , x

′′
1 , . . . , x

′′
N ]∗ ∈ R2N

Second, for i, j ∈ {1, . . . , N} let the matrix Ei→j ∈ RN×N
be defined as

Ei→j := eje
∗
j − eje∗i

and let the matrix D ∈ RN×N be defined as

D = diag{f̄1, . . . , f̄N}.

Finally let δTup(h) := Tup(h+ 1)− Tup(h).
Now, without loss of generality, assume that Tup(h) :=

Tup,j(h′) = Ttx,i(h′′) for some h′, h′′ ∈ N. Then, combin-
ing (II.7) with (III.1), we can write

x(T−up(h+ 1)) =
[
I − 1

2Ei→j δTup(h)D
−α2Ei→j I

]
x(T−up(h))
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To simplify the notation we define

x(h) := x(T−up(h)).

Hence the above system becomes

x(h+ 1) =
[
I − 1

2Ei→j δTup(h)D
−α2Ei→j I

]
x(h). (III.2)

We extensively simulated algorithm in (III.2), for several
communication graphs G and for different values of D, λ
and α. Next we summarize some of the numerical evidences
we extrapolated from the simulations we run:

a) Typically, for α > λ/2, the algorithm does not reach
the synchronization, independently from the values of
f̄i.

b) For α ≤ λ/2 the synchronization is achieved de-
pending on how spread the values {f̄i}

N

i=1 are. More
precisely suppose that, for i ∈ {1, . . . , N}, f̄i ∈
[1 − ε 1 + ε] where 0 ≤ ε < 1. Then the smaller the
value of α is, the greater the value of ε is while still
reaching the synchronization. In particular, if α ≈ λ/2
then the synchronization is attained only if ε << 1,
while if α ≈ 0 then ε can be also very close to 1.

c) When the synchronization is achieved, then
limh→∞ x′′(h) = β1 where β is in general close
to 1

N

∑N
i=1 f̄i. This value β represents the oscillator

frequency of the ”virtual clock” to which all the
clocks synchronize.

Providing a theoretical analysis of the above evidences is
quite challenging in general. In the next section we restrict
to G being the complete graph. In this case we will be
able to provide some theoretical insights on the convergence
properties of algorithm (III.2).

IV. MEAN-SQUARE ANALYSIS

To our aims it is convenient to consider the synchroniza-
tion error y(h) = Ωx′(h) and the new variable z(h) =
ΩDx′′(h). Since for any i, j ∈ {1, . . . , N}, i 6= j, Ei→jΩ =
Ei→j , system (III.2) can be rewritten as[

y(h+ 1)
z(h+ 1)

]
=
[
I − 1

2ΩE(h) δTup(h)
−α2 ΩDE(h) I

] [
y(h)
z(h)

]
(IV.1)

where E(h) = Ei→j if, during the h-th iteration node i and
node j are, respectively, the transmitting and the receiving
nodes. Clearly x′ reaches the asymptotic synchronization if
and only if limh→∞ y(h) = 0. Now observe that, according
to the data transmission and communication model described
in Section (III), system (IV.1) evolves as a random process
such that
• for any h ∈ N, the matrix E(h) is randomly selected

within the set

S = {Ei→j | (i, j) ∈ E}

and P [E(h) = Ei→j ] = 1
N di

;
• the selection of the matrix E(h) is independent from

the selection of E(h′), h′ 6= h;
• {δTup(h)| h ∈ N} are the interarrival times of a Poisson

process of intensity Nλ.

The goal is to perform a mean-square analysis of (IV.1). To
do so, we introduce the matrix

Σ(h) := E
[[
y(h)
z(h)

] [
y∗(h) z∗(h)

]]
=
[
Σyy(h) Σyz(h)
Σ∗yz(h) Σzz(h)

]
,

where

Σyy(h) := E[y(h)y∗(h)],
Σyz(h) := E[y(h)z∗(h)],
Σzz(h) := E[z(h)z∗(h)].

The objective is to study the evolution of

Σ(h+ 1) = E[A(h)Σ(h)A∗(h)] (IV.2)

where

A(h) :=
[
I − 1

2ΩE(h) δTup(h)
−α2 ΩDE(h) I

]
.

In what follows, we perform our analysis by assuming that D
is a small perturbation of the matrix I . Accordingly, we will
design the parameter α only for D = I . From the fact that
the eigenvalues of the expectation operator in (IV.2) depend
continuously on the matrix D, it will follow that this choice
of α yields the stability also for a small enough perturbation
of D. However, we will come back on the robustness of our
algorithm with the respect to different values of oscillator
frequencies in the numerical Section VI.

Assuming that D = I , from (IV.2) we obtain the following
recursive equations3

Σ+
yy = Σyy −

1
2
{

ΩE[Ei→j ]Σyy + ΣyyE[E∗i→j ]Ω
}

+
1
4

ΩE[Ei→jΣyyE∗i→j ]Ω +
1
Nλ

{
Σyz + Σ∗yz

}
− 1

2Nλ
{

ΩE[Ei→j ]Σyz + Σ∗yzE[E∗i→j ]Ω
}

+
2

N2λ2
Σzz

Σ+
yz = −α

2
ΣyyE[E∗i→j ]Ω +

α

4
ΩE[Ei→jΣyyE∗i→j ]Ω + Σyz

− 1
2

ΩE[Ei→j ]Σyz −
α

2Nλ
Σ∗yzE[E∗i→j ]Ω +

1
Nλ

Σzz,

Σ+
zz =

α2

4
ΩE[Ei→jΣyyE∗i→j ]Ω

− α

2
{

ΩE[Ei→j ]Σyz + Σ∗yzE[E∗i→j ]Ω
}

+ Σzz.

where we used the fact that E[δTup(h)] = 1
Nλ and

E[(δTup(h))2] = 2
N2λ2 . The covariance matrix Σ then

updates according to a linear transformation

Σ(h+ 1) = F [Σ(h)] (IV.3)

defined by the recursive equations that we just computed,
and whose initial conditions can be obtained once we state
the following assumption on x′(0), x′′(0).

Assumption 4.1: The initial condition x′(0) is a random
vector such that E[x′(0)] = 0, E[x′(0)x′(0)∗] = σ2

xI . The
vector x′′(0) is such that x′′(0) = 1.

3For the sake of notational simplicity, time dependence has been omitted
here; the notation Σ+

ij stand for Σij(h+ 1).
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It then follows that

Σ(0) =
[
σ2
xΩ 0
0 0

]
(IV.4)

The analysis of the previous recursive equations is a
challenging problem when G is an arbitrary communication
graph. In the next section we provide a detailed theoretical
analysis for the complete graph. In Section VI we consider
also a more realistic family of graphs through numerical
simulations.

A. Complete Graph
Assume that the graph G describing the feasible commu-

nication between nodes is the complete graph. Observe that,
in this case

P[E(h) = Ei→j ] =
1

N(N − 1)

for any (i, j) ∈ E . We have the following technical Lemma.
Lemma 4.2: In the case of complete graph it holds

E[Ei→j ] =
1

N − 1
Ω, and E[Ei→jΩE∗i→j ] =

2
N
I.

Due to limitations of space we refer the reader to [13] for
the proof of the above result and of all the results in the next
section. We can now state the following results.

Proposition 4.3: In the case of complete graph, the set

J =
{

Σ|Σ =
[
a b
b c

]
⊗ Ω

}
is invariant under the transformation in (IV.3).

Proposition 4.4: In the case of a complete graph and
under Assumption 4.1, we have

Σyy(h) = ξyy(h)Ω,
Σyz(h) = ξyz(h)Ω,
Σzz(h) = ξzz(h)Ω,

whereξ+
yy

ξ+
yz

ξ+
zz

 =


2N2−3N−1
2N(N−1)

2N−3
Nλ(N−1)

2
N2λ2

− α
2N(N−1)

2N2λ−3Nλ−α
2Nλ(N−1)

1
Nλ

α2

2N − α
N−1 1


︸ ︷︷ ︸

Φ

ξyyξyz
ξzz



V. ALGORITHM CONVERGENCE

The following theorem characterizes the convergence
properties of the proposed algorithm when the underlying
graph is the complete graph.

Theorem 5.1: Consider the network of clocks described
in Section III with an underlying complete graph. Then the
variance Σ of the synchronization error converges exponen-
tially to zero if and only if

α < ᾱ(N)

where

ᾱ(N) :=
Nλ

N − 1

{√
N4 − 4N3 + 9N2 − 8N + 3

−N2 + 2N − 2
}
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α = λ/4
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Fig. 2. Behavior of the algorithm for the complete graph topology as α
changes: λ/4 (solid line), λ/8 (dotted line) and λ/16 (dash-dot line).

Remark 5.2: Instead of (II.5), we might consider the up-
dating rule in (II.4). The algorithm resulting in this case
satisfies the same properties of (IV.1). In particular, for
the complete graph, it is possible to see that there still
exists a function ᾱ(N), such that ᾱ(N) > λ/2 for all N ,
limN→∞ ᾱ(N) = λ/2 and such that the synchronization is
attained if and only if α < ᾱ. However the analysis in this
case is much more involved; for this reason, in this paper,
we decide to analyze the algorithm adopting (II.5).

VI. SIMULATION RESULTS

In this section we provide some numerical results illustrat-
ing the synchronization algorithm we propose in this paper.
We run our simulations over two different topologies of net-
work, namely, the complete graph and the random geometric
graph. In all the simulations we considered a network of
N = 50 clocks, and we assumed that the transmissions’
time instants were generated by N independent Poisson
processes of the same intensity λ = 0.1. All the random
geometric graphs were connected graphs and were generated
by choosing the N = 50 points uniformly distributed in the
unit square and by connecting with an edge each pair of
points at distance less than 0.15.

We report our results in Figures 2, 3, 4 and 5. In all
the plots we depict the behavior of log ‖y(h)‖ obtained
by averaging over 100 Monte Carlo runs, randomized with
respect to the initial conditions and, as far as the geometric
topology is concerned, also with the respect to the graph.
In particular, for i ∈ {1, . . . , N}, x′(0) has been randomly
chosen within the interval [−1 1] while f̄i has been randomly
chosen within the interval [1 − ε 1 + ε], where 0 ≤ ε ≤ 1
(the values of ε used will be specified in the captions of the
figures). In Figures 2 and 3, we analyzed the behavior of
log ‖y(h)‖ for different values of α while keeping fixed the
value of ε to the value 10−4. One can see that the value
of α heavily influences the speed of convergence to the
synchronization. In particular, small values of α drastically
slower down the algorithm.

In Figures 4 and 5 we analyzed the behavior of log ‖y(h)‖
for different values of ε, while keeping fixed the value of α
to the value of λ/8 and λ/100 for the complete and random
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Fig. 3. Behavior of the algorithm for the random geometric graph topology
as α changes: λ/10 (solid line), λ/10 (dotted line) and λ/1000 (dash-dot
line).
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Fig. 4. Behavior of the algorithm for the complete graph topology as ε
changes: 10−7 (solid line) and 0.1 (dash-dot line).

geometric graph respectively. It is remarkable that, for both
the complete graph and the random geometric graph, the
algorithm asymptotically achieves the synchronization, even
though the drifts f̄i, i ∈ {1, . . . , N}, are significantly spread,
i.e., ε = 0.1. However, as expected, it turns out that the
smaller the value of ε is, the better the performance of the
algorithm are.

VII. CONCLUSIONS

We developed a version of the PI algorithm that relies
on an asymmetric gossip communication scheme to achieve
synchronization of a network of clocks. We provided a
theoretical stability analysis of the protocol, with respect
to the control parameter α, if the underlying graph is the
complete graph. In particular we proved that if the control
parameter is under the value of λ/2, where λ represent the
Poisson processes’ rate, then the algorithm scales with the
number of nodes. This makes the strategy independent of
the network size and easier to implement in a completely
distributed fashion.

Future direction of investigation include different com-
munication graphs and protocols (e.g. multicast communi-

0 1 2 3

x 10
4

10
−20

10
−10

10
0

t

lo
g
||
y
(h

)|
|

 

 

ε = 1e−7

ε = 1e−1

Fig. 5. Behavior of the algorithm for the random geometric graph topology
as ε changes: 10−7 (solid line) and 0.1 (dash-dot line).

cation), robustness stability and performance analysis, and
modeling some of the most common non-idealities like
packet drops, time delivery delays and time-varying speed
of the oscillators.
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