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Abstract—The problem of mean square stabilization of a
discrete-time linear dynamical system over a Markov time-
varying digital feedback channel is studied. In the scalar case,
it is shown that the system can be stabilized if and only if
a Markov jump linear system describing the evolution of the
estimation error at the decoder is stable —videlicet if and only if
the product of the unstable mode of the system and the spectral
radius of a matrix that depends only on the Markov feedback
rate is less than one. This result generalizes several previous data

rate theorems that appeared in the literature, quantifying the
amount of instability that can be tolerated when the estimated
state is received by the controller over a noise free digital channel.
In the vector case, a necessary condition for stabilizability is
derived and a corresponding scheme is presented, which is tight
in some special cases and which improves upon previous results
on stability over Markov erasure channels.

I. INTRODUCTION

We consider the problem of stabilization of a dynamical

system where the estimated signal is transmitted for control

over a time-varying communication channel, as depicted in

Figure 1. This arises, for example, in pursuit evasion games

where the state of the evader is estimated by distributed

sensors and is communicated over a wireless fading channel

to automatically control the pursuer [23].

The mathematical abstraction is that of a linear, discrete-

time, dynamical system whose state is observed, quantized,

encoded, and sent to a decoder over a noiseless digital link

that supports the transmission of Rk bits at any given time

step k, where Rk evolves according to a Markov chain

representing the current state of the channel. Based on the

decoded message, the control signal is computed and applied

to the system. Both the encoder and the decoder are assumed

to have causal knowledge of the channel state information,

a legitimate assumption for slow wireless fading channels in

which the channel conditions can be learnt with a short training

sequence.

Following this model, Tatikonda and Mitter [26] examined

the special case where the rate process is constant in time and

the system has bounded disturbances. Nair and Evans [18]

studied the case where the disturbances have unbounded

support, maintaining the rate constant. Martin et al. [16] ana-

lyzed the case with time-varying independent and identically

distributed (i.i.d.) rate but bounded system disturbances. The

work in [17] allowed both a time-varying i.i.d. rate process and

unbounded disturbances. Finally, You and Xie [27] considered
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Fig. 1. Feedback loop model. The estimated state is quantized, encoded and
sent to a decoder over a digital channel whose rate process Rk evolves as a
Markov chain.

the case of unbounded disturbances and the time-varying

channel rate taking values 0 or r according to the two-state

Markov process depicted in Figure 2.

Results of these works analytically relate the speed of

the dynamics of the plant to the information rate of the

communication channel. They show that in order to guarantee

stability, the rate must be large enough compared to the

unstable modes of the system, so that it can compensate for

the expansion of the state during the communication process.

These kind of results are known in the literature as data rate

theorems and there is interest in formulating them in the most

general conditions.

In the present work, we consider a generalization that

allows for unbounded system disturbances and models the

time-varying rate of the channel as a homogeneous positive-

recurrent Markov chain that takes values in a finite subset

of the nonnegative integers. This takes into account arbitrary

temporal correlations of the channel variations and includes all

previous models mentioned above, so that our results recover

the ones mentioned in the above papers as special cases.

However, previous analysis methods cannot be applied directly

and our analysis technique follows a different approach.

We derive the necessary and sufficient condition for mean

square stabilization of a scalar system in terms of the stability

of a Markov Jump Linear System (MJLS) [4] whose evolution

depends on both the system’s unstable mode and the Markov

rate process. In the case of a plant with unstable mode

λ > 1, we establish that stabilizing the system is equivalent

to ensuring the stability of the MJLS having state dynamics

λ/2Rk , i.e., zk+1 = λ/2Rkzk, and transition jumps given

by the Markov rate process. Intuitively, this equivalent MJLS

describes the evolution of the estimation error at the decoder,

which at every time step k increases by λ because of the

system dynamics and is reduced by 2Rk because of the
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information sent across the channel. A tight condition for

second-moment stability is then expressed in terms of the

spectral radius of the matrix governing the dynamics of the

second moment of this MJLS.

A similar approach is followed to provide stability condi-

tions for the case of vector systems. Necessary conditions are

derived by proceeding in two steps. First, we assume that

a “genie” helps the controller by stabilizing a subset of the

unstable states. Then, we relate the stability of the reduced

vector system to the one of a scalar MJLS whose evolution

depends on the remaining unstable modes. By considering all

possible subsets of unstable modes, we obtain a family of

conditions that relate the degree of instability of the system to

the parameters governing the rate process. On the other hand,

a sufficient condition for mean-square stability is given using

the control scheme described in [17]. This scheme yields to

optimal performance only in some special cases, as already

remarked in [17], but it can be easily analyzed using our

result for scalar systems. Specifically, the sufficient condition

is given as the intersection of the stability conditions for the

scalar jump linear systems that describe the evolution of the

estimation error for each unstable mode.

We now wish to spend some additional words on the

related literature. Recent surveys on the theory of control with

communication constraints appear in [10] and [19]. Broadly

speaking, authors have followed two distinct approaches. The

information-theoretic approach followed by the present paper

and by [1], [5], [16], [18], [20], [26], [27], [28], aims to derive

a data-rate theorem quantifying how much rate is needed to

construct a stabilizing quantizer/controller pair. The network-

theoretic approach followed by the works [8], [9], [21], [24]

aims to determine the critical packet dropout probability above

which the system cannot be stabilized by any control scheme.

In this context, a packet models a real number, carrying an

unbounded amount of information in its binary expansion of

infinite precision. The work [17] created a bridge between

the two approaches, as it recovers results of the packet loss

model by assuming the rate Rk takes values 0 or r, and by

letting r → ∞. The same bridge also holds for our work that

generalizes [17]. Indeed, when Rk is a Markov chain with

state space {0, r}, we recover the results in [9] and [12] in

the limit as r → ∞.

The theory of MJLS has been previously used to investigate

control problems over communication channels. Seiler and

Sengupta [22] studied the mean-square stabilization of a dy-

namical system with random delays and used tools from MJLS

to derive a linear matrix inequality condition for the existence

of a stabilizing controller. A similar approach is taken in [13]

to identify the most efficient estimation strategy to compensate

for losses when controlling a system over a Markov erasure

channel. Liu et al. [15] used control theoretic techniques

to design capacity achieving codes for the communication

problem over a finite-state Markov channel with feedback, by

studying the second moment stability of a MJLS with output

feedback and perfect knowledge of the Markov state.

The rest of the paper is organized as follows. Section II

provides a description of the problem and introduces the

necessary and sufficient condition for the stability of a MJLS.

In Section III a tight condition for second-moment stability

of scalar systems is stated. Section IV is devoted to the

multi-dimensional case, for which necessary and sufficient

conditions are provided. Section V concludes the paper.

II. PROBLEM FORMULATION

Consider the linear dynamical system

xk+1 = Axk +Buk + vk, yk = Cxk + wk, k ∈ N (1)

where xk ∈ Rd represents the state variable of the system,

uk ∈ Rm the control input, vk ∈ Rd an additive disturbance

independent of the initial condition x0, yk ∈ Rp the sensor

measurement and wk ∈ Rp the measurement noise. It is

assumed that A is uniquely composed by unstable modes, so

the open loop system is unstable. We assume the following:

A0. (A,B) is reachable and (A,C) is observable.

A1. x0, vj and wk are mutually independent for all j, k ∈ N.

A2. ∃ǫ > 0 such that x0, vk and wk have uniformly bounded

(2 + ǫ)th absolute moments for all k ∈ N .

A3. The distribution of the noise is such that e2h(vk)/d > 0 for

all k ∈ N, where h(vk) denotes the differential entropy

of vk.

The state observer is connected to the controller through a

noiseless digital communication link that at each time k allows

transmission without errors of Rk bits, see Fig. 1. The rate

process {Rk}k≥0 is a homogeneous positive-recurrent Markov

chain that takes values in a finite subset of the nonnegative

integers

R = {r1, . . . , rn},

whose evolution through one time step is described by the

transition probabilities

pij = P{Rk+1 = rj |Rk = ri}

for all k ∈ N and i, j ∈ {1, . . . , n}. The rate process is

independent of the other quantities describing the system and

is causally known at the observer and the controller. For every

k ≥ 0, the coder is a function sk = sk(y0, . . . , yk) that maps

all past and present measurements into the set {1, . . . , 2Rk},

the digital link is the identity function on the set {1, . . . , 2Rk},

and the control uk is a function x̂k(s0, . . . , sk) that maps all

past and present symbols sent over the digital link into Rd.

Given this system, the objective is to find conditions on A
and the rate process {Rk} under which it is possible to design

a control scheme, i.e., a sequence of coder/control functions,

such that the closed loop system is mean-square stable

sup
k

E
[

‖xk‖2
]

< ∞, (2)

where the expectation is taken with respect to the random ini-

tial conditions, the additive disturbances, and the rate process

Rk, and ‖ · ‖2 denotes the L2-norm.
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Markov Jump Linear Systems.

Consider the scalar MJLS defined by

zk+1 =
|λ|
2Rk

zk + c, (3)

where zk ∈ R with z0 < ∞, c > 0 is a constant, {Rk}k≥0 is

the Markov rate process described above. Let H be the n×n
matrix with nonnegative real elements

hij =
1

22rj
pji, (4)

for all i, j ∈ {1, . . . , n}. The following lemma states the

necessary and sufficient condition for the mean square stability

of the system (3) in terms of the unstable mode |λ| and the

spectral radius of H . The spectral radius ρ(·) of a matrix is

the maximum among the absolute values of its eigenvalues.

Lemma 1: Necessary and sufficient condition for the mean

square stability of the system (3) is that

|λ|2 <
1

ρ(H)
.

The proof of the above lemma is omitted as the claim is a

special case of [4, Theorem 3.9] and [4, Theorem 3.33].

III. SCALAR SYSTEM

Consider the special case of a scalar system

xk+1 = λxk + uk + vk, yk = xk + wk, ∀k ∈ N. (5)

where |λ| ≥ 1.

Theorem 1: Under assumptions A0-A3, there exists a con-

trol that stabilizes the scalar system (5) in mean square sense

if and only if the MJLS (3) is mean square stable, that is, if

and only if

|λ|2 <
1

ρ(H)
. (6)

Remark 1: In the above condition the unstable mode of the

system and the channel properties are decoupled. This means

that for a given Markov rate process there exists a threshold

above which the system cannot be stabilized by any control.

Application of Theorem 1 yields the following results as

special cases.

a) Constant rate. When the channel supports a constant

rate r, we have that H = 1/22r and thus (6) reduces to the

well known data rate theorem condition

r > log |λ|

derived in [18], [25].

b) Independent rate process. Consider the special case of

an i.i.d. rate process Rk where Rk ∼ R has probability mass

function pi = P{R = ri}, ri ∈ R. In this case, letting p =
(p1, . . . , pn)

T and h = (2−2r1 , . . . , 2−2rn)T,

H =
(

p1, . . . , pn
)T(

2−2r1 , . . . , 2−2rn
)

= phT

.

p

1− p1− q

q

0 r

Fig. 2. A two-state Markov chain modeling a bursty packet erasure channel.

is a rank-one matrix whose only nonzero eigenvalue is hT p.

Therefore, Theorem 1 yields the result in [16], [17],

|λ|2ρ(H) = |λ|2
(

2−2r1 , . . . , 2−2rn
)(

p1, . . . , pn
)T

= E

[ |λ|2
22R

]

< 1.

If we further specialize to the case n = 2, r1 = 0, r2 = r,

and we let r → ∞, then the stability condition p1 > 1/|λ|2
depends only on the erasure rate of the channel, i.e. we recover

the packet loss model result in [8].

c) Two-state Markov process. In the special case illustrated

in Fig. 2 in which n = 2, p12 = q, and p21 = p for some

0 < p, q < 1, we have

H =

(

1
22r1

(1− q) 1
22r2

p
1

22r1
q 1

22r2
(1 − p)

)

(7)

and the condition in Theorem 1 reduces to

|λ|2ρ(H) = |λ|2

2 tr(H) + |λ|2

2

√

tr(H)2 − 4det(H) < 1, (8)

where tr(H) and det(H) denote the trace and determinant of

H , respectively. The special case where r1 = 0 and r2 = r
was previously studied in [27] where, by following a different

approach, the authors proved that necessary and sufficient

condition for stabilization is that

E

[ |λ|2τ
22r

]

< 1. (9)

Here τ denotes the “hitting time” of state r, i.e., the time be-

tween two consecutive visits of that state, and the expectation

is taken with respect to τ . Intuitively, this condition says that

r should be large enough to compensate for the expansion of

the state during the time in which packets are erased and thus

no information can be sent from the observer to the controller.

Condition (9) simplifies to

|λ|2 <

{ 1
tr(H) if det(H) = 0,

tr(H)−
√

tr(H)2−4det(H)

2det(H) otherwise,

where H is given by (7) with r1 = 0 and r2 = r. Observe

that

tr(H)−
√

tr(H)2−4det(H)

2det(H) = 2

tr(H)+
√

tr(H)2−4det(H)
,

so (8) is equivalent to (9) and our result recovers the one

in [27] in the special case where r1 = 0 and r2 = r.

Taking the limit r → ∞, we have that det(H) → 0
and tr(H) → 1− q, and so the above inequalities simplify to

the condition (1 − q)|λ|2 < 1, which means that the stability
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condition is only determined by the recovery rate q, i.e. we

recover the packet loss model result in [9].

A. Necessity

The following lemma shows that the second moment of the

state in (5) is lower bounded by the second moment of a MJLS

that evolves as (3).

Lemma 2: For every k ≥ 0,

E[|xk|2] ≥ 1
2πe E[|zk|

2], (10)

where {zk} is a MJLS with dynamics zk+1 = |λ|/2Rkzk and

initial condition z0 = eh(x0).

The proof is given in the full version of the paper [3] and relies

on standard information theoretic techniques. It follows that

the state cannot be stabilized if this MJLS is second moment

unstable. Hence, the “only if” condition in Theorem 1 follows

directly from Lemma 1.

B. Sufficiency

1) Noiseless systems with bounded initial condition: We

first consider the special case of a fully observed, discrete

time, unstable, scalar system defined by

xk+1 = λxk + uk, k ≥ 1, (11)

with |x0| ≤ M0 for some bounded M0 > 0. In this case, we

have that

|xk| ≤ zk, k ≥ 0, (12)

where zk is a MJLS with dynamics

zk+1 =
|λ|
2Rk

zk, k ≥ 1

and z0 = M0. To see this, consider the following inductive

proof. By construction, |x0| ≤ M0 = z0. Assume that the

claim holds for all times up to k, so |xk| ≤ zk. Suppose

that the uncertainty set [−zk, zk] is quantized using a Rk-

bit uniform quantizer, and that the encoder communicates to

the decoder the interval in which the state lies. Then, the

decoder approximates the state by the centroid x̂k of this

interval and sends to the plant the control input uk = −λx̂k.

By construction |xk − x̂k| ≤ zk/2
Rk , thus

|xk+1| = |λ||xk − x̂k| ≤
|λ|
2Rk

zk = zk+1,

i.e., the claim holds at time k + 1 as well. It follows that xk

is stable if the MJLS zk is second moment stable. Hence, the

“if” condition in Theorem 1 follows from Lemma 1.

By combining (10) and (12) we can see that the second

moment of the state can be upper and lower bounded by two

MJLSs that differ only in their initial conditions, and therefore

share the same stability condition. What emerges from the

analysis in this simple setting is that the MJLS {zk}k≥0 that

determines the stability of the system describes the evolution

of the estimation error at the decoder, which at every time

step k increases by λ, because of the system dynamics, and is

reduced by 2Rk , because this is the best attainable accuracy

of representation sending Rk bits across the channel.

2) Unbounded noise and initial condition: Consider now

the system (5) assuming that conditions A0-A3 hold. The main

challenge in this setting is that the disturbance has unbounded

support, so it is not possible to confine the state dynamics

within a finite interval as in the case of noiseless systems. Con-

sequently, the uniform quantizer used for stabilizing noiseless

systems has to replaced by a dynamic quantizer that follows

a zoom-in zoom-out strategy [2], [14], where the range of

the quantizer is increased (zoom-out phase) when atypically

large disturbances affect the system, and decreased as the state

reduces is size (zoom-in phase). We build a stabilizing control

scheme based on the adaptive quantizer defined in [18].

In the remaining of this section we describe the main ele-

ments of our construction, while we refer the reader to [3] for

a detailed description of the control scheme and its analysis.

We assume that coder and decoder share at each time k an

estimate of the state x̂k that is recursively updated using the

information sent through the channel. Time is divided into

cycles of fixed duration of τ time steps. In each cycle the

coder sends information about the state of the system at the

beginning of the cycle. At the end of each cycle the decoder

updates the estimate of the state and sends a control signal

to the plant. The key step of the analysis is to show that the

dynamics of the mean square estimation error (and thus of

the state) can be bounded by a MJLS, so the stability of this

MJLS implies the stability of the state. Specifically, we prove

that at times τ, 2τ, 3τ, . . . , i.e., at the beginning of each cycle,

the second moment of the estimation error xjτ − x̂jτ satisfies

E[|xjτ − x̂jτ |2] ≤ E[z2jτ ], j ≥ 0,

where zjτ is a process formed recursively as

zjτ = φ
|λ|τ

2R(j−1)τ+···+Rjτ−1
z(j−1)τ + ς, j ≥ 1, (13)

for some bounded initial condition z0, and constants φ > 1
and ς > 0. Notice that equation (13) represents the evolution

at times τ, 2τ, · · · of the MJLS

zk = φ1/τ |λ|zk−1 + c, k ≥ 1.

for some appropriately chosen constant c. Thus, by Lemma 1

a sufficient condition for second moment stability of {zk} is

that

φ2/τρ
(

|λ|2H
)

< 1. (14)

On the other hand, if the condition of Theorem 1 is satisfied,

that is, if |λ|2ρ(H) < 1, then we can choose the duration

of a cycle τ large enough to ensure that (14) holds and,

as a consequence, (13) is stable, the second moment of the

estimation error at the beginning of each cycle is bounded,

and the state remains second-moment bounded.

IV. VECTOR SYSTEM

Consider the system (1), where A ∈ Rd×d is uniquely

composed by unstable modes. Let λ1, . . . , λu ∈ C be the

distinct, non-conjugate eigenvalues of A (if λi, λ
∗
i are complex

conjugate eigenvalues, only one of them is considered). Let
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mi be the algebraic multiplicity of λi, ai = 1 if λi ∈ R and

ai = 2 otherwise. We have
∑u

i=1 aimi = d.

In order to decompose its dynamical modes, we express A
into real Jordan canonical form J [11]. The matrix J ∈ R

d×d

is such that A = T−1JT for some similarity matrix T , and

has the block diagonal structure J = diag(J1, . . . , Ju) where

Ji ∈ Raimi×aimi and detJi = λaimi

i . Let U = {1, . . . , u}
denote the index set of the subsystems corresponding to the

modes λ1, . . . , λu. Consider the recursion

xk+1 = Jxk + TBuk + Tvk, yk = CT−1xk + wk. (15)

As (15) and (1) are related only by the matrix T , we assume

that the system evolves according to (15).

A. Necessity

To find necessary conditions for stability, we make the

optimistic assumption that a “genie” helps the controller by

stabilizing part of the system, so that the information sent

across the channel is only used to stabilize a subset of the

unstable states. Formally, let νi ∈ {0, · · · ,mi} denote the

algebraic dimensionality of the ith unstable mode after the ge-

nie’s intervention, and let V = {ν : νi ∈ {0, · · · ,mi}} ⊂ Nu

denote the space of all possible algebraic dimensionalities. For

each ν ∈ V , let xk(ν) denote the unstable system obtained by

removing from (15) the components that have been stabilized

by the genie. Observe that xk(ν) is real valued and has total

dimension

d(ν) =
∑

i∈U

aiνi. (16)

Next, we find necessary conditions for the second-moment

stability of the reduced system xk(ν). The following lemma

shows that the second moment xk(ν) is lower bounded by the

second moment of a scalar MJLS whose evolution depends on

the unstable modes of xk(ν) and their dimensionalities. The

differential entropy of x0(ν) is denoted by h(x0(ν)).

Lemma 3: For each ν ∈ V , let zk(ν) be the scalar MJLS

defined by

zk+1(ν) =

(
∏

i∈U |λi|aiνi

2Rk

)1/d(ν)

zk(ν),

with z0(ν) = 2
1

d(ν)h(x0(ν))
. Then, for every k ≥ 0,

E[|xk(ν)|2] ≥ E[|zk(ν)|2].

The proof of the above lemma is omitted since it closely

follows the proof of Lemma 2 (cf. [3]). It follows that xk(ν)
cannot be stable if the MJLS zk(ν) is second moment unstable.

Finally, we can derive a set of necessary conditions in terms

of the spectral radius of the matrix describing the dynamics of

the second moment of zk(ν). Let H(ν) be the n × n matrix

with nonnegative real elements

hij(ν) =
1

2
2

d(ν)
rj
pji (17)

for all i, j ∈ {1, . . . , n}. Combining Lemma 1 and Lemma 3

it then follows that

Theorem 2: Under assumptions A0-A3, necessary condi-

tion for the stabilization of the system (15) in the mean square

sense (2) is that, for every ν ∈ V ,

λ(ν)2/d(ν) <
1

ρ(H(ν))
(18)

where λ(ν) =
∏

i∈U |λi|aiνi , d(ν) is as in (16), and H(ν) is

given by (17).

Remark 2: In the special case of a scalar system, we have

that λ(ν) = λ, d(ν) = 1, and H(ν) is equal to (4), thus

the above condition reduces to the necessary condition in

Theorem 1.

Remark 3: Rewriting (18) as

∑

i∈U

aiνi log |λi| < − d(ν)
2 log ρ(H(ν))

it is clear that the subsystem modes and the channel properties

are decoupled and that the Markov rate process poses an upper

bound on the degree of instability of the system.

B. Sufficiency

A sufficient condition for mean-square stability is given

extending the control scheme described in [17] and later

in [27]. However, our scheme is more general than the previous

ones, and it allows to strictly improve upon the sufficient

condition obtained in [27] for the special case of a Markov

erasure channel.

The main challenge in studying vector systems is how to

design an optimal vector quantizer that dynamically adapts

to the time-varying communication rate. The solution adopted

in [17] for the case of an i.i.d. rate process is to quantize

each component of the state using separate scalar quantizers,

so the performance can be easily analyzed using the result

for scalar systems. In this paper, we follow a similar method

of proof and assume that at each time step the bits available

for transmission are distributed among the various unstable

modes of the system. More precisely, we define a bit allocation

function α : R → [0, 1]u as a function having the properties

that
1

aimi
αi(r)r ∈ N, i ∈ U , (19)

and

α1(r) + · · ·+ αu(r) ≤ 1 (20)

for all r ∈ R. The operational meaning of α is as follows.

At every time k, 1
aimi

αi(Rk)Rk bits are used to quantize

each scalar component of the ith unstable state of the system.

Condition (19) enforces that the each subsystem is quantized

using an integer number of bits, while (20) ensures that we do

not use more bits than what is available for transmission. Let

A be the set of all bit allocation functions. From the result on

scalar systems stated in Section III, the ith subsystem is stable
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if the MJLS with dynamics

zk+1 =
|λi|

2
1

aimi
αi(Rk)Rk

zk,

is stable. Paralleling the analysis for scalar system, define

Hl(α) as the n× n real matrix with (i, j)th entry equal to

2
−2

αl(rj)
alml

rjpji. (21)

Then, given a bit allocation function α, a sufficient condition

for second moment stability of the system is that

|λi|2 <
1

ρ(Hi(α))
(22)

for every i ∈ U . A more general sufficient condition can be

given by allowing the bit allocation function to change over

time.

Theorem 3: Under the assumptions A0-A3 above, a suffi-

cient condition for the stabilization of the system (15) in the

mean-square sense is that

|λi|2 <
1

ρ
(

Hi(α1)Hi(α2) · · ·Hi(αm)
)

1
m

for all i ∈ U ,

(23)

for some m ≥ 1 and α1, · · · , αm ∈ A.

The main idea of the proof, given in [3], is to use different

bit allocations functions in a cyclic repeated order via a time-

sharing protocol.

By taking the log on both sides in (23), we can see that (23)

defines an open hypercube in the domain of the unstable

rates for each choice of m and of α1, · · · , αm ∈ A. Then,

Theorem 2 states that it is possible to stabilize all those

systems whose unstable rates lie inside the union of all such

open hypercubes. Observe that the resulting region is not

computable because there is no upper bound on the value of m.

However, the next proposition, which is proved in [3], shows

that the region is convex.

Proposition 1: For every m ≥ 1 and α1, . . . , αm ∈ A,

let C(m,α1, · · · , αm) denote the set of rates satisfying (23).

Then, the closure of
⋃

m≥1

⋃

α1,...,αm∈A

C(m,α1, · · · , αm)

is a convex set.

It follows from the above proposition that the set of rates

satisfying the condition in Theorem 2 can be approximated

by fixing a bound M for m and taking the convex hull of

the union of the hypercubes over all α1, · · · , αm ∈ A and

m ≤ M . In particular, by setting M = 1 we obtain that the

inner bound contains the set of rates inside

conv
⋃

α∈A

C(1, α), (24)

i.e., the convex hull of the union of the rates that can be

stabilized using the same bit allocation function α ∈ A at
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Fig. 3. Inner and outer bounds on the set of stabilizable rates over a Markov
erasure channel.

every instant of time. In general the inclusion is strict, as

choosing M > 1 might yield a strictly larger region, but there

are some special cases where the two sets are equal.

As an application of Theorem 3 and Proposition 1, consider

the following special cases:

a) Independent rate process. In the special case of an i.i.d

rate process, for every m ≥ 1 and bit allocation functions

α1, . . . , αm ∈ A, (23) simplifies to

log |λi| < −
m
∑

j=1

1

2m
logE

[

2−2αj,i(R)R
]

, for all i ∈ U ,

and therefore our condition recovers the sufficient condition

given in [17]. It can be shown that in this case the set of rates

satisfying Theorem 2 is exactly equal to (24).

b) Two-state Markov erasure process. Consider the Markov

rate process illustrated in Fig. 2 in the special case where r1 =
0 and r2 = r. For this problem, a sufficient condition for mean-

square stabilization was previously given in [27, Theorem 3].

Restating their result in our notation, You and Xie proved that

it is possible to stabilize all rates inside (24). We claim that

Theorem 2 above yields a strictly larger inner bound to the

set of stabilizable rates. To see this, consider the special case

where r = 6 and the transition probabilities are p12 = 0.1
and p21 = 0.7. Let the system matrix J have two distinct real

eigenvalues λ1 and λ2 of multiplicity µ1 = 2 and µ2 = 3,

respectively. Figure IV-B plots inner and outer bounds to the

set of stabilizable rates (log |λ1|, log |λ2|). The outer bound

is delimited by the solid thick black line and is obtained by

evaluating the bounds in Theorem 2. For the inner bounds,

observe that in this setting there are 12 possible bit allocation

functions, i.e., |A| = 12, and therefore the inner bound in [27,

Theorem 3] (delimited by the solid thin black line) is obtained

taking the convex hull of 12 hypercubes. On the other hand,
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by evaluating Theorem 3 for m ≤ 8 and every choice of

α1, . . . , αm ∈ A and by taking the convex hull of the union

of the resulting hypercubes, we obtain the region enclosed by

the dashed black line, which strictly includes the inner bound

in [27, Theorem 3].

V. CONCLUDING REMARKS

We studied the problem of mean-square stabilization of a

linear, discrete-time, dynamical system over a time-varying,

Markov digital feedback channel. We formulated a general

version of the data rate theorem that extends previous formu-

lations and provides a deeper understanding of the system’s

dynamics over correlated channels. The result has been ob-

tained exploiting a reduction to MJLS and using the theory

developed in this context. A missing point, that is still open

for future research, is how results are modified in the presence

of decoding errors, beside erasures.
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