
  

  

Abstract—This paper investigates the problem of state 
estimation for a class of fractional order nonlinear systems with 
uncertainty, using sliding mode technique. In other words, the 
purpose of the problem is to develop a fractional order sliding 
mode observer. Through the fractional order extension of the 
Lyapunov stability criterion, the stability analysis of the error 
system is completed and it is showed that the observer design 
guarantees the convergence of the estimation error. Two 
illustrative examples are provided to approve the theoretical 
results. 
 

I. INTRODUCTION 

HE state estimation of nonlinear systems based on the 
output measurements is a very important issue in many 

engineering applications, since the information about the 
system states are necessary in the design of any controller 
but, in real systems, all the states are seldom available. 
Therefore, the problem of state observers that predicts the 
present system state, in the case of integer order systems, is 
an issue that have been addressed in many papers and many 
important results are available in the recent literature [1-3]. 
High gain observers [4], sliding mode observers [5] and 
Kalman-like observers are some observers that have been 
proposed for integer order nonlinear systems. Among all the 
proposed observers in the literature, sliding mode techniques 
have good robustness against system uncertainties [6]. 

On the other hand, fractional calculus has attracted many 
interests in recent years and numerous physical real world 
phenomena have been modeled effectively with fractional 
order dynamics [7, 8]. Besides, there are a growing number 
of fractional calculus applications in different areas [9, 10]. 
One of these areas is control theory [11, 12]. In recent years, 
many basic issues of control theory such as stability [13, 
14], controllability [15], observability [16] are extended in 
order to deal with more general systems containing non-
integer derivatives. Very recently, control of FO systems has 
become a very important and interesting topic for the system 
control community. In literature, different controllers have 
been proposed and extensions of many different control 
approaches have been used to accommodate fractional order 
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systems [17-20].  
However, the lack of the extension of the existing 

observers for fractional order systems is sensible. In 
literature, there are very limited reports on the estimation 
and compensation of disturbance [21, 22]. Besides, to the 
authors’ best knowledge, there are few works dealing with 
the problem of designing a fractional order observer for 
fractional order systems [23, 24]. In [23], the problem of 
creating the state observer for fractional order linear systems 
is investigated and a design scheme for initialized fractional 
order state estimator is introduced. For fractional order 
nonlinear systems, a simple fractional order observer design 
is proposed in [24]. But, the model uncertainties have not 
been taken into consideration in the proposed approaches. 
So, it is still of considerable importance to seek direct 
systematic approaches for designing observers for fractional 
order systems. 

In this paper, a novel robust fractional order sliding mode 
observer is presented to solve the problem of state 
reconstruction for fractional order nonlinear systems with 
uncertain nonlinearities. It is shown that the proposed 
observer guarantees that the state estimation errors are 
convergent to zero. The fractional order Lyapunov approach 
is exploited to analyze the stability of the estimation error 
system. It ought to be mentioned that the proposed observer 
is very simple and constructive for practical applications. 
Moreover, utilizing fractional calculus, a new stability 
analysis method is given for the error dynamics when the 
fractional order observer is applied. As both the system 
model and the observer have fractional order dynamics, 
using the integer order Lyapunov stability theory leads to a 
more complex observer design and more restrictive 
assumptions, which may not be applicable to real world 
applications. 

The rest of the paper is organized as follows: In Section 2, 
some basic concepts of fractional calculus is described. In 
Section 3, a class of uncertain fractional-order nonlinear 
systems is introduced and its properties are discussed. In 
Section 4, a novel fractional order observer is presented and 
stability analysis of the fractional-order error system when 
the proposed observer is applied is given. In Section 5, the 
observer scheme has been tested via numerical simulations 
and the corresponding results are presented to confirm the 
usefulness and effectiveness of the proposed observer for 
state estimation of fractional-order nonlinear systems with 
model uncertainties and external disturbances. Finally, some 
concluding remarks are drawn in Section 6.  
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II. BASIC DEFINITION AND PRELIMINARIES OF FRACTIONAL 

ORDER CALCULUS 

Fractional order integration and differentiation are the 
generalization of the integer-order ones. Efforts to extend 
the specific definitions of the traditional integer order to the 
more general arbitrary order context led to different 
definitions for fractional derivatives [25]. Two of the most 
commonly used definitions are Riemann-Liouville, and 
Caputo definitions. 

 
Definition 1. [11] The αth-order Riemann-Liouville 

fractional derivative of function ( )f t  with respect to t and 

the terminal value t0 is given by 
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and, the Riemann-Liouville definition of the αth-order 
fractional integration is given by 
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where m is the first integer larger than α,  i.e. 

1m mα− ≤ <  and Γ  is the Gamma function. 
 
Definition 2. [11] The Caputo fractional derivative of 

order α of a continuous function :f R R+ →  is defined as 

follows 
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where m is the first integer larger than α. 

 
Definition 3. [26] The solution of 
 

( ) ( , )qD x t f x t=  (4) 

 
is said to be Mittag-Leffler stable if 
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qx t m x t E t tλ≤ − −  (5) 

 
where t0 is the initial time, (0,1), 0, 0, (0) 0,q b mλ∈ > > =  

( ) 0m x ≥ , and m(x) is locally Lipschitz on with Lipschitz 

constant m0. 
 
In the proof of main results, we need the following 

theorem. 

Theorem 1. [26] Let x=0 be an equilibrium point for the 
non-autonomous fractional-order system (4), where f(t,x) 
satisfies the Lipschitz condition with Lipschitz constant l>0.  

Assume that there exist a Lyapunov candidate V(t,x) 
satisfying   
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where α1, α2, α3, a, b  are positive constants and (0,1)β ∈ . 

Then the equilibrium point of system (4) is Mittag-Leffler 
stable. 

 
Remark 1. [27] Mittag-Leffler Stability implies 

asymptotic stability. 
 

III. SYSTEM DESCRIPTION 

Consider a fractional order nonlinear system 
 

( , ) ( , , )D x Ax H x u Bu y u t

y Cx

α = + + + Ψ
=

 (7) 

 
where (0,1)α ∈  and x, u, y represents the state variables, 

input and output, respectively. A is a constant matrix and B 
is a constant input weighting vector. 

 
Assumption 1. The known nonlinear term H(x,u) is a 

Lipschitz function with respect to x, i.e. 
 

ˆ ˆ( , ) ( , )H x u H x u k x x− ≤ −  (8) 

 
where k is a positive constant.  

 
Assumption 2. The unknown nonlinear term ( , , )y u tΨ  

represents all modeling uncertainties and disturbances 
experienced by the system which satisfies 

 
( , , ) ( , , )y u t y u tρΨ ≤  (9) 

 
where the function ( , , )y u tρ  is known. 

 
Assumption 3. The matrix pair (A,C) is observable.  
It follows from Assumption 3 that there exist a matrix L 

such that A-LC is stable, and thus for any Q>0, the 
Lyapunov equation  

 
( ) ( )TA LC P P A LC Q− + − = −  (10) 

 
has a unique solution P>0. 

 
Remark 2. [15] Consider a fractional order system given 
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by the following linear state space form with finite 
dimension n: 

 

0, (0)
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 (11) 

 
System (11) is observable on 0 1[ , ]t t if and only if 
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has rank n. 
 

IV. SLIDING MODE OBSERVER DESIGN 

In this section, a fractional order sliding mode observer is 
proposed for the uncertain fractional order nonlinear system 
described in the previous part and the stability of the 
estimation error dynamics is discussed utilizing the tool of 
fractional calculus. 

 
Theorem 2. Consider the uncertain fractional-order 

nonlinear system (7) satisfying Assumption 1-3 and 
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where γ  is a positive constant [28]. Then, the sliding mode 

observer with the following design 
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where the function υ  is defined by 
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and with the observer design parameter L such that 
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guarantees that the error equation 

 
ˆe x x= −  (17) 

 

is asymptotically stable, regardless of whichever admissible 
uncertainty affects the system’s model.  

 
Proof. Using Eq. (7) and (14), we have 
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Now, consider a Lyapunov candidate function 2 TV e e= . 
By using (18) and the Leibniz’s rule for fractional 
differentiating [29], the fractional derivative of V is given by 
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From Asuumption 3, it follows that 
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From the know lemma 
2 2

min max
Te e Qe eλ λ≤ ≤ , Eq. 

(20) can be rewritten as 
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Using Eq. (8), (9) and (13), it yields 
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Substituting (15) in (22), it can be easily concluded 
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Consequently, we have 
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2

min( 2 )D V k eα λ≤ − −  (24) 

 
which denotes that the error dynamics asymptotically 
converges to zero according to Theorem 1, if the observer 
parameter L is chosen appropriately. Therefore, it can be 
concluded that the estimated trajectories attain to the 
original system trajectories. This implies that using the 
sliding mode observer (14), one can estimate the original 
system internal variables with a good accuracy. The proof is 
complete. □ 

 

V. SIMULATION RESULTS 

In this section, we will give two illustrative examples to 
show the applicability and efficiency of the proposed 
observer. The systems are selected such that they belong to 
the class of chaotic systems. High sensitivity of the chaotic 
systems to the initial conditions makes a challenge in 
handling them and estimating the state trajectories. 

 

A. Fractional Order Financial System 

The first model introduced in this part describes a 
fractional-order financial system [30] of three nonlinear 
differential equations that exhibits chaotic flow. The system 
has three state variables x, y and z which stands for the 
interest rate, the investment demand, and the price index, 
respectively. The fractional-order model of the system is 
described by 
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in which a is the saving amount, b is the cost per investment, 
and c is the elasticity of demand of commercial markets and 
all three system parameters, a, b, and c, are positive real 
constants. In this paper, it is assumed that α=0.9, a=1, b=0.1, 
and c=1.  

Besides, the parameters’ values used to simulate the 
observer (14) are as follows 
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y u t t y t t

t y yρ ρΨ ≤
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Using the proposed observer (14), we obtained the 

simulation results given in figures 1 and 2. 

 
Fig. 1.  Estimate of fractional order financial system’s state 

evolution with fractional order sliding mode observer (14).  
 

 
Fig. 2.  Estimate error evolution with fractional order sliding 

mode observer (14) when applied to the fractional order financial 
system.  
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Figure 1 shows the time evolution of three system internal 

variables and their estimation with the fractional order 
sliding mode observer (14). Figure 2 illustrates the time 
history of the estimation error. It can be seen from the 
simulations that the observer (14) make the state estimations 
approach the actual states precisely. In other words, even 
though the nonlinear uncertainty term is included in the 
system’s model, the error converges exactly to zero.  
 

B. Fractional Order Lu System 

As the second example for the effectiveness of state 
estimation via fractional order observer (14), the fractional 
order Lu system [31] with the following representation is 
considered: 
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where ( , , ) (35,3, 28)ρ μ υ = .We also assume that the order 

of derivatives in Eq. (27) is α=0.9.  The so called Lu system 
is known as a bridge between Lorenz system and Chen 
system.  

From the above data, the following information can be 
easily inferred 

 

( )
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t y yρ ρΨ ≤
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⎯⎯ ⎯ ⎯ ⎯ ⎯→ = +
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Choosing suitable matrix L, the fractional order sliding 

mode observer (14) can be designed and the state estimation 
can be obtained. 
The plots in figure 3 compare the evolution of the three 
components of the fractional order Lu system state with their 
respective estimates provided by the observer (14) with the 
above settings. Figure 4 reports the evolution of the 
estimation error. The plot clearly shows that the state 
estimation error converges to zero with a fast rate and an 
acceptable performance is achieved using the proposed 
fractional order sliding mode observer. The simulation 
results also show that the observer scheme is robust with 
respect to modeling uncertainties and environmental 
disturbances experienced by the system, i.e. the proposed 
observer clearly cancels the uncertainty and disturbance 
effect in the state estimation. 

 
Fig. 3.  Estimate of fractional order Lu system’s state evolution 

with fractional order sliding mode observer (14).  
 

 
Fig. 4.  Estimate error evolution with fractional order sliding 

mode observer (14) when applied to the fractional order Lu system.  
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VI. CONCLUSION 

In this paper, a novel fractional order sliding mode 
observer is developed to estimate the fractional order system 
state variables. The proposed observer can be applied to a 
class of uncertain fractional order nonlinear systems. 
Analysis of the resulting error system is given by the 
fractional Lyapunov stability theory. It should be noticed 
that the new stability analysis is given using fractional 
calculus, which results in a simple fractional order sliding 
mode observer. It is shown that the observation errors 
obtained from the observer are asymptotically convergent to 
zero. The effectiveness of our proposed estimation technique 
is demonstrated by the numerical simulations. 
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