
  

 

Abstract— A novel robust feedback linearization scheme is 
proposed in this paper based on a modified robust exact diffe-
rentiator. The states and drift terms in the system are estimated 
simultaneously by the observer using back injection of the con-
trol effort. The estimated drift term is used in the feedback loop 
to compensate the disturbances and observed states are used 
for feedback linearization. Finite time convergence of the com-
plete closed-loop system is proved and thus a form of separa-
tion principle is satisfied, i.e., the controller and observer can 
be separately designed. The design is verified through simula-
tions and by experiments on a DC motor rig. 

I. INTRODUCTION 

T is a long standing aspiration of the control engineer to 
achieve a specified level of closed-loop performance and 
robustness from a system when only outputs are available 

and the system contains significant uncertainties. The popu-
larity of PID control (Ogata, 2009; Franklin et al, 2010) is 
due to its simplicity and facility to tune its parameters with-
out any detailed knowledge of the plant. However it is not a 
robust scheme. In nonlinear systems, feedback linearization 
(Isidori, 1995; Slotine and Li, 1991) can provide desired 
closed-loop performance levels, but it requires all parame-
ters of the system to be well known; and again it is not ro-
bust. Sliding Mode Control (Utkin, 1992; Edwards and 
Spurgeon, 1998) can provide the desired performance and 
robustness, but the associated chattering effects resulting 
from the use of traditional discontinuous terms in the control 
law are an obstacle to its implementation - especially for 
mechanical systems. 

The practical implementation of sliding mode controllers 
usually assumes knowledge of all system states. Generally 
states observers (Kalman, 1960; Luenberger, 1964; Utkin, 
1999; Khalil, 2002; Davila Fridman and Levant, 2005) are 
used to estimate the states of the system. Results based on 
output information alone are less plentiful: Notable excep-
tions are output feedback dynamic sliding mode methods 
(Lu and Spurgeon, 1999), the universal SISO output-
feedback controller (Levant, 2002), output feedback sliding 
mode controllers for linear uncertain systems (Edwards, 
Spurgeon and Hebden, 2003) and dynamic output feedback 
sliding mode control with mismatched uncertainty (Yan, 
Spurgeon, and Edwards, 2005). 
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A different approach to address the same problem is to esti-
mate the disturbance or drift terms which constitute the 
combined effects of model uncertainties, unknown parame-
ters, the influence of internal dynamics, etc; and cancel them 
via feedback action (Radke and Gao, 2006). For this ap-
proach the model is transformed into the Generalized Con-
trollable Canonical Form (GCCF) (Isidori, 1995; Slotine and 
Li, 1991) and the state vector and drift terms are estimated 
via a High Gain Observer (HGO) (Khalil, 2002) or a “mod-
ified” robust exact differentiator (Levant, 1998 and Levant, 
2003). On the basis of this information, a feedback lineariza-
tion control (Isidori, 1995; Slotine and Li, 1991) is used to 
convert the system into an equivalent linear system. Exam-
ples based on HGO schemes can be seen in (Esfandiari and 
Khalil, 1992; Khalil, 1999; Freidovich and Khalil, 2006) and 
case studies with robust exact differentiator can be reviewed 
in (Massey and Shtessel, 2005; Hall and Shtessel, 2006; 
Besnard, Shtessel, and Landrum, 2007; Shtessel, Shkolnikov 
and Levant, 2007; Iqbal, Edwards and Bhatti, 2010; Iqbal, 
Edwards and Bhatti, 2011). 

Robust feedback linearization has also been successfully 
demonstrated by various authors. In (Esfandiari and Khalil, 
1992), output feedback using a High Gain Observer (HGO) 
was proposed which robustly estimates an appropriate num-
ber of derivatives of the output. An output feedback control-
ler for nonlinear systems has been suggested in (Bartolini et 
al, 2002) that estimates the derivatives of the outputs with 
the help of the robust exact differentiator (Levant, 1998). 
These derivatives are then further used in the creation of a 
sliding surface for a second order sliding mode controller. 
Robust feedback linearization based on a nominal model has 
also been recently presented by (Freidovich and Khalil, 
2006). In the design of (Freidovich and Khalil, 2006) the 
extended HGO is used to estimate the unmeasured deriva-
tives of the output “plus” one. This extra derivative facili-
tates estimation of the uncertainties in the system. In (Benal-
legue, Mokhtari and Fridman, 2008), robust feedback linea-
rization was also undertaken by using a higher order sliding 
mode observer (Davila, Fridman and Levant, 2005). Howev-
er in the work of (Benallegue, Mokhtari and Fridman, 2008) 
the states and external disturbance effects were estimated 
based on a nominal model of the plant. 

In this paper the authors propose a technique for feedback 
linearization on the basis of a modified robust exact differen-
tiator (Levant 1998; Levant 2003). This observer can esti-
mates the states as well as the drift terms based only on the 
available output of the system, and without detail knowledge 
of the mathematical model of the system. The estimated drift 
term is used in the feedback loop to compensate the distur-
bances of the system. The observed states are used to design 
any robust or state-space controller. The overall closed loop 

Robust Feedback Linearization using Higher Order  
Sliding Mode Observer 

S. Iqbal 1, C. Edwards 2, A. I. Bhatti 3  

I 

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7968



  

structure arising from using the proposed control law can be 
depicted as shown in Figure 1.1.  

The underlying methodology is similar to the work of (Frei-
dovich and Khalil, 2006) but in this paper a HOSM observer 
rather than a HGO is employed to estimate the required de-
rivatives and uncertainties. The main idea here is, first trans-
form the tacking error dynamics of the system into the Gene-
ralized Controllable Canonical Form (GCCF) (Isidori, 1995; 
Slotine and Li, 1991), and then to use a modified robust 
exact differentiator to estimate the states as well as the 
combined effect of the drift terms. The controller will then 
nullify the effects of the drift terms and impose its own 
closed loop dynamics based on a simple linear term. The 
states and the required estimates are all obtained in finite 
time. Consequently provided the open-loop plant does not 
have a finite escape time, a form of separation principle 
holds and the controller and observer can be designed inde-
pendently. 

 

Figure 1.1:  The Proposed Controller-Observer Structure 

The idea of estimating drift terms to cancel them via the 
feedback control law is from (Shtessel, Shkolnikov and Le-
vant, 2007). In the work of (Shtessel, Shkolnikov and Le-
vant, 2007) only relative degree one structures are consi-
dered. In (Iqbal, Edwards and Bhatti, 2010), the authors ex-
tended this idea to relative degree two systems. In the cur-
rent paper the authors have further pursued this idea for 
more general relative degree n systems. One key benefit of 
this scheme over robust control (sliding mode or higher or-
der sliding mode) approaches is that it does not require con-
servative upper bounds on the nonlinear terms and thus does 
not result in aggressive control action.  

The remainder of the paper is structured as follows: in Sec-
tion II the problem is formulated for the proposed robust 
feedback linearization. Section III deals with the structure of 
the robust exact observer and finite time stability of the es-
timates is proved. A case study involving a DC motor to 
validate the proposed technique through simulation is consi-
dered in Section IV. Experimental results arising from the 
implementation of these ideas on a DC motor rig are ana-
lyzed in Section V. Conclusions are drawn in Section VI.  

II. THE PROBLEM FORMULATION 

Consider a Single Input Single Output (SISO) dynamical 
system with relative degree n in Generalized Controllable 
Canonical Form (GCCF) (Isidori, 1995; Slotine and Li, 
1991).  

 
        

,                                 
                         (2.1) 

where      is the state vector,  .  is a smooth vector 
field on ,      is the control input and       is the input 
constant of the system. 

The system can also be written in the form 

, , ∆               
                                        (2.2) 

where  is the nominal value of the input gain of the sys-
tem, ∆  is uncertainty in the input channel and 
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If all the states are available and the function .  is precise-
ly known in (2.2), then a feedback linearization control law 
for the system is given by           

 , , ∆                                             (2.3) 

where      is a fixed design gain. Using this control law 
in (2.2) yields linear closed loop dynamics 

                                                         (2.4) 

The gain matrix  can be designed using any modern or 
classical state-space technique e.g. pole placement, LQR or 
LMI techniques etc, so that  is Hurwitz and the states 

 meet the desired performance objectives of the closed loop 
system.  

However, in reality, in most engineering systems only the 
output of the system is available and the function .  is 
unknown (or at best not known perfectly). As a result the 
ideal control law in (2.3) is not realizable. Instead, if the 
control law 

                                                     (2.5) 

is employed where and  are estimates of , , ∆  and 
 with the property that , , ∆  and  in 

finite time, the desired performance indicated in (2.4) can be 
obtained in finite time.  

Assumption 1: It is assumed that in control law (2.5)  0  

The following sections propose an observer structure to 
generate the exact estimates of  and  in (2.5), which con-
verge to the true values in finite time. 

III. ROBUST STATE-DISTURBANCE OBSERVER 

Since only the output of the system (2.2) is available, the 
control law (2.3) is not realistic. Also the closed loop dy-
namics (2.4) will be sensitive to  , , ∆ . The overall 
closed system therefore requires a good estimate of the states 
and the drift signals to cancel out its effects.  

Assume the control  is Lebesgue-measurable and the 
drift function  , , ∆  is unknown but differentiable 
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with | , , ∆  | , where 0 is the Lipshitz constant.  
Then the modified ‘exact observer’ structure (Levant, 1998, 
2003; Shtessel, Shkolnikov and Levant, 2007) can be intro-
duced as part of the closed loop to compensate for the unde-
sired disturbances, and to estimate precisely the unmeasured 
state in finite time. The approach of (Freidovich and Khalil, 
2006) is similar in terms of methodology, but is based on the 
use of a HGO to obtain the estimates. 

The proposed observer structure can be written as follows 

 
⁄ ⁄

   

       

 
⁄ ⁄

 

, 

2
1 2⁄ 1 2⁄

 

              (3.1) 

The parameters  can be chosen recursively as suggested in 
(Levant, 2003). Note: the observer in (3.1) has a slightly 
different structure to the one in (Shtessel, Shkolnikov and 
Levant, 2007; Iqbal, Edwards and Bhatti, 2010) because a 
relative degree n system is considered in (2.2).  

Theorem 1: Suppose the parameters of the observer 
, , … ,  are properly chosen and the output of the 

system  and the input signal u  are bounded and Le-
besgue-measurable. Then in the absence of noise the follow-
ing equalities are established in finite time: ,       
1, … ,  and  , , ∆   
Proof: Define 

 
        

 

, , ∆                                                (3.2) 

From system (2.2) and the observer described in (3.1),  

 
        

 

 

By using these definitions, the observer in (3.1) can be writ-
ten as 

⁄ | | ⁄    
⁄ | | ⁄    

        
1 2⁄ | | ⁄  

    ,                 (3.3) 

The structure in (3.3) above is similar to the exact differen-
tiator from (Levant 1998; Levant 2003). For ease of imple-
mentation, the equations can be written in such a way that 
the derivatives on the right hand side of each equation are 

excluded (Levant, 2003; Shtessel, Shkolnikov and Levant, 
2007). The resulting differential inclusion can be understood 
in the Flippov sense (Flippov, 1988) and it is easy to see that 
the inclusion in (3.3) is invariant with respect to the dilation 

 and           0, 0, … ,  

and therefore the system is homogenous: furthermore its 
homogeneity degree is equal to –1. Therefore 0 in fi-
nite time and the following exact equalities are obtained (in 
finite time): 

0   
        

0   

0  

0 , , ∆ 0 

         , , ∆  

This proves the theorem. 

Theorem 1 assumes the inputs and outputs of the system in 
(2.2) are noise free. The next theorem explores the impact of 
noise on the estimates  . 

Theorem 2: Suppose the input signal u is bounded and Le-
besgue-measurable, and the output noise is bounded and 
satisfies  then, the following inequalities can 
be established in finite time for some positive constants .  

 
⁄  

        

, , ∆ ⁄                                                (3.4) 

where the noise     ,  and   ⁄ , ⁄  

Proof: Again using the definitions in (3.2), the observer in 
(3.1) can be rewritten as (3.3). The structure in (3.3) is simi-
lar to the robust exact differentiator (Levant 1998; Levant 
2003). If noise is present i.e.  0, the output ,  
and the input   ⁄ , ⁄ , then the bounds 
in (3.4) can be obtained using arguments similar to (Levant, 
2003). The system (3.3) is homogenous and its homogeneity 
degree is equal to –1 with respect to the transformation:  

:  , , ,   ,        0, 0, . . ,  

The rest of the proof is similar to (Levant, 2003). This 
proves the theorem. 

Theorem 1 and 2 demonstrate the finite time convergence of 
the observer given in (3.1). In the next theorem, the stability 
analysis for the complete closed-loop system is given. 

Theorem 3: Assume that the drift term , , ∆  in (2.2) is 
a smooth vector field on  , and moreover,  and  are 
exactly estimated. Then the closed loop system (2.2) with con-
trol law in (2.5) and the observer in (3.1) is stable.  

Proof: When exact measurements of  and  are available 
from using the observer (3.1), the term  will exactly cancel 
the drift term , , ∆  and the dynamics in (2.4) will be 
established in finite time. Designing K by using any modern 
or classical state-space methods ensures that      is 
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Hurwitz and the closed loop system associated with (2.2) is 
stable.  

As shown in Theorem 1, the observer in (3.1) can easily be 
transformed into structure (3.3) by using the definitions 
(3.2). The resulting system is homogenous and its homo-
geneity degree is equal to –1 by using following dilation:  

 and              0, 1, . . , 1 

Here the observer (3.1) is finite time stable and the control 
law (2.5) is bounded and convergent. Utilizing the separa-
tion principle, the overall closed loop system is finite time 
stable. This proves the theorem. 

The remainder of the paper considers initially a simulation 
of the use of the proposed control law on a mathematical 
model of a DC motor, followed by implementation results 
on a laboratory rig. 

IV. SIMULATIONS STUDIES 

In this section, the proposed control scheme is demonstrated 
on an industrial benchmark DC motor (Utkin et al, 1999) 
with the following dynamics 

 

                                                                 (4.1)  

In system (4.1),  is the input terminal voltage, whilst  and 
 are the states of the system and represent shaft speed and 

armature current respectively. The motor load torque is de-
fined as  . All the parameters of the DC motor and 
their nominal values are listed in Table 1. 

Name Symbol Values/Units 

Inertia of the Motor Rotor and Load  0.001 Kgm2 

Armature Resistance  0.5 Ω 

Armature Inductance  1.0 mH 

Back-EMF Constant  0.001 V/rad 

Torque Constant  0.008 Nm/A 

Coefficient of Viscous Friction  0.01 Nm s /rad 

Table 1: The DC Motor Parameters 

Let  be the reference shaft speed, and  be the 
tracking error. Define  and  , then the error dy-
namical system using equation (4.1) can be represented as 

 
,                                                             (4.2) 

where the function ,   is 

0
 (4.3) 

Note the drift term depends upon the reference speed and 
load torque. The constants in equation (4.3) above are de-
fined as   0⁄ , 0⁄  and 

0⁄ . To ensure differentiability of , , a low-pass 
pre-filter for the step reference signal is introduced. 

A pole placement technique is chosen for the choice of the 
feedback gain K. In this paper the two poles are placed at -3 

and -3. The controller parameters to achieve this are 9 
and  6. Thus the proposed controller is given by  

                                            (4.4) 

where  is  the estimate of the drift term (4.3) and  is the 
estimate of the state .  

The proposed observer structure for the system is as follows:  

 
⁄ | | ⁄    

 

  ⁄ | | ⁄    

                                                  (4.5) 

where  2.1, 4.2 and  8.4. 

Figure 4.1 shows the simulation results of the proposed 
speed controller for the DC motor. The first subplot demon-
strates the speed response and the second subplot displays 
the control effort. As illustrated, the speed tracks the refer-
ence signal very effectively. Moreover the control input does 
not exhibit any chattering effects.   

 
Figure 4.1:  The Speed Response of DC Motor 

Figure 4.2 shows the tracking of the drift term by the pro-
posed observer. As shown in the figure, the observer precise-
ly tracks the drift signal after a certain (finite) time. 

 
Figure 4.2:  The Actual and Observed Drift Term  

Figure 4.3 shows a comparison between the actual and ob-
served state. It is clear from the figure that the observed state 
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follows the actual state component  accurately. 

 
Figure 4.3:  The Actual and Observed State .  

V. EXPERIMENTAL RESULTS 

For stringent performance and robustness analysis of the 
proposed controller, an academic benchmark DC-motor 
(MS150) manufactured by Feedback Instrumentation has 
been used. Figure 5.1 shows the experimental setup. 

 

Figure 5.1: The DC Motor and dSPACE Setup 

The input of the motor (in Volts) is known, and the angular 
speed output (in radians per second) can be measured 
through a taco-generator. An aluminium disk is mounted on 
the motor shaft to increase the inertia of the motor. The disk 
rotates between the two poles of a magnet, to reproduce the 
effect of a frictional load. The key parameters of the DC-
servomotor are given in Table 2 as listed by manufacturer. 

Name Symbol Values/Units 

Inertia of the Motor Rotor and Load  4.42x 10-4Kgm2 

Armature Resistance  3.2 Ω 

Armature Inductance  8.6 x 10-3 H 

Back-EMF Constant  60 x 10-3 V/rad 

Torque Constant  17 x 10-3 Nm/A 

Table 2: The MS-150 DC Motor Parameters 

A dSPACE card (DS1102) was chosen as the interface for 
the real time implementation of the controller from the Mat-
lab/Simulink environment. The card provides four channels 

of 16-bit A/D conversion and two channels of 16-bit D/A 
data conversion. The setup uses a TMS320C31 floating-
point DSP processor with 128 K x 32-bit RAM.  

For the experiment, the observer structure from (4.5) and the 
control law from (4.4) have been used. The values of   , 
,  and   need to be tuned. Initial guesses for these pa-

rameters were the values used in the simulations. The con-
troller gains    and  , are the ones described earlier to 
place the linear closed-loop poles at -3 and -3. 

Figure 5.2 shows the experimental results of the proposed 
control scheme for a square reference signal. The two plots 
in the figure show the speed response of the DC motor and 
its corresponding control effort. As illustrated below, the 
measured speed tracks the reference precisely. 

 
Figure 5.2:  The Experimental Result of Square Wave.  

The performance of the proposed controller has also been 
examined with respect to a continuous sinusoidal waveform 
as a reference speed. The sinusoidal speed response of the 
DC motor with the sine reference signal is shown in Figure 
5.3. The plots demonstrate that the trajectory is followed 
accurately with low control effort. 

 
Figure 5.3:  The Experimental Result of Sine Signal. 

To verify the robustness of the proposed controller, the fric-
tion load, with the help of a magnetic brake, has been in-
creased by 300% during the experiment. Figure 5.4 
demonstrates the speed response of the DC motor subject to 
this perturbation.  
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Figure 5.4: The Response with Perturbation  

In the experiment the brake has been applied at 16.5 seconds 
and released after 31 seconds. The graph shows that these 
changes do not affect the performance of the controller sig-
nificantly.  

The experimental results from the proposed scheme for 
feedback linearization based on the modified robust exact 
estimator, validate the theory given in the earlier sections. 
The suggested strategy also offers an opportunity for achiev-
ing desired and robust performance, without the detailed 
knowledge of the plant system model. 

VI. CONCLUSION 

In the paper a new technique for robust feedback lineariza-
tion based only on output information is proposed. A robust 
exact observer is used to estimate the states and drift terms 
of the system. Finite time stability of the observer is proved, 
so that the separation principle can be applied. Simulation 
and experimental results verify the robustness and perfor-
mance levels of the proposed technique.  
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