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Abstract— Experiment design for system identification has
seen significant progress in the last decade. One contribution
has been to derive convex relaxations of such problems. Con-
sider that only a scalar function of the system parameters is of
interest. A standard step in such a case is to first linearize this
function with respect to the estimated parameters. The objective
of this contribution is twofold: firstly, to examine if there are
cases where the linearized approximation is inadequate, and
secondly to explore how to improve upon this approximation.
By way of examples we show that it is not difficult to construct
examples where linearization is insufficient. Furthermore, we
introduce the use of higher order approximations and we for-
mally show that this leads to polynomial optimization problems
under Gaussian assumptions. We propose the use of cylindrical
algebraic decomposition as a method to obtain exact solutions
for this type of problems. Numerical examples are provided.

I. INTRODUCTION

As data quality limits the modeling accuracy, experiment

design is a critical issue in data-driven modeling. Poor data

can never be remedied by post-processing. The topic cuts

across a wide range of disciplines, including machine learn-

ing, statistics, statistical learning and system identification.

The overview [1] provides an outline of the general issues

and state-of-the art. In regards to the system identification

area, numerous contributions have advanced the area signif-

icantly during the last decade [2, 3, 4, 5]. In particular we

point to contributions regarding robust and adaptive designs

[6, 7] and the introduction of the concept of least-costly

design [8].

A key issue has been to find problem formulations that

allow the corresponding optimization problems to be re-cast

as convex programs. There exists a quite general framework

for linear models [9] and there are methods emerging for

nonlinear models [10, 11, 12].

Spearheaded by [13] already 25 years ago, there has been

a clear shift from general purpose design criteria such as D-

optimal and E-optimal design to applications oriented design

criteria [4]; there are for example methods emerging for as

diverse applications as deconvolution [14], fusion reactors

[15], magnetic resonance imaging, and MPC [16].

In most applications, the objective function is nonlinear in

the estimated parameters. In order to obtain a convex prob-

lem it is common to linearize this function. The rationale for

this is that accurate models are required in high performance
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applications and therefore parameter deviations will have to

be small, this in turn implying that errors in the objective

function are well captured by a first order Taylor approx-

imation. However, the error in such an approximation can

be significant for low to medium performance applications.

One such illustrative example is given in [17] where pole

and zero estimates are considered. One possibility to handle

this problem is to a posteriori re-scale the experimental

effort so that the design objective is reached. However,

this leads to a suboptimal solution. Our contribution is to

extend the Taylor approximation to higher orders. This leads

to polynomial optimization problems, or polynomial matrix

inequality problems. There exist several approaches to handle

such optimization problems. One line of research is based

on sum-of-squares relaxations [18] which can be shown to

converge [19]. In this contribution, we will follow another

path and use cylindrical algebraic decomposition (CAD)

[20]. This technique provides exact solution for constrained

polynomial optimization problems. In the control literature,

CAD has been applied to MPC [21], but it does not seem to

have been used in an experiment design context.

The outline of the paper is as follows. In Section II we

outline a prototype experimental problem. It is deliberately

kept simple so as to not confound the key issues. It can easily

be extended to the frameworks in [9, 4]. In Section III we

introduce the idea of extending the Taylor approximation and

derive the corresponding optimization problem. Section VII

contains a numerical illustration and Section VII concludes

the paper.

II. OPTIMAL INPUT DESIGN

Let � ∈ ℝ
n denote the model parameters, with �o denoting

the true ones. We assume that N input-output samples is

used in the estimation and the resulting parameter estimate

is denoted �̂N . We will assume that the estimate is normal

distributed with mean �o and covariance matrix P/N :

��̂N := �̂N − �o ∈ N(0, P/N) (1)

This is usually an approximation as in general this is valid

only asymptotically in the sample size N [22]. However, our

discussion carries over to the asymptotic case.

We denote the design variables for the experiment design

by r =
[

r0 . . . rm
]T

∈ ℝ
m. We will assume that

the inverse of the normalized covariance matrix P depends

affinely on the design variables, i.e.

P−1 =

m
∑

k=0

rk Rk (2)
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for some known matrices {Rk}
m
k=0. The reason for this

assumption is that for linear models (e.g. ARX, ARMAX,

Box-Jenkins, linear state space models with tailor made

parametrizations) in the asymptotic regime (N large), the

parametrization (2) can be achieved if, e.g., r is taken to be

the autocorrelation coefficients of the input, i.e.

rk = E[utut−k], (3)

see [9] for details. In this case, the actual input is then gener-

ated by filtering white noise through the filter corresponding

to the stable spectral factor of the spectrum corresponding to

r. It is also possible to use (2) for certain nonlinear models,

see [12] for details. In the following we will assume that the

design variables rk have the interpretation (3).

We will let J(�) denote some property of the application

when model parameter � is used in the design. We illustrate

this with an example

Example 2.1 (Model based control): Let � ∈ ℝ
n be the

model parameters for a discrete-time linear time-invariant

model

yt = G(q, �)ut(�) +H(q)et (4)

where q denotes the shift operator qut = ut+1, ut, yt and

et, are the input, the output and a zero mean white noise

disturbance, respectively. Suppose that the true system is

in the model class, i.e. there is a � = �o such that (4)

corresponds to the true system. Suppose now that � is used

to design a feedback controller C(q, �) which is applied to

the true system, C could for example be a model reference

controller, the H2-optimal or an H∞ controller. This gives

the equations

yt(�) = G(q, �o)ut(�) +H(q, �o)et

ut(�) = −C(q, �)yt(�)

where st(�) denotes the true signal st when the controller

C(q, �) is used in the feedback loop.

In this control application, we could, for example, take

J(�) to be the achieved phase-margin when C(q, �) is used.

One possible measure of the performance degradation in the

application resulting from using model parameter � instead

of the true parameter �o (which for all reasonable application

designs should be the best) is

Vdeg(�) = (J(�)− J(�0))2 (5)

Now consider that the parameter that is used in the design

of the application (the controller C(q, �) in Example 2.1)

is obtained by parameter estimation, i.e. � = �̂N . Since

�̂N is stochastic it is necessary to study the average of the

performance degradation

Vdeg = E
[

(J(�̂N )− J(�0))2
]

(6)

where the expectation is over the random components of �̂N .

The experiment design problem that we will consider here

is the following least-costly experiment design problem

min
r

Nr0

s.t. Vdeg <
1



Tm > 0

(7)

where Tm denotes the symmetric Toeplitz matrix with

r0, . . . , rm in the first row. The last constraint ensures

that r0, r1, rm can be extended to a valid auto-correlation

sequence [23]. The interpretation of (7) is that we would

like to use a minimal amount of input energy in our iden-

tification experiment in order to achieve a certain accuracy

(represented by  ∈ ℝ) of the property J(�̂N , �o).

III. FIRST ORDER APPROXIMATION OF THE DESIGN

CRITERION

Typically (7) is non-convex. However, a semi-definite pro-

gram (SDP) can be obtained by linearizing J . The procedure

is as follows: Write

J(�) ≈ J(�o) + LT (� − �o) (8)

where L = dJ(�)
d�

∣

∣

�=�o
so that

Vdeg ≈ E
[

LT (�̂N − �o)(�̂N − �o)TL
]

= LTPL/N

where we have used (1) in the second equality. The problem

(7) can thus be approximated by

min
r

Nr0

s.t. LTPL/N <
1



P > 0

Tm > 0

(9)

where we have added the non-singularity condition P >
0 which is equivalent to P−1 > 0. Applying Schur-

complements twice to the first two inequalities in (9) gives

the equivalent problem

min
r

Nr0

s.t. P−1 >


N
LLT

Tm > 0

(10)

Finally, inserting (2) gives

min
r0,...,rm

Nr0

s.t.

m
∑

k=0

rkRk >


N
LLT

Tm > 0

(11)

which is an SDP in r0, . . . , rm. This is the type of optimiza-

tion problem that is obtained for a wide range of problems

[9, 4].
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IV. POLYNOMIAL OPTIMAL EXPERIMENT DESIGN

A. A polynomial inequality for the performance degradation

We will now derive a general expression for the first

constraint in (7) without invoking the approximation (8). We

start with assuming that J is a multivariate polynomial. Let

�� = � − �o with elements {��i}. Thus we assume that

J(�) = J(�o) +

Q
∑

q=1

1

q!
(�� ∘ ∇)qJ(�o) (12)

where we use the operator notation

�� ∘ ∇ =

n
∑

i=1

��i
∂

∂�i
(13)

Lemma 4.1: When J is a multivariate polynomial, the

constraint

Vdeg <
1


(14)

can be written as a multivariate polynomial inequality under

the constraint P > 0.
Proof: Inserting (12) in (5) gives

Vdeg(�) =

Q
∑

q1=1

Q
∑

q2=1

1

q1!q2!

{(�� ∘ ∇)q1J(�o)} {(�� ∘ ∇)q2J(�o)} (15)

which in (6) gives

Vdeg =

Q
∑

q1=1

Q
∑

q2=1

1

q1!q2!

E
[{

(��̂N ∘ ∇)q1J(�o)
} {

(��̂N ∘ ∇)q2J(�o)
}]

(16)

Now invoking (1), and using that all higher order moments

of ��̂N are polynomials in the elements of P (they can be

obtained from the moment generating function) gives the

expression

Vdeg =
∑

k

gk(�
o)pk(P ) (17)

where pk are multivariate polynomials in the elements of P
and where the coefficients gk(�

o) are functions of the partial

derivatives of J at � = �o.
Now recall the matrix inversion formula

M−1 =
adj(M)

det(M)
(18)

where adj(M) is the adjoint matrix of M . Applying this

formula to P and using the parametrization (2) we observe

that the elements of P are rational functions of r with the

common denominator d(r) = det(
∑m

k=0 rkRk). Next we

observe that P > 0 implies that d(r) > 0.
This means that for each k, pk(P ) in (17) is a rational

function in r where the denominator is some power of

the polynomial d(r). Therefore, multiplying (14) with the

highest power of d(r) that occurs in the pk(P ) results in a

polynomial inequality. As d(r), on P > 0, is strictly positive,

the new condition is equivalent to (17) on the set of r such

that P > 0. This concludes the proof.

B. Topelitz positivity as a polynomial inequality

The term LTPL/N in the first constraint in (9) corre-

sponds to one of the terms in (17). In order to improve the

approximation more terms can be added giving the rational

inequality constraint

�
∑

k=1

gk(�
o)wk(r) <

1


(19)

for some �. By multiplying with the greatest common

denominator a polynomial inequality is obtained.

The constraint Tm > 0 can also be written as a set of

polynomial inequalities.

Lemma 4.2: The inequality

Tm > 0 (20)

is equivalent to the m+ 1 polynomial inequalities

det(Tq−1)r0 − r̃Tq det(Tq−1)T
−1
q−1r̃q > 0, q = 0, . . . ,m

(21)

where r̃q =
[

rq rq−1 . . . r1
]T

, and where T−1 = I and

r̃0 = 0.

Proof: We prove this by induction. For k = 0 the

condition is

T0 = r0 > 0 (22)

which clearly is a polynomial inequality constraint.

Now assume that the statement holds for Tm−1. We have

that

Tm =

[

Tm−1 r̃m
r̃Tm r0

]

(23)

Using Schur complements gives

Tm > 0 ⇔ r0 − r̃TmT−1
m−1r̃m > 0, Tm−1 > 0 (24)

In regards to the first inequality on the right of ⇔ in

(24), by the formula (18), T−1
m−1 is a rational function in

r0, r1, . . . , rm−1, where, due to the right-most inequality in

(24), i.e, Tm−1 > 0, the common denominator is positive.

Thus multiplying with det(Tm−1), the first inequality be-

comes a polynomial inequality. Thus we have shown that

Tm > 0 is equivalent to the polynomial inequalities that

are assumed equivalent to Tm−1 > 0 and the polynomial

inequality

det(Tm−1)r0 − r̃Tm det(Tm−1)T
−1
m−1r̃m > 0

Induction now proves the lemma.

C. Polynomial optimal experiment design

Using Lemma 4.1 and Lemma 4.2 gives that (7) can be

written as

min
r

Nr0

s.t. Q(r, �o) ≥ 0

det(Tq−1)r0 − r̃Tq det(Tq−1)T
−1
q−1r̃q > 0, q = 0, . . . ,m

(25)

where Q is a polynomial in r.
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V. CYLINDRICAL ALGEBRAIC DECOMPOSITION AND

EXPERIMENT DESIGN

For a set of polynomial inequalities in m variables, CAD

is a partition of ℝ
m into what is called cells where all the

inequalities are either true or false in one cell. Information

regarding the cells are contained in a set of polynomials

where variables systematically have been eliminated. In our

case by examining the CAD corresponding to the inequalities

in (25) and finding the cell where r0 is minimum, the

optimum can be found. The computationally complexity is

very high (doubly exponential). There are readily available

implementations, e.g. QEPCAD [24] and Mathematica. We

refer to [20] for a full account of the method. In the control

community, CAD has been used for model predictive control

[21]. The last reference also contains a lucid description of

the principles of CAD, see also [25] for an introduction.

An interesting feature is that the computationally com-

plexity reduces drastically if only the minimum value is

computed and not the optimizing point. The Mathematica

implementation of CAD makes use of this feature.

In terms of experiment design, this opens up for the pos-

sibility to assess the loss when lower order approximations

are used.

An intrinsic problem in optimal experiment design is that

the optimization problem depends on the unknown system

(in (25) represented by the dependence of Q on the true

parameter vector �o). This problem can be addressed by

either robust designs [26, 6] or adaptive (or sequential)

designs [27, 7]. However, another interesting property of

CAD is that the problem is allowed to be parametric, i.e.

the solutions can be computed explicitly as a function of

certain parameters of the problem. This may be used to

obtain explicit information of how �o influences the optimal

solution.

VI. NUMERICAL EXAMPLE

In this section a numerical example is presented to illus-

trate the method. The problem formulation used is the least-

costly design in (7) and the model of the system is the FIR

model

yt(�) = �1ut−1 + �2ut−2 + et (26)

The disturbance et is a zero mean white Gaussian process

with variance 1. J(�) is chosen as J(�) = J(�1, �2) =
�1�2 + �21�

2
2 and the true parameter vector �0 is given by

�0 =
[

1
10

1
7

]T
. The covariance matrix P is in this case given

by [22]

P = T−1
1 =

[

r0 r1
r1 r0

]−1

where r0 and r1 corresponds to the autocorrelation coeffi-

cients of the input as in (3). Thus r0 and r1 are the design

variables in the input design.

Inserting J(�) in (6) gives

Vdeg = Var(J(�)) = V ar(�1�2 + �21�
2
2) (27)

−5 0 5
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Fig. 1. The obtained parameter estimates when the objective function is
linearized, n = 1. The true parameter �0 is marked as a red cross.
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Fig. 2. A histogram of J(�0)− J(�) when n = 1. The dashed lines are
placed at −1

√


and 1
√


.

The last constraint in (7), T1 > 0, is in this case equivalent

to r0 ≥ ∣r1∣. The problem (7) can thus in this example be

formulated as

min
r0,r1

Nr0

s.t. Var(�1�2 + �21�
2
2) <

1



r0 ≥ ∣r1∣

(28)

In the initial simulations we choose N = 1000 and

 = 50. As a start we try to solve the problem by the

approach in Section III. We linearize the function J(�) in

order to obtain an SDP in r0 and r1. The SDP is then

solved with standard methods in Mathematica and a solution,

r0 = 0.0107955 and r1 = 0.00755685, is obtained. Spectral

factorization of the corresponding spectrum is used to obtain

a realization of the input signal ut that corresponds to the

obtained autocorrelations coefficients. From this ut it is

possible to simulate values of yt(�
0). Using ut and yt we

estimate � using least-squares and from this estimate, �̂, the

estimate of J , J(�̂), is obtained. The results of 100 Monte-

Carlo simulations are presented in Figure 1 and Figure 2.

In Figure 1 the true value �0 is plotted together with the

estimated values of �. Figure 2 is a histogram of the values

of J(�0)−J(�). The dashed lines (hardly indistinguishable in

the figure) correspond to the allowed region of the standard

deviation [−1√


1√

].
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Fig. 3. The obtained parameter estimates when the objective function is
approximated by a Taylor expansion of order 2, n = 2. The true parameter
�0 is marked as a red cross.
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Fig. 4. A histogram of J(�0)− J(�) when n = 2. The dashed lines are
placed at −1

√


and 1
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.

Figure 1 shows that the parameter estimate �̂ could differ

quite significantly from the true parameter �0. The histogram

in Figure 2 emphasize that the input design based on

linearizing J(�̂) gives very poor accuracy. Hence the first

attempt to solve the problem by linearization is inadequate.

In order to improve the accuracy of estimate of J the Taylor

approximation is extended to higher order. In this example

simulations of order n = 2 and n = 4 are performed. In

the case of n = 2 the solution is r0 = 0.0829441 and r1 =
0.00388727 and when n = 4 the obtained autocorrelations

coefficients are r0 = 0.0751584 and r1 = 0.0288413. The

resulting estimates are shown in Figure 3, Figure 4, Figure

5 and Figure 6.

The first thing to notice is that the parameter estimates

�̂ are much more centered around �0 when the Taylor

approximation is of higher order, than in the linearized

case. This is of course due to that more input power is

used. However, notice also that the “parameter clouds” have

different shapes. This is due to that the color of the input

spectrum is different. In the linearization approach, r1 is

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

θ1

θ
2

Fig. 5. The obtained parameter estimates when the objective function is
approximated by a Taylor expansion of order 4, n = 4. The true parameter
�0 is marked as a red cross.
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Fig. 6. A histogram of J(�0)− J(�) when n = 4. The dashed lines are
placed at −1

√


and 1
√


.

close to r0 giving an input with low frequency behaviour

which in turn gives a good estimate of the static gain, i.e.

the sum of �1 and �2. For the higher order solutions, r1
is much smaller than r0, corresponding to an almost white

input. This in turn means that the parameter estimates are

almost uncorrelated which in Figures 3 and 5 shows up as

disc shaped “parameter clouds”.

The histograms of J(�0) − J(�) in Figure 4 and Figure

6 show that the estimates from the higher order solutions

give much more accurate estimates of the quantity of interest

J(�o) as compared with the linearization approach (see

Figure 4). Another interesting observation is that the estimate

of order n = 4 seems to give lower variance than when the

order of the Taylor approximation is n = 2. However the

improvement is not as significant as the improvement from

the linear case.

In the example above  = 50. As discussed, this leads to

a major difference in accuracy between the case when the

function is linearized and when the function is approximated

by a Taylor approximation of higher order. As mentioned

815



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

theta1

th
e

ta
2

Fig. 7. The obtained parameter estimates when the objective function is
linearized, n = 1, and when  is increased to  = 5000. The true parameter
�0 is marked as a red cross.
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Fig. 8. A histogram of J(�0) − J(�) when n = 1 and  = 5000. The
dashed lines are placed at −1

√


and 1
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.

in Section I this is typical for low to medium performance

applications. An interesting continuation of this example is

thus to increase  in order to simulate a model in high

performance applications. In the following we set  = 5000.

On the basis of the discussions in Section I we expect the

difference between when the objective function is linearized

and when a Taylor approximation of higher order is used

to be smaller. When the problem is solved in Mathematica

we get the solution r0 = 1.07955 and r1 = 0.755685 for

the linearized case and r0 = 1.71264, r1 = 0.473605 when

n = 2. In Figure 7 and Figure 8 the results for the linearized

case is shown. These should be compared to Figure 9 and

Figure 10 when the objective function is a second order

Taylor approximation.

By studying Figure 7 and Figure 9 we note that both

the case with a linearized objective function and the case

when the objective function is approximated by a Taylor

approximation of order 2 leads to good estimates of �0.

The histograms in Figure 8 and Figure 10 show the same.

If the figures are studied a bit more carefully, a slight
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Fig. 9. The obtained parameter estimates when the objective function is
approximated by a Taylor expansion of order 2, n = 2 and when  is
increased to  = 5000. The true parameter �0 is marked as a red cross.
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Fig. 10. A histogram of J(�0)− J(�) when n = 2 and  = 5000. The
dashed lines are placed at −1

√


and 1
√


.

difference between the two cases can be detected. The

approximation of order 2 seems to give a slightly more

accurate approximation of �0 and J(�0). However it is quite

obvious that the difference between the cases is much smaller

than in the initial examples with a lower , as expected from

the discussion in Section I. These last results stress that a

linearization of the objective function is sufficient in high

performance applications. There is little to gain by higher

order approximations in such cases.

VII. CONCLUSIONS

In this contribution we have illustrated that the standard

approach of linearizing the quantity of interest may give poor

results in experiment design. This holds in particular when

the demand on accuracy is low. As a remedy we proposed to

increase the order of the approximation. We formally showed

that this leads to optimization problems that are polynomial

in the decision variables and we have proposed the use of

cylindrical algebraic decomposition to solve such problems.

The computational complexity grows very quickly with the

size of the problem but can be reduced by just computing
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the cost function. This value can be used to benchmark the

linearized solution.
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