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Abstract— This paper is motivated by a desire to develop
analytic formulations for adversarial interactions between an
attacker and a defensive team. We analyze a multi-stage,
two-player game in which one player represents an attacker
with superior dynamic characteristics and the other player
represents a team consisting of a mobile, high-value target and
N protective agents. At the start of the game, the attacker
must decide whether to engage the target or retreat. The
defending team must then decide whether to maximize or
minimize the attacker’s cost in response. These decisions are
referred to as the players’ intent. After each side has selected
an intent, a differential pursuit-evasion game is played in which
the value represents the integral cost to the attacker. Within
the differential game, the terminal conditions and the players’
optimal control strategies are dictated by the previous intent
selections. We obtain the optimal intent strategies in terms of
the differential game values and relevant bonus and penalty
values. We solve the differential games by developing the
optimality conditions for the equilibrium control strategies. We
show that for certain conditions, the defenders should cooperate
with the attacker so that retreat becomes the most attractive
option; thereby, fulfilling the defensive goal of protecting the
high-value target.

I. INTRODUCTION

The protection of vulnerable, high-value assets has been
a challenge throughout history, but it is especially relevant
in contemporary insurgent based conflicts. Using guerrilla
tactics, insurgents often take advantage of easy opportunities
to attack soft targets. These targets may be fixed (stockpiles,
factories, and population centers) or mobile (transports,
supply convoys, and VIPs). In either case, it is necessary
to deploy defensive assets in an attempt to neutralize an
attack if it occurs, or better yet, make the prospect of further
engagement so unappealing that the attackers stand down
and retreat. When the primary goal of a defensive team is to
protect the high-value target, an early disengagement by the
attacker is attractive because it will allow the defenders to
reduce the risk of injury or damage to the high-value target
as well as conserve resources for any future confrontations.
Therefore, defenders must not only leave retreat as an option
to the attacking forces, but should make retreat as attractive
of an option as possible through cooperation when retreat
occurs.

Game theory provides a powerful framework to analyze
the conflicting interests of the defensive team’s desire to pre-
vent attack and the attackers’ desire to successfully engage
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the target with minimum cost. In this paper, we examine a
two-player game in which one player represents an attacker,
and the other player represents a defensive team that consists
of a mobile, high-value target and N protective agents. It is
assumed that the protective agents generate a cost to the
attacker, which can represent casualties incurred, resources
used, or the risk of injury or damage. It is also assumed
that the attacker possesses superior performance capabilities,
allowing it to successfully capture the target from all initial
conditions. At the start of the game, the attacker must choose
between engagement or retreat. After the attacker has made
its decision, the defending team must then decide whether
to maximize or minimize the attacker’s cost in response.
We will refer to the attacking and defending teams’ choices
as their intent. We also discuss the scenario in which the
attacker and defensive team are allowed to update their
intents throughout the game.

Once each side has selected an intent, a differential
pursuit-evasion game is played in which the terminal condi-
tions and the players’ optimal control strategies are dictated
by the intent selections. There are four variants of the
differential game based on the four possible combinations
of intent. If the attacker chooses to engage, the differential
game terminates when the distance between the attacker and
high-value target is equal to a predefined capture distance.
If retreat is chosen by the attacker, the differential game
terminates when all distances between the attacker and the
protective agents are greater than or equal to a defined retreat
distance. In all variants of the differential game, the value
of the differential game represents the integral cost to the
attacker.

It is assumed that both the attacker and defensive team
can calculate the resulting integral cost of the four possible
differential games from any initial condition. Additionally,
when the attacker chooses to engage the defensive team, the
attacker is awarded a bonus and the defensive team assessed a
penalty. Using the values from the possible differential games
in conjunction with the given capture bonus and penalty
values, the optimal intent strategies for each player can be
calculated. For certain conditions, it will be shown that it is
optimal for the defensive team to cooperate with the attacker
in retreat so that retreat becomes a more attractive option than
engagement from the attackers perspective.

Differential game theory has been used for several decades
to analyze pursuit-evasion games since its formal introduc-
tion by Isaacs [1]. In particular, there have been several
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papers that address combat using realistic dynamics [2], [3].
In these papers, pursuit and capture is the only condition in
which the game terminates. There has been some work that
allows the players to switch roles between evader or pursuer
depending on the initial conditions [4]. In [5], a game is
analyzed in which a team of UAVs attempts to postpone an
attack by an aerial jammer on the communication channel.
There has also been work done on defensive strategies within
sequential games. In [6], the author examines a sequential
game in which the defensive player must distribute limited
resources in preparation for the opposing player’s attack. It
is assumed that the attacker will always engage, but higher-
value assets can be protected through the proper allocation
of resources. In the context of this literature, the primary
distinguishing feature of our work is that the attacker is
capable of successful capture from every initial position, but
through the selection of appropriate control strategies, the
defensive team makes retreat a more attractive strategy for
the attacker.

Previously, we have analyzed a single-pursuer, two-evader
game using simple motion [7] where the pursuer was allowed
to capture either evader and the cost function was dependent
on both evader distances and the angle between them. By
restricting capture to a specific evader that generates no cost
and introducing a cost function with particular convergence
properties, we introduce the possibility of retreat in this
paper. This results in not only pursuit behaviors but also
retreat behaviors. Also, this paper differs from our previous
paper in that we develop the optimality conditions in terms
of an arbitrary number, N , of protective agents.

We develop the optimal intent selection strategies of the
attacker and defensive team in Section II. Next, we describe
the coordinate systems, system kinematics, and cost function
of the resulting pursuit-evasion games. Following that, we
define the optimality conditions of the game of attack and
game of retreat in Sections IV and Section V respectively.
Using the intent selection strategies and optimality condi-
tions, we examine the resulting behaviors for three illustrative
examples in Section VI. We discuss the effects of allowing
the attacker and defending team to update their intents
throughout the game in Section VII. Concluding remarks
and future directions are presented in Section VIII.

II. INTENT SELECTION STRATEGIES

At the start of the game, each player must determine
their intent for the entirety of the game. The attacker and
defensive team’s intent are represented by the discrete control
variables IA and ID respectively. Once the players have made
their selection, they cannot switch. The relaxation of this
restriction is discussed later in Section VII. The selection
of intent is performed in a two-step sequence. The attacker
must first determine whether to engage, IA = iE , or retreat,
IA = iR. After the attacker makes its selection, it is assumed
the defensive team knows the attacker’s intent and must then
choose to maximize, ID = i+, or minimize, ID = i−, the
attacker’s cost in response.

Engage

Retreat

Maximize

Maximize

Minimize

Minimize

(Bc-CE+,-Bd)

(Bc-CE-,-Bd)

(-CR+,0)

(-CR-,0)

Attacker

Defenders

Defenders

Fig. 1. Intent Selection Tree

Once the attacker and defensive team have made their
intent selection, their respective utility functions, UA(IA, ID)
and UD(IA, ID), are evaluated. The utility value pairs,
(UA, UD), are listed next to the right most nodes in Fig.
1. These values are based on the integral attacker cost in
the four possible differential games as well as any relevant
bonuses or penalties. The goal of each player is to maximize
their respective utilities. The values CE+ and CE− represent
the cost of engagement to the attacker when the defensive
team maximizes or minimizes the cost respectively. The
values CR+ and CR− represent the cost of retreat to the
attacker when the defensive team maximize or minimize
the cost respectively. It is assumed that CE+ ≥ CE− and
CR+ ≥ CR−. These assumptions will be verified, through
the analysis of the differential games in the following sec-
tions. The quantity Bc ≥ 0 represents the bonus the attacker
receives for capturing the target, and Bd ≥ 0 represents
the penalty the defensive team receives when the target is
captured. It is assumed that all of these values are known
or can be calculated by both the attacker and the defensive
team.

In this paper, the defending team’s sole goal is to prevent
capture of the high-value target in this one-shot game. We
do not consider any future confrontations with the attacker.
Since it is assumed that the attacker possesses superior
capabilities that guarantee successful capture if engagement
is selected, the defending team’s only option is to make
engagement so costly that it outweighs any bonus the attacker
gains from capture. The defensive team gains no direct utility
from inflicting cost on the attacker. Instead, the attacker’s
cost is used as a tool by the defensive team to discourage
engagement. Also, it is assumed that any difference in
resource usage by the defensive team between maximizing
and minimizing attacker cost is negligible compared to the
penalty incurred when the high-value target is captured.
Therefore, defensive team utility is dependent only on the
attacker’s intent.

The following theorem delineates the optimal intent strate-
gies for both the attacker and the defensive team as a function
of the defined utilities.

Theorem 1: Let CE+ represent the cost of engagement to
the attacker when the defensive team maximizes cost. Let
CR− represent the cost of retreat when the defensive team
minimizes cost, and Bc denote the terminal bonus awarded
to the attacker for engagement. The optimal intent strategies
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for the attacker, IA, and defensive team, ID, are

I∗P =

{
iE if Bc − CE+ ≥ −CR−

iR if Bc − CE+ < −CR−
(1)

I∗D =

{
i+ if IA = iE
i− if IA = iR

. (2)

Proof: In order to calculate the optimal intent strategies,
we begin by representing the intent selection process as
the directed tree in Fig. 1. The upper branch of this tree
represents the scenario in which the attacker has elected
to engage and forms a subgame for the defensive team.
In this subgame, choosing either to maximize or minimize
yields the same utility for the defending team because the
attacker is guaranteed successful capture due to its superior
capabilities. Similarly, in the lower subgame formed when
the attacker chooses to retreat, maximizing or minimizing
yields equal utilities for the defending team. However, the
defensive team does prefer that the attacker retreats since
0 ≥ −Bd. In order to encourage retreat, the defensive team
must minimize attacker utility if engaged and maximize
attacker utility in retreat, which is achieved by (2). The
attacker assumes that the defending team poses a credible
threat and will implement (2). The maximum attacker utility
is then achieved by (1).

From Theorem 1, it can be seen that the values CE+, CR−,
and Bc play a critical role in the calculation of the optimal
player intent. The value CE+ represents the value of the
differential game of engagement when the defensive team
is maximizing attacker cost, and the value CR− represents
the differential game of retreat when the defensive team is
minimizing attacker cost. For the remainder of the paper, we
will formulate and define the optimality conditions of these
differential games. The resulting solutions to these games
will then be used to calculate the optimal intent strategies
for given initial conditions and values of Bc.

III. SYSTEM AND DIFFERENTIAL GAME FORMULATION

In the system under consideration, the attacker is rep-
resented by a pursuer, and the defending team consists of
the mobile, high-value target and N protective agents. The
attacker, mobile target, and N protective agents will be
denoted by P , E0, and Ei for i = 1, . . . , N , respectively.
For the sake of brevity, we will often omit the clarification
that i = 1, . . . , N . Therefore whenever a variable uses the
subscript i, it is assumed that i = 1, . . . , N unless explicitly
stated otherwise.

A. Agent Kinematics

Each agent moves with simple motion and constant speed
on an obstacle free plane. We will use two coordinate sys-
tems. The first coordinate system represents the location of
each agent using a pair of Cartesian coordinates. The attacker
location is represented by the pair (xp, yp) while (x0, y0) and
(xi, yi) represent the positions of the mobile target and pro-
tective agents. The state of the system is completely defined
by the (2N+4)-tuple xG = (xp, yp, x0, y0, . . . , xN , yN ). We

y
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Ei(xi,yi)

E0(x0,y0)

P(xp,yp)

y

x
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^

(a) Global Coordinates

ai
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E0

P(x,y)

β
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x

(b) Relative Coordinates

Fig. 2. Coordinate Systems

will refer to this representation as the Global Coordinates,
and the resulting dynamic equations are as follows:

ẋp=vp cos ψ̂ ẋ0=v0 cos θ̂0 ẋi=vi cos θ̂i (3)

ẏp=vp sin ψ̂ ẏ0=v0 sin θ̂0 ẏi=vi sin θ̂i (4)

The constants vp, v0, and vi , represent the speeds of the
attacker, the target, and the protective agents. The angles
ψ̂, θ̂0, and θ̂i are the direction of travel and represent the
control variables for each of their respective agents. All
control variables are measured counterclockwise from the x-
axis. This coordinate system is depicted graphically in Fig.
2a.

In order to simplify later optimality calculations, we will
now introduce the Reduced Coordinates. In the reduced
coordinate system, the state is completely defined by the
(2N+4)-tuple xR = (d0, d1, . . . , dN , α1, . . . , αN , β, x, y).
The distance between the P and E0 will be represented by d0.
Similarly, the component di represents the distance between
P and Ei. The angle measured counterclockwise from

−−→
PE0

to
−−→
PEi is represented by the state component αi. The angle

β is measured counterclockwise from the x-axis to
−−→
PE0 and

represents the global rotation of the relative configuration
of the agents. In order to simplify the dynamic equations,
the heading angles ψ and θ0 are measured counterclockwise
from

−−→
PE0, and the angles θi are measured counterclockwise

from
−−→
PEi. The remaining state components, x and y, are

the global x and y position of the attacker and represent
the global translational position of the (N+2)-agent system.
This coordinate system is depicted in Fig. 2b. The dynamic
equations for the relative coordinate system are as follows:

ḋ0=v0 cos θ0 − vp cosψ (5)

ḋi=vi cos θi − vp cos (ψ − αi) (6)
α̇i=

vi
di

sin θi − v0
d0

sin θ0

+vp

(
1
d0

sinψ − 1
di

sin (ψ − αi)
)

(7)

β̇= 1
d0

(sin θ0 − vp sinψ) (8)
ẋ=vp cos (ψ + β) (9)
ẏ=vp sin (ψ + β) (10)

where di > 0 and vi < vp for i = 0, 1, . . . , N . These
inequalities require that all distances remain positive and
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that P is faster than E0 and Ei. The global and relative
representations are related using the following:

xp = x yp = y (11)
xp = d0 cos (β) + x yp = d0 sin (β) + y (12)
xi = di cos (β + αi) + x yi = di sin (β + αi) + y(13)

The control variables are related as follows:

θ̂0 = θ0 + β θ̂i = θi + β + αi ψ̂ = ψ + β (14)

B. Instantaneous Cost Function
We now define the instantaneous cost to the attacker which

is integrated over the total course of the game. This function
can represent the risk of injury or the amount of damage that
the attacker incurs at any instant in time. For this paper, we
have chosen the following cost function:

CT = c0 +

N∑
i=1

ci
1
d2i

(15)

where ci and c0 are weighting parameters. As any di → 0,
the instantaneous cost explodes to infinity. As a result, it is
impossible for the attacker to pass directly through any of
the protective agents with finite cost. Therefore, the attacker
must go around the protective agents in order to capture the
target. Since it is assumed that the attacker has a speed
advantage over all agents within the defensive team, the
attacker will then guarantee that di(t) > 0 in order to
maintain finite cost. Also, it will be shown in a later section
that the game of retreat to an infinite distance has finite cost
when c0 = 0. Although this particular cost function was
chosen because of its simplicity, more realistic and complex
functions could be used in order to model particular attacker-
defender interactions. If these more realistic cost functions
possess characteristics similar to those just described, the
resulting optimal agent behaviors will be similar to those
developed in this paper.

C. Differential Game Formulation
Depending on the players’ intent selection, various dif-

ferential games can be formulated. In every game, the
instantaneous cost function, (15), is integrated until the game
terminates and represents the total cost to the attacker. The
terminal conditions will be discussed in Section IV and
Section V. The cost to the attacker for a game starting at
t0 and terminating at tf is then defined as

V :=

∫ tf

t0

CT dt. (16)

If the intent of the defending team is to maximize the
attacker’s cost, we can use the value function (16) to pose a
two-player, zero-sum differential game. Although there are
N + 1 agents within the defending team, they all share
the same goal of maximizing the attacker’s cost and can
therefore be represented as one player with multiple control
variables. If the intent of the defending team is to cooperate
with the attacker and minimize cost, the differential game
now reduces to a standard optimization problem with N +2
control variables.

IV. OPTIMALITY CONDITIONS OF THE DIFFERENTIAL
GAME OF ENGAGEMENT WITH DEFENDER

MAXIMIZATION

In this section, we develop the solution for the game
of engagement. In this game, the defensive team strives to
maximize the attacker’s integral cost over the course of the
game. Simultaneously, the attacker attempts to minimize this
cost. The game terminates when the distance between the
attacker and high-value target, d0, is equal to the capture
distance of dc.

A. Hamiltonian and Adjoint Equations

We begin calculating the solution to the game of attack
by constructing the Hamiltonian:

H := λT f(x, ψ,θ) + CT = 0 (17)

=

N∑
i=0

λdi ḋi +

N∑
i=1

λαi α̇i + λβ β̇ + λxẋ+ λy ẏ + CT .

The vector λ := (λd0 , . . . , λdN , λα1
, . . . , λαN , λβ , λx, λy)

T

contains the adjoint variables conjugate to the kinematic
equations. The adjoint equations are found by taking the
partial derivative of the Hamiltonian with respect to each
of the state components:

λ̇d0 = − ∂H
∂d0

= −
N∑
i=1

λα
∂α̇i
∂d0
− λβ ∂β̇

∂d0
(18)

λ̇di = − ∂H
∂di

= −λαi ∂α̇i∂di
− ∂CT

∂di
(19)

λ̇αi = − ∂H
∂αi

= −λdi ∂ḋi∂αi
− λαi ∂α̇i∂αi

(20)

λ̇β = − ∂H
∂α = −λx ∂ẋp∂β − λy

∂ẏp
∂β (21)

λ̇x = − ∂H
∂xP

= 0 (22)

λ̇y = − ∂H
∂yP

= 0. (23)

B. Boundary Conditions

Using the definition of capture, d0 = dc, the boundary
conditions, ΨA, for the game of attack are

ΨA := (d0(tf )− dc,
d0(t0)− d00, . . . , dN (t0)− dN0,

α1(t0)− α10, . . . , αN (t0)− αN0,

β(t0)− β0, x(t0)− x0, y(t0)− y0)
T (24)

where di0, αi0, β0, x0, and y0 are the initial values of
their respective state components at the start of the game.
We can then construct a function of terminal conditions,
ΦA = νTΨA where ν is a vector of Lagrange multipliers
corresponding to the boundary conditions.

The terminal values of the adjoint variables are found by
taking the partial derivative of ΦA with respect to each of
the state components:

λd0(tf ) =
∂Φ

∂d0(tf ) = ν1 λβ(tf ) =
∂Φ

∂β(tf ) = 0 (25)

λdi(tf ) =
∂Φ

∂di(tf ) = 0 λx(tf ) =
∂Φ

∂x(tf ) = 0 (26)

λαi(tf ) =
∂Φ

∂αi(tf ) = 0 λy(tf ) =
∂Φ

∂y(tf ) = 0 (27)
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Combining the terminal values of λβ(tf ), λx(tf ), and
λy(tf ) with their respective adjoint equations (21)-(23), it
can be seen that

λβ(t) = 0 λx(t) = 0 λy(t) = 0. (28)

Using (28), we can simplify the Hamiltonian (17):

H =

N∑
i=0

λdi ḋi +

N∑
i=1

λαi α̇i + CT = 0. (29)

Using the reduced Hamiltonian (29), the optimal control
strategies for each of the agents are calculated in the fol-
lowing theorem. Given (a, b) ∈ R2, the notation ∠(a, b) is
defined to be the unique value θ ∈ (0, π] such that

cos θ = a√
a2+b2

sin θ = b√
a2+b2

. (30)

Theorem 2: Suppose that the value function and the value
function gradient are continuous. The control strategies for
the agents are then given by

Optimal Maximizing Control Strategy of E0 and Ei:

θ∗0 = ∠(λd0 ,−
N∑
i=1

λαi
di

) θ∗i = ∠(λdi ,
λαi
di

) (31)

Optimal Minimizing Control Strategy of P:

ψ∗ = ∠(−b1,−b2) (32)

where

b1 =

N∑
i=1

(
λαi
di

sinαi − λdi cosαi)− λ0 (33)

b2 =

N∑
i=1

(
λαi
d0
− λdi sinαi +

λαi
di

cosαi) (34)

Proof: Along the optimal trajectories, the Hamiltonian
must satisfy the following conditions [8]:

H (x,λ,θ, ψ∗) ≤ H (x,λ,θ∗, ψ∗) ≤ H (x,λ,θ∗, ψ) (35)

H (x,λ,θ∗, ψ∗) = 0 (36)

where θ = (θ0, . . . , θN ). From (35) we find that

ψ∗ = argmin
ψ
H θ∗0 , . . . , θ

∗
N = arg max

θ0,...,θN
H (37)

Because the control variables are unbounded, the optimal
strategies of (37) must satisfy the following conditions:

∂H
∂ψ = 0 ∂H

∂θi
= 0 for i = 0, . . . , N (38)

∂2H
∂ψ2 ≥ 0 ∂2H

∂θ2i
≤ 0 for i = 0, . . . , N. (39)

The first set of conditions, (38), gaurantees the Hamiltonian
is stationary with respect to the control variables. The second
set of equations (39), represent the necessary second-order
conditions so that θ maximizes and ψ minimizes. Solving
(38) and (39), in terms of θ0, . . . , θN , and ψ provide our
optimal control strategies (31) and (32).

V. OPTIMALITY CONDITIONS OF THE DIFFERENTIAL
GAME OF RETREAT WITH DEFENDER MINIMIZATION

In this game, the attacker is attempting to reach the retreat
condition with minimal integral cost. Definition of the retreat
condition requires the use of the minimum of N quantities.
In principle, it is possible to do this, but since the minimum
function is not differentiable everywhere, there is a large
number of singular surfaces which make analysis of the
game complicated. Instead, we define the retreat condition,
dm(tf )− dr = 0, using the p-norm with respect to the 1

di
’s

corresponding to the protective agents where

dm :=
(∑

1
dki

)− 1
k and k > 1. (40)

Since we restrict di > 0, the function is differentiable
everywhere within the admissible state space. As k → ∞,
dm converges to

(
max ( 1

d1
, . . . , 1

dN
)
)−1

= min (d1, . . . , dN )
[9]. The attacker and defending team are both minimizing the
cost function. Therefore, the differential game reduces to a
standard optimal control problem with respect to all agents.

A. Hamiltonian and Adjoint Equations

Since the dynamics and cost function are the same as
in the game of attack, the game of retreat has an identical
Hamiltonian (17) and resulting adjoint equations (18)-(23).

B. Boundary Conditions

Using the condition of retreat, dm(tf ) − dr = 0, we can
form the boundary conditions, ΨR, for the game of retreat:

ΨR := (dm(tf )− dr,
d0(t0)− d00, . . . , dN (t0)− dN0,

α1(t0)− α10, . . . , αN (t0)− αN0,

β(t0)− β0, x(t0)− x0, y(t0)− y0)
T (41)

where d00, . . . , dN0, α1, . . . , αN β0, x0, and y0 are defined
the same as in the previous section. After constructing a
function of boundary conditions, ΦR := νTΨR, and taking
partials with respect to each of the state components, we
have the terminal constraints on the adjoint variables:

λx(tf ) =
∂Φ

∂x(tf ) = 0 λβ(tf ) =
∂Φ

∂β(tf ) = 0 (42)

λαi(tf ) =
∂Φ

∂α(tf ) = 0 λy(tf ) =
∂Φ

∂y(tf ) = 0 (43)

λd0(tf ) =
∂Φ

∂d0(tf ) = 0 (44)

λdi(tf ) =
∂Φ

∂di(tf ) = ν1
1

di(tf )k+1

(∑
1

di(tf )k

)−1−k
k (45)

As in the game of attack, the adjoint variables correspond-
ing to the β, x, and y components of the state are always zero
(28) and we can further reduce the Hamiltonian as before.
Using the reduced Hamiltonian, (29), we can now calculate
the optimal control strategies for each of the agents in terms
of the state and adjoint variables.

Theorem 3: Suppose that the value function and the value
function gradient are continuous. The control strategies for
the agents are then given by
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Optimal Minimizing Control Strategy of E0 and Ei:

θ∗0 = ∠(−λd0 ,
N∑
i=1

λαi
di

) θ∗i = ∠(−λdi ,−
λαi
di

) (46)

Optimal Minimizing Control Strategy of P:

ψ∗ = ∠(−b1,−b2) (47)

where the terms b1 and b2 are defined the same as in Theorem
2.

The proof is omitted due to space constraints. It follows
the same approach as Theorem 2.

VI. ILLUSTRATIVE EXAMPLES

In this section, we will examine three specific cases. We
will look at the optimal trajectories of the differential games
of attack and retreat and the conditions for the resulting
optimal intent strategies based on the games’ values.

A. Numerical Analysis of Game of Engagement

In most cases, finding an analytic solution to the optimal
trajectories for the differential subgames is not practical due
to the nonlinear and coupled nature of the state and adjoint
equations. In order to numerically generate the optimal tra-
jectories that result from the previously developed optimality
conditions, we first substitute the optimal control strategies
into the kinematic equations (5)-(10) and the adjoint equa-
tions (18)-(23). This results in a system of 4N + 6 ordinary
differential equations in addition to the integral cost function.
These equations can be numerically integrated backwards in
time from any permissible point on the terminal surface for a
defined timespan or until the trajectory crosses a singular or
dispersal surface, which will be discussed in a later section.

In the game of engagement, we can completely define the
terminal conditions. After substituting the optimal control
strategies (31)-(32) into the Hamiltonian (17) and evaluating
at the point of capture, we can solve directly for λd0(tf ) =
CT (tf )
vp−1 . It can also be seen that the protective agents’ terminal

control angles are undefined at the moment of capture due
to the fact that λdi(tf ) = λαi(tf ) = 0. Conceptually this
makes sense because at the moment of capture, the protective
agents cannot prevent the capture of E0. Also, any increase
in the cost function CT will not be integrated because the
game will terminate. It is still necessary to define a terminal
control for Ei in order to take the first step of integration.
For this value, we will use the limit of Ei’s control as t
approaches tf . Taking the limit of tan θi yields

lim
t→tf

tan θ∗i (t) = lim
t→tf

λαi
diλdi

= lim
t→tf

λ̇αi
ḋiλdi+diλ̇di

= 0
2 . (48)

The combination of (48) and the fact that λ̇di(tf ) =
2

di(tf )3 > 0 implies that limt→tf θ
∗
i (tf ) = π. We now

have a complete set of terminal values for the state, the
adjoint variables, and control, which allow us to initialize the
numerical integration. We can then use shooting techniques
to solve for particular initial conditions.

B. Numerical and Analytic Solution to the Game of Retreat

For an arbitrary number of defending agents N > 1 and
a finite retreat distance dr, the same numerical shooting
methods as in the previous section are used to solve for
the optimal agent trajectories. In this case, the minimizing
defender control (46) is substituted into the dynamic and
adjoint equations in order to generated the system of 4N +
6 differential equations. Additionally, the terminal retreat
surface and corresponding adjoint conditions are used for
the terminal constraints.

When N = 1, an analytic solution to the game of retreat
can be calculated. First, the terminal condition of retreat
reduces to d1(tf ) − dr = 0. After substituting the terminal
constraints of the state and adjoint variables into the Hamil-
tonian, we can solve directly for λd1(tf ) = −

c0+c1d
2
r

d2r(1+vp) ≤ 0.
Using the terminal values of the adjoint variables and state,
we can also find the terminal control of E1 and the attacker:
θ1(tf ) = 0 and ψ(tf ) = α + π. Substituting the terminal
control into the adjoint derivatives evaluated at the terminal
surfaces, d2(tf ) = dr, yields λ̇1(tf ) = 0 , λ̇2(tf ) = 2c0

d3r
,

and λ̇α(tf ) = 0. After integrating backwards in time, we
find that

λ1(t) = 0 λ2(t) < 0 λα(t) = 0. (49)

For the entire game of retreat, the optimal control of E0 is
undefined because E0 has no effect on the cost function or
when the game terminates. Therefore any control strategy
is trivially optimal, and we will assume that θ0(t) = 0.
From (49) we find the optimal control strategies of E1 and P:
cos θ∗1(t) = 0 and cosψ∗(t) = α+ π. We can then calculate
the optimal trajectory of the d1-component from any initial
condition:

d∗1(t) = d10 + (1 + vp)t. (50)

Assuming that the initial distance, d10, is less than the
retreat distance, the terminal time is calculated using (50):
tf = dr−d10

1+vp
. We can then calculate the value of the game:

V (d10) =

∫ tf

t0

c1
d1(t)2

+ c0 =

∫ tf

0

c1
(d10 + (1 + vp)t)2

+ c0

= tf

(
c0 +

c1
d10(d10 + (1 + vp)tf )

)
. (51)

For the special case were c0 = 0 and dr →∞, the value of
the game of infinite retreat converges:

lim
dr→∞

V (d10|c0 = 0) = lim
tf→∞

tfc1
d10(d10 + (1 + vp)tf )

=
c1

d10(1 + vp)
. (52)

C. Singular Surfaces

Within this game, there are certain configurations in which
either the attacker or defending agents’ optimal control is
not uniquely defined. This is typically a result of symmetry
within the dynamics. For example, when the attacker, target,
and defending agents are in a collinear arrangement, the
attacker can choose to rotate clockwise or counterclockwise.
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Fig. 4. Attack Trajectories Scenario 2

Either option is optimal. These regions of the state-space
are referred to as singular surfaces and are characterized
by discontinuities of the value function or its gradient. In
this paper, we only consider initial conditions on singular
surfaces known as dispersal surfaces in which the state
instantaneously moves off and the optimal control is then
uniquely defined. Full analysis of singular surfaces is beyond
the scope of this paper and is topic of our current research.

D. Optimal Intent Selection

After the differential games are solved for particular initial
conditions, we may use the values of game of engagement
and game of retreat for CE+ and CR− in (1) and (2). Also,
we know that the assumptions CE+ ≥ CE− and CR+ ≥
CR− hold from Theorem 2 and Theorem 3. Therefore, for
any given Bc, we can calculate the optimal intent strategies
using Theorem 1. For a fixed value of Bc, the state space
can be divided into two regions. In one region, the capture
bonus, Bc, offsets the cost of attack, CE+, and the attacker
elects to engage despite the maximization of cost by the
defensive team. In the remainder of the state space, the
maximized cost of attack negates any benefit that the capture
bonus grants when compared to the minimized cost of retreat.
Therefore, the attacker elects to retreat and the defensive
team cooperates to minimize the cost.
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Fig. 5. Attack Trajectories Scenario 3

E. Illustrative Cases

In the following scenarios, we set the system parameters
dc = 1, v0 = vi = 1, c0 = 0, and ci = 1. A shooting
method is used in order to solve for the initial value of the
adjoint variables in the game of engagement as well as the
game of finite retreat for N > 1. In Fig. 3 through Fig. 5
the trajectory of the attacker is the solid line, the trajectory
of the mobile target is the dashed line, and the trajectory
of the protective agent is the dotted line. The plots of the
retreat trajectories are omitted due to space constraints. All
trajectories are plotted in the global coordinates using (11)-
(13) to convert from the relative coordinate system.

In Scenario 1, there is one defending agent, N = 1, and
the retreat distance is taken to infinity. The attacker has a
moderate speed advantage, vp = 2. This scenario is shown in
Fig. 3. Since the attacker starts far away from the protective
agent, very little cost is generated early in the pursuit. The
protective agent forces the attacker to come close mid-pursuit
in order to outflank it and capture the target. The resulting
cost of engagement and retreat for this scenario are 1.4 and
.02 respectively. Engagement is optimal when Bc ≥ 1.38.

In Scenarios 2 and 3, there are four defending agents,
N = 4, and the retreat distance is taken to be dr = 20. As
can be seen in Figure 4 and Figure 5, the multiple protective
agents converge on the pursuer from multiple directions
forcing the attacker to weave through them. In Scenario 2, the
costs of engagement and retreat are 10.4 and 1.7 respectively.
Engagement is optimal when Bc ≥ 8.7. In Scenario 3, the
costs of engagement and retreat are 16.2 and 2.3 respectively.
Engagement is optimal when Bc ≥ 13.9.

VII. DISCUSSION ON THE RELAXATION OF INTENT
SELECTION RESTRICTION

The problem solved in the previous sections was based on
the assumption that the attacking agent and the defending
team select an intent were not permitted to alter their intent
selections for the remainder of the game. A natural extension
would be to examine the case in which this restriction is
relaxed, and the agents are allowed to re-evaluate or switch
their respective intents throughout the game.
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In this section, we propose a retaliatory defensive team
control strategy dependent on attacker behavior and allow
the attacker to switch intent at any time during the game. Let
VE(x0) and VR(x0) represent the values of the differential
games of engagement and retreat as described in Section IV
and V with initial state x0. Let ψ∗E and ψ∗R be the optimal
attacker control for the game of engagement and retreat,
and let θ∗+ and θ∗− be the optimal defender control for the
games of engagement and retreat respectively. Additionally,
let x∗R(t,x0) and x∗E(t,x0) represent the state of the system
at time t during these games when started at initial state
x0 at time t0. Assume that the value functions, optimal
control strategies, and optimal trajectories are known or can
be calculated by the attacker and the defending team.

We now allow the attacker to change its intent at any
moment during the game. We will assume that the defensive
team is capable of detecting a deviation by the attacker from
its optimal retreat strategy. A deviation by the attacker from
its optimal retreat trajectory is represented in the variable ρ.
A value of ρ = 0 indicates that the attacker has maintained its
optimal retreat strategy while a value of ρ = 1 indicates that
the attacker has deviated from its optimal retreat strategy. At
initial state x0 if VE(x0)+Bc ≤ VR(x0), the variable ρ is set
to zero with the intuitive meaning that the attacker is going
to employ its optimal strategy of retreat. If this inequality
does not hold, the variable ρ is set to one. If at anytime, the
attacker deviates from its optimal retreat strategy, the variable
ρ is set to one for the remainder of the game. The idea is that
a deviation of the attacker from its optimal retreat strategy
indicates that cooperation is inappropriate and the defending
team should maximize attacker’s cost.

Using the variable ρ, we propose the following
retaliatory control strategy by the defensive team:
Retaliatory Defensive Control Law

θ =

{
θ∗− ρ = 0
θ∗+ ρ = 1

. (53)

In the following theorems, we will assume that the de-
fensive team implements this retaliatory control law and the
attacking agent is free to re-evaluate at any moment. The
proofs of Theorem 4 and Theorem 5 are omitted due to space
constraints.

Theorem 4: If

VE(x
∗
R(t,x0)) +Bc < VR(x

∗
R(t,x0)) ∀t ∈ [t0, tf ], (54)

the optimal attacker strategy is to retreat for the entire game.
This strategy will produce the optimal retreat trajectories
x∗R(t,x0) and game value VR(x0).

Theorem 5: Let x0 be the initial state. If

VE(x0) +Bc > VR(x0), (55)

the attackers optimal strategy is to engage for the entire
game. This strategy will produce the optimal engagement
trajectories x∗E(t,x0) and game value VE(x0) +Bc.

Using VE(x) and VR(x), we can divide the admissible
regions of state space into two regions: XE := {x :
VE(x) + Bc > VR(x)} and XR := {x : VE(x) + Bc <

VR(x)}. From Theorem 5, we know that if the defending
team implements the modified retaliatory control law, any
game that starts in XE will follow the original optimal
trajectory x∗E(t,x0). Thus, our original solution technique
is sufficient. Similarly, if we find that a generated optimal
retreat trajectory x∗R(t,x0) stays within XR, we can con-
clude that VE(x∗R(t,x0)) < VR(x

∗
R(t,x0)) ∀t ∈ [t0, tf ].

Therefore, we know from Theorem 4 that the original retreat
trajectory x∗R(t) will still be optimal and our restricted
solution technique remains valid.

This leaves the situation in which the initial state starts
in XR, but the optimal retreat trajectory x∗R(t,x0) passes
into XE . The moment the state moves into this region, the
attacker could switch its control strategy to ψ∗E since the
value of engagement would now be greater than the value of
retreat. Therefore, neither our original retreat nor engagement
solutions would be valid. A modified solution technique for
this region is the focus of our current work.

VIII. CONCLUSION

In this paper, we have posed a multi-stage game in which
an attacker must choose whether or not to engage a target
protected by defensive assets. The defending team must
determine whether to maximize or minimize the attacker’s
cost. The developed optimal intent strategies are a function
of the resulting values of the differential game of engagement
and the cooperative game of retreat. We then examined
various optimal trajectories and values generated by different
combinations of attacker and defensive team intent. Using the
solutions from the case of restricted intent selection, we in-
troduced a retaliatory control strategy for the defensive team,
which in combination with the optimal attacker strategy
yields equivalent solutions for particular initial conditions.
In the future, we would like to incorporate more realistic
dynamics and an arbitrary number of attacking agents.
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