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Abstract— The problem of scheduling jobs, belonging to
different classes, on a single machine, can be dealt with under
a control-theoretic framework, with the aim of determining
optimal (closed-loop) control strategies, instead of optimal
(open-loop) scheduling decisions. In the model considered by the
authors, optimal control strategies can be determined through
a constructive procedure, based on the application of dynamic
programming. However, in the case that one or more due-dates
change in real-time, the strategies (determined off-line and used
in real-time to find, at each decision instant, the optimal actions
to be adopted) may become invalid. In this paper, sufficient
conditions about the validity of the optimal control strategies
are provided, in connection with some specific cases of change
of due-dates; moreover, the algorithm to be used to determine
the new strategies, when these conditions are violated, is also
provided in the paper.

I. INTRODUCTION

The problem of sequencing and timetabling jobs assigned

to a resource (machine, manufacturing cell, etc.) of a man-

ufacturing system is of uppermost importance within the

so-called “operational decision level”, where decisions have

to be taken with reference to discrete entities (jobs and re-

sources) and within a discrete-event framework. Scheduling

problems in manufacturing systems [1], [2] may be consid-

ered within many different modelling settings, concerning

the model structure, the constraints, and the objectives.

In [3], the authors considered the problem of scheduling

jobs on a single machine, characterized by the following

features: i) two jobs belonging to the same class are con-

sidered as completely equivalent; ii) a sequence of due-

dates is specified for each class of jobs, and the serviced

jobs, for each class, are assigned to the due-dates according

to the earliest due-date (EDD) rule (generalized due-dates

model [4], [5]); iii) the service time of any job of a given

class has to be selected within an interval of possible values

(controllable processing times). The decision variables are

those concerning job sequencing and service times, and the

performance index to be minimized includes both the total

weighted tardiness and the total weighted deviation from the

nominal service times. The approach proposed in [3] allows

determining optimal control strategies (capable of providing,

at each decision step, the optimal decisions as functions of

the current system state) through a constructive procedure,

based on the application of dynamic programming.

In this paper, the on-line application of the optimal control

strategies provided in [3] is considered, and the case in which
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one or more due-dates change during real-time is specifically

taken into account. Due-dates may change, for example,

because a specific job becomes urgent. The change of a due-

date may invalidate some of the control strategies determined

off-line; thus, in this paper, a method to determine the

set of system states that are interested by the change of

due-dates is presented and, with reference to those states,

sufficient conditions about the validity of the optimal control

strategies are developed. Moreover, in case these conditions

are violated, an algorithm providing the new optimal control

strategies is provided.

It is worth noting that, in the considered model, the change

of a due-date is a critical issue, owing to the assumption of

generalized due-dates. As a matter of fact, the modification

of a due-date may cause a significant change in the EDD

sequence relevant to the jobs of a certain class. As an

example, consider a class of jobs whose due-dates are 12,

21, 23, 31, 42, 50, 62, and 75; if the sixth due-date changes

and becomes 30, the new EDD sequence to be considered is

12, 21, 23, 30, 31, 42, 62, and 75; it is evident that three due-

dates (the fourth, the fifth, and the sixth) are actually different

with respect to the original EDD sequence. Then, from the

point of view of the system, the due-dates that changed are

three, not only one. This case, in which the change of one

due-date modifies the EDD sequence, is specifically taken

into account in this paper.

This work was inspired by an interesting application of

the model proposed in [6], [7] (in which, in addition to

the features which caracterize the model proposed in [3], a

sequence-dependent setup is required between the execution

of jobs of different classes). The application is relevant to a

specific “Inventory/Routing Problem” (IRP) [8], [9], in which

both transportation and inventory policies are determined,

whose generic statement may be the following: “a vehicle

has to deliver goods (of the same class) from a deposit (from

which it starts and to which it returns) to a set of retailers

distributed over the territory; the amount of goods delivered

to each retailer and the sequence according to which the

retailers are visited have to be determined on the basis of

the stock of goods (inventory level) at the retailers”. Such a

problem can be solved through the methodology developed

for the multiclass job scheduling problem, as i) each retailer

to be served corresponds to the (unique) job of a certain

class to be executed, ii) the travel time between retailers

corresponds to the setup between jobs of different classes,

and iii) the stopover time at a retailer (to unload goods)

corresponds to the service time of the job.

Moreover, in the considered IRP application, the due-
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date associated with the (unique) job of a certain class

corresponds to the time instant at which the inventory of the

retailer, relative to that class, becomes empty. The due-dates

can be determined off-line (when the algorithm providing

the optimal control strategies is executed) on the basis of the

inventory levels that are available at that time instant and

assuming, for each retailer, a certain fixed selling rate which

removes goods from the inventory. However, the dynamics

of removing goods from the real inventories may be different

and thus, during real-time, an inventory may become empty

before or after the previously (off-line) determined due-

date. Then, the due-dates can be updated, during real-time,

on the basis of the current levels of inventories (obviously

assuming the availability of technologies which allows trans-

mitting/receiving in real-time the inventory levels). As a

consequence, the control strategies (that have been pre-

determined) that the vehicle is using to choose, at each

decision instant, which is the next retailer to be visited may

be no longer effective because they have been determined

on the basis of due-dates that are no longer valid. For this

reason, before taking any decision about the next destination,

it is important to determine if the “old” strategies are still

valid and, in the negative case, the “new” strategies must be

calculated.

This is the motivation of the problem considered in this

paper, that is, how to check if the “old” strategies remain

valid (after the recognition of changes in due-dates) and

how to determine the “new” optimal control strategies. For

the sake of simplicity, in this paper, only the original model

proposed in [3] will be taken into account. In any case, the

extension to the case with setup is straightforward.

II. THE SYSTEM MODEL

AND THE SOLUTION PROCEDURE

Consider a single machine where N1 jobs of class P1,

N2 jobs of class P2, . . . , and NK jobs of class PK have

to be executed. All jobs belonging to the same class are

completely equivalent. No precedence constraint has to be

fulfilled, all jobs are available at time instant 0, and the

execution of any job has to be nonpreemptive. No setup is

required between the execution of jobs of different classes.

A sequence of Nk due-dates for jobs of class Pk, namely

ddk,1, ddk,2, . . . , ddk,Nk
, k = 1, . . . ,K, is specified, as well

as a set of coefficients, namely αk,1, αk,2, . . . , αk,Nk
, k =

1, . . . ,K, specifying the unitary tardiness penalty for each

job. It is assumed that ddk,i ≤ ddk,i+1 for k = 1, . . . ,K and

i = 1, . . . , Nk − 1, and that jobs are assigned to due-dates

according to the EDD rule. Thus the model is characterized

by the generalized due-dates assumption, as mentioned in

the introduction.

The processing time of the i-th job of class Pk is con-

sidered a continuous variable ptk,i, k = 1, . . . ,K, i =
1, . . . , Nk, whose value ranges from a lower bound ptlowk up

to a higher bound, namely ptnom
k , which is also the nominal

value of such a service time. The assumption that the highest

possible service time coincides with the nominal one is

justified if one supposes that there is no economic advantage

in slowing down the service time of a job. Moreover, it is

assumed that, once the service time of a certain job has been

chosen, it cannot be changed during the service.

The cost function to be minimized is the sum, for each

job of each class, of the weighted tardiness and the weighted

deviation of the actual service time from the nominal value.

It is

∑K

k=1

∑Nk

i=1
[αk,i ·max {ctk,i − ddk,i, 0}+β ·(ptnom

k −ptk,i)]
(1)

where β is the weighting coefficient stating that the extra-

cost paid for the reduction of the service time is simply

proportional to this reduction (note that coefficient β is

neither dependent on the class nor on the job); moreover,

ctk,i, k = 1, . . . ,K, i = 1, . . . , Nk, is the completion time

of the i-th job of class Pk that is completed. It is assumed

that αk,i > β, for any pair (k, i), i = 1, . . . , Nk, k =
1, . . . ,K; this assumption states that any unitary tardiness

cost is greater than the unitary cost related to the deviation

from the nominal service time. The overall cost function is

of regular type [10], as there is no advantage in delaying

any completion time if the other ones remain unchanged.

Hence, there is an optimal solution of the scheduling problem

where no idle time is inserted between the execution of

two subsequent jobs. Besides, in this optimal solution, the

execution of the first job starts immediately at time instant

0. For these reasons, in the following, attention will be

restricted only to solutions without idle times.

A. The state-space model and the optimal control problem

In the following, the case K = 2 (two-classes job

scheduling) will be taken into account. The reason for this

choice is purely technical, as, in the case of two classes,

it is easier to show the results about the determination of

the new optimal control strategies when due-dates change

in real-time. In any case, the extension to the general case

is conceptually not too complicated (the reader can find

in [3] both the formalization of the optimal control problem

and the procedure which allows determining optimal control

strategies, when K classes of jobs are considered).

The system model can be represented through a state-space

model, where the system state, when a new decision has to

be taken, i.e., at time instant t = 0 or at any instant t at

which a job has been completed (but for the last one), is the

vector x(t) = [n1(t), n2(t), t]
T, being nk(t), k = 1, 2, the

number of jobs of class Pk already served at time instant t.

It is apparent that the system state does not change between

two successive decision instants.

As decision instants are discrete in time (although not

equally spaced, and thus not generally integer), they can be

denoted as tj , j = 0, 1, . . . , N − 1, being N the overall

number of jobs to be executed, namely N = N1 + N2.

Thus t0 = 0. At time instant tj , j jobs have already been

completed. Then, the “action” u(tj) = f [x(tj)] that has

to be taken at time instant tj corresponds to the choice

of the class and the value of the service time of the next

job to be served. Let δk(tj) ∈ {0, 1}, k = 1, 2, denote
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a binary decision variable whose value is 1 if a job of

class Pk is selected, for the (j + 1)-th service, and 0
otherwise, and let τ(tj) indicate the service time for the

selected job. Obviously, δ1(tj) + δ2(tj) = 1 ∀ tj . Thus,

u(tj) = [δ1(tj), δ2(tj), τ(tj)]
T. For the sake of brevity,

notation xj will be used instead of x(tj). Similarly defined

notations nk,j , uj , δk,j and τj will also be used.

The state equation of the system can be written as follows

xj+1 =





n1,j+1

n2,j+1

tj+1



 =





n1,j + δ1,j

n2,j + δ2,j

tj + τj



 (2)

j = 0, 1, . . . , N − 1, being x0 = [0, 0, 0]T the initial

state vector. Decision variables δk,j , k = 1, 2, and τj are

constrained by
∑2

k=1
δk,j = 1 (3)

∑2

k=1
ptlowk δk,j ≤ τj ≤

∑2

k=1
ptnom

k δk,j (4)

for any j = 0, 1, . . . , N − 1. Moreover, let hj be a variable

which specifies the class of the job whose service begins

at decision instant tj , namely hj =
∑2

k=1
k δk,j . The cost

function can be rewritten as
∑N−1

j=0

[

αhj ,nhj,j+1
· max

{

tj+1 − ddhj ,nhj,j+1
, 0

}

+

+ β · (ptnom
hj

− τj)
] (5)

Note that, in writing (5), the state equation (2) has been

explicitly considered and the generalized due-dates model

has been taken into account. On these bases, it is possible

to formalize the following optimal control problem.

Problem 1: With reference to the dynamic system de-

scribed by (2), and taking into account constraints (3)

and (4), find control strategies δ◦k,j(n1,j , n2,j , tj), k =
1, 2, and τ◦

j (n1,j , n2,j , tj) to be applied at any state

[n1,j , n2,j , tj ]
T, j = 0, . . . , N −1, with 0 ≤ nk,j ≤ Nk, k =

1, 2, and tj non-negative real, that minimize the objective

function (5).

In the rest of the paper, a “compact” representation of the

system state vector, namely [n1, n2, tj ]
T, in which subscript

j appears only at the last state variable, will be adopted.

It is apparent that this compact representation is equivalent

to [n1,j , n2,j , tj ]
T, i.e., it contains the same amount of

information, as j = n1+n2 (both represent the state reached

at time tj at which nk jobs of class Pk, k = 1, 2 have been

executed).

B. The constructive procedure which provides the optimal

control strategies

The following Theorem allows determining a solution to

Problem 1 (the reader can find its proof in [3]).

Theorem 1: The optimal control strategies solving Prob-

lem 1 can be obtained through the following four-steps

procedure.

Step a) – Determine the two sets of coefficients

{λ1
n1,n2

, 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2}, and {λ2
n1,n2

, 0 ≤
n1 ≤ N1, 0 ≤ n2 ≤ N2 − 1}, through the backward

recursions:

– if n1 ≤ N1 − 1 and n2 ≤ N2 − 1:

λ1
n1,n2

=



















min
{

dd1,n1+1,max{λ1
n1+1,n2

− ptnom
1 ,

λ2
n1+1,n2

− ptnom
2 }

}

, if n1 < N1 − 1

min
{

dd1,n1+1, λ
2
n1+1,n2

− ptnom
2

}

,

if n1 = N1 − 1
(6)

λ2
n1,n2

=



















min
{

dd2,n2+1,max{λ1
n1,n2+1 − ptnom

1 ,

λ2
n1,n2+1 − ptnom

2 }
}

, if n2 < N2 − 1

min
{

dd2,n2+1, λ
1
n1,n2+1 − ptnom

k

}

,

if n2 = N2 − 1
(7)

– if n1 = N1 and n2 < N2 − 1:

λ2
N1,n2

= min
{

dd2,n2+1, λ
2
N1,n2+1 − ptnom

2

}

(8)

– if n2 = N2 and n1 < N1 − 1:

λ1
n1,N2

= min
{

dd1,n1+1, λ
1
n1+1,N2

− ptnom
1

}

(9)

with initial conditions

λ1
N1−1,N2

= dd1,N1
(10)

λ2
N1,N2−1 = dd2,N2

(11)

Step b) – Build the two sets of functions
{

τ1
j (n1, n2, tj), 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2

}

,

and
{

τ2
j (n1, n2, tj), 0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2 − 1

}

, as

follows:

τk
j (n1, n2, tj) =



















ptnom
k , tj ≤ λk

n1,n2
− ptnom

k

−tj + λk
n1,n2

,

λk
n1,n2

− ptnom
k < tj < λk

n1,n2
− ptlowk

ptlowk , tj ≥ λk
n1,n2

− ptlowk

k = 1, 2
(12)

where τk
j (n1, n2, tj) indicates the optimal duration of the

service time of the job activated in state [n1, n2, tj ]
T, pro-

vided that a job of class k is selected, k = 1, 2.

Step c) – Determine, for each pair (n1, n2) such that

0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2, n1 + n2 6= N , the function

J ◦

n1,n2
(tj) representing the optimal cost-to-go as dependent

on the current time instant, as follows:

– if n1 ≤ N1 − 1 and n2 ≤ N2 − 1:

J ◦

n1,n2
(tj) = min

{

J ◦

n1,n2
(tj | δ1,j = 1),

J ◦

n1,n2
(tj | δ2,j = 1)

} (13)

where the two “conditioned costs-to-go” inside the min
operator in the r.h.s. of (13) are determined by means of

the following backward recursive relation

J ◦

n1,n2

(

tj | δk,j = 1
)

=

= αk,nk+1 · max
{

tj + τk
j (n1, n2, tj) − ddk,nk+1, 0

}

+

+ β ·
(

ptnom
k − τk

j (n1, n2, tj)
)

+

+ J ◦

n1+σ1,k,n2+σ2,k

(

tj + τk
j (n1, n2, tj)

)

k = 1, 2
(14)
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being σh,k = 1 when k = h, and 0 otherwise;

– if n1 = N1:

J ◦

N1,n2
(tj) =

= α2,n2+1 · max
{

tj + τ2
Nj(N1, n2, tj) − dd2,n2+1, 0

}

+

+ β ·
(

ptnom
2 − τ2

j (N1, n2, tj)
)

+

+ J ◦

N1,n2+1

(

tj + τ2
j (N1, n2, tj)

)

(15)

– if n2 = N2:

J ◦

n1,N2
(tj) =

= α1,n1+1 · max
{

tj + τ1
j (n1, N2, tj) − dd1,n1+1, 0

}

+

+ β ·
(

ptnom
1 − τ1

j (n1, N2, tj)
)

+

+ J ◦

n1+1,N2

(

tj + τ1
j (n1, N2, tj)

)

(16)

initialized by J ◦

N1,N2
(tN1+N2

) = 0; note that in (14)÷(16)

the expression of strategies (12) has to be used.

Step d) – The optimal control strategies are obtained as:

– if n1 ≤ N1 − 1 and n2 ≤ N2 − 1:

δ◦1,j(n1, n2, tj) =











1, if J ◦

n1,n2

(

tj | δ1,j = 1
)

≤
≤ J ◦

n1,n2

(

tj | δ2,j = 1
)

0, otherwise

(17)

δ◦2,j(n1, n2, tj) = 1 − δ◦1,j(n1, n2, tj) (18)

τ◦

j (n1, n2, tj) = δ◦1,j(n1, n2, tj) · τ
1
j (n1, n2, tj)+

+ δ◦2,j(n1, n2, tj) · τ
2
j (n1, n2, tj)

(19)

– if n1 = N1:

δ◦1,j(N1, n2, tj) = 0 (20)

δ◦2,j(N1, n2, tj) = 1 (21)

τ◦

j (N1, n2, tj) = τ2
j (N1, n2, tj) (22)

– if n2 = N2:

δ◦1,j(n1, N2, tj) = 1 (23)

δ◦2,j(n1, N2, tj) = 0 (24)

τ◦

j (n1, N2, tj) = τ1
j (n1, N2, tj) (25)

�

III. REACTING TO DUE-DATE CHANGES

IN REAL-TIME

The optimal control strategies, which are determined off-

line through the four-steps procedure in Theorem 1, are used

in real-time to determine, at each decision time instant, the

class of the next job to execute and the relative processing

time. The optimal control strategies have been determined

on the basis of the due-dates of each class of jobs, ordered

according the EDD rule. Then, in case one or more due-dates

change, the optimal control strategies may become invalid.

It is here assumed that the changes of due-dates occur at

certain time instants during the execution of jobs, that is, in

real-time.

Let tc be the current time instant, at which the machine is

processing the (p+q−1)-th job and that the end of such job

NOW
past future

0 tp+q−1 tc tp+q

t

sta
te





p−
1

q
tj





or





p

q −
1

tj





sta
te





p
q
tj





Fig. 1. Schematization of system state at the current time instant.

processing will lead the system to state [p, q, tj ]
T (this means

that, at tc, the single machine is processing either the p-th job

of class 1 or the q-th job of class 2). Fig. 1 schematizes this

situation. Then, [p, q, tj ]
T is the first state to be considered

for possible modifications of the optimal control strategies,

as it is assumed that job services are nonpreemptive and that

processing times cannot be modified during service. Let us

consider separately the case in which modifications in the

due-dates of jobs that are still to be processed do not induce

modifications in the EDD sequence, and the case in which

such modifications take place.

A. Change of one due-date without modifications in the EDD

sequence

Consider the case in which only one due-date changes.

Let the due-date that changes be the i-th of class 1, and

let dd⋆
1,i (of course, i > p) be the new value of such due-

date (obviously, all the following considerations can be easily

modified in the case the due-date that changes is the i-th of

class 2). Moreover, assume that

dd1,i−1 ≤ dd⋆
1,i ≤ dd1,i+1 (26)

which means that the original EDD sequence for jobs of class

1 is not modified except for the value of the i-th due-date.

With reference to the backward procedure which provides

the optimal control strategies, proposed in Theorem 1, the

first time that the i-th due-date of class 1 is used is in

state [i− 1, N2, tj ]
T. In fact, such a due-date is necessary to

compute the coefficient λ1
i−1,N2

at step a) of the procedure,

being λ1
i−1,N2

= min{dd1,i, λ
1
i,N2

− ptnom
1 }. If the value

of such a coefficient changes, the optimal control strategy

τ◦

j (i − 1, N2, tj) changes as well. This modifications are

propagated backward to the preceding states until the first

state to be considered, namely [p, q, tj ]
T, is reached. Then,

the part of the system state diagram which is interested by

the change of due-date dd1,i is the “thick” part in Fig. 2.

The “interested part” of the system state diagram can be re-

drawn as in Fig. 3. First of all, the number of nodes interested

by the change of due-date dd1,i is (i−p)×(N2−q+1). More-

over, it is worth noting that only strategies relevant to nodes

belonging to column i−1 directly depend on the i-th due-date

of class 1, since λ1
i−1,N2

= min{dd1,i, λ
1
i,N2

− ptnom
1 } and

λ1
i−1,n2

= min{dd1,i,max{λ1
i,n2

− ptnom
1 , λ2

i,n2
− ptnom

2 }}
for any q ≤ n2 < N2, in accordance with step a) of the
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state

[

0
0

]

(initial state)

state

[

N1

N2

]

(final state)

state

[

p

q

]

state

[

i − 1
N2

]

Fig. 2. The system state diagram (the first two state variables are indicated only) and the part of it interested by the change of due-date dd1,i (“thick”

part of the diagram, between states [p, q, tj ]
T and [i − 1, N2, tj ]

T).

procedure in Theorem 1. The strategies of all the other nodes

depend on the i-th due-date of class 1 indirectly, through

coefficients λ1
n1,n2

and λ2
n1,n2

, with p < n1 ≤ i − 1 and

q ≤ n2 < N2. In Fig. 3, states of column i do not belong to

the part of the system state diagram that is interested by the

change of due-date dd1,i, but they are depicted because their

coefficients and optimal costs-to-go are necessary to compute

coefficients and optimal costs-to-go of states belonging to

column i − 1.

[

p

q

] [

p + 1
q

] [

p + 2
q

] [

i − 2
q

] [

i − 1
q

]

[

p

q + 1

] [

p + 1
q + 1

] [

p + 2
q + 1

] [

i − 2
q + 1

] [

i − 1
q + 1

]

[

p

q + 2

] [

p + 1
q + 2

] [

p + 2
q + 2

] [

i − 2
q + 2

] [

i − 1
q + 2

]

[

p

N2 − 1

] [

p + 1
N2 − 1

] [

p + 2
N2 − 1

] [

i − 2
N2 − 1

] [

i − 1
N2 − 1

]

[

p

N2

] [

p + 1
N2

] [

p + 2
N2

] [

i − 2
N2

] [

i − 1
N2

]

COLUMNCOLUMNCOLUMNCOLUMNCOLUMNCOLUMN
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Fig. 3. Diagram of the part of the system state diagram that is interested
by the change of due-date dd1,i (the first two state variables are indicated
only).

The following theorem provides a sufficient condition

about the validity of the optimal control strategies, after

the change of the i-th due-date of class 1, for the generic

state [n1, n2, tj ]
T (belonging to the part of the system state

diagram that is interested by the due-date change).

Theorem 2: With regards to the change of the i-th due-

date of class 1, the optimal control strategies in state

[n1, n2, tj ]
T, with p ≤ n1 ≤ i − 1 and q ≤ n2 ≤ N2,

do not change if the following conditions hold

min {dd1,i, dd⋆
1,i} ≥ λ1

i,N2
− ptnom

1 (27a)

min {dd1,i, dd⋆
1,i} ≥

≥ max {λ1
i,ν2

− ptnom
1 , λ2

i,ν2
− ptnom

2 } (27b)

ν2 = N2 − 1, N2 − 2, . . . , n2

being dd1,i and dd⋆
1,i, with dd1,i−1 ≤ dd⋆

1,i ≤ dd1,i+1,

respectively the “original” and the “new” due-dates. �

Proof: First of all, it is worth observing that, according

to the four-steps algorithm included in Theorem 1, the

optimal control strategies for the generic state [n1, n2, tj ]
T

may be modified in consequence of a change of coeffi-

cients λ1
n1,n2

and λ2
n1,n2

, which characterize the functions

τ1
j (n1, n2, tj) and τ2

j (n1, n2, tj) and, in turn, the conditioned

costs-to-go J ◦

n1,n2
(tj | δ1,j = 1) and J ◦

n1,n2
(tj | δ2,j = 1),

or in consequence of a modification of the two optimal

costs-to-go J ◦

n1+1,n2
(tj) and J ◦

n1,n2+1(tj) relative to the two

states that can be reached from [n1, n2, tj ]
T, which charac-

terize the conditioned costs-to-go. As a matter of fact, the

optimal control strategies depend on functions τk
j (n1, n2, tj),

k = 1, 2, and on conditioned costs-to-go J ◦

n1,n2
(tj | δk,j =

1), k = 1, 2, as stated by (17), (18), and (19). It is also

worth observing that if λ1
n1,n2

, λ2
n1,n2

, J ◦

n1+1,n2
(tj), and

J ◦

n1,n2+1(tj) do not change then the optimal cost-to-go

J ◦

n1,n2
(tj) in the considered generic state does not change as

well. Obviously, when n1 = N1 (respectively, n2 = N2) the

optimal control strategies and the optimal cost-to-go are not

modified when only λ2
N1,n2

(resp., λ1
n1,N2

) and J ◦

N1,n2+1(tj)
(resp., J ◦

n1+1,N2
(tj)) do not change.

With reference to Fig. 3, consider state [i − 1, N2, tj ]
T.

If (27a) holds, then λ1
i−1,N2

(which is the only coefficient

to be computed in this state, since all jobs of class 2 have

been completed) does not change; moreover, optimal cost-

to-go J ◦

i,N2
(tj) is definitely unchanged as it belongs to a

state which is not interested by the considered change of

due-date; then, the optimal control strategies in state [i −
1, N2, tj ]

T do not change, as well as the optimal cost-to-go

J ◦

i−1,N2
(tj). Consider now state [i − 2, N2, tj ]

T; if λ1
i−1,N2

does not change, then also λ1
i−2,N2

is not modified; since

λ1
i−2,N2

and J ◦

i−1,N2
(tj) are unchanged, then the optimal

control strategies in state [i−2, N2, tj ]
T and the relevant cost-

to-go J ◦

i−2,N2
(tj) are not modified. Proceeding backward
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along row N2, it is easy to show that (27a) is sufficient to

ensure that the optimal control strategies do not change in

any state [n1, N2, tj ]
T, p ≤ n1 ≤ i − 1, of this row.

Consider now row N2 − 1 and, in particular, state

[i − 1, N2 − 1, tj ]
T. If (27b) holds when ν2 = N2 − 1,

then λ1
i−1,N2−1 does not change; the optimal cost-to-go

J ◦

i,N2−1(tj) does not change as well, because it belongs

to a state which is not interested by the considered change

of due-date; moreover, it has been shown, in row N2, that

if (27a) holds then λ1
i−1,N2

and J ◦

i−1,N2
(tj) do not change

and, as a consequence, λ2
i−1,N2−1 is not modified; this means

that (27a) and (27b), the latter in the case ν2 = N2−1, ensure

that, in state [i−1, N2−1, tj ]
T, the optimal control strategies

and the optimal cost-to-go J ◦

i−1,N2−1(tj) do not change.

Consider now state [i − 2, N2 − 1, tj ]
T; if λ1

i−1,N2−1 and

λ2
i−1,N2−1 do not change, as discussed, then also λ1

i−2,N2−1

is not modified; moreover, it has been previously shown

that (27a) guarantees that both λ1
i−2,N2

and J ◦

i−2,N2
(tj) do

not change, which means that if (27a) holds then λ2
i−2,N2−1

is not modified; then, also in state [i − 2, N2 − 1, tj ]
T,

(27a) and (27b), the latter in the case ν2 = N2 − 1, ensure

that the optimal control strategies and the optimal cost-to-go

J ◦

i−2,N2−1(tj) do not change. Proceeding backward along

row N2 − 1, it is easy to show that (27a) and (27b), the

latter in the case ν2 = N2 − 1, are sufficient to ensure

that the optimal control strategies do not change in any state

[n1, N2 − 1, tj ]
T, p ≤ n1 ≤ i − 1, of this row.

Consider now row N2 − 2 and assume that (27b) holds

when ν2 = N2 − 2. Following the same reasoning line that

has been previously adopted for rows N2 and N2 − 1, it is

easy to show that (27a) and (27b), the latter in the two cases

ν2 = N2−1 and ν2 = N2−2, ensure that the optimal control

strategies for all the states belonging to row N2 − 2, namely

[i− 1, N2 − 2, tj ]
T, [i− 2, N2 − 2, tj ]

T, . . ., [p,N2 − 2, tj ]
T,

do not change. Then, proceeding backward along rows, it

turns out that conditions (27) are sufficient to ensure that the

optimal control strategies do not change in any state of row

n2 and, in particular, in state [n1, n2, tj ]
T. This concludes

the proof.

The following theorem, whose proof is not reported (it is

immediate, on the basis of Theorem 2), provides a sufficient

condition about the validity of the whole set of the optimal

control strategies determined in the off-line phase.

Theorem 3: Optimal control strategies are not modified in

consequence of the change of the i-th due-date of class 1 if

min {dd1,i, dd⋆
1,i} ≥ λ1

i,N2
− ptnom

1 (28a)

min {dd1,i, dd⋆
1,i} ≥

≥ max {λ1
i,ν2

− ptnom
1 , λ2

i,ν2
− ptnom

2 } (28b)

ν2 = N2 − 1, N2 − 2, . . . , q

being dd1,i and dd⋆
1,i, with dd1,i−1 ≤ dd⋆

1,i ≤ dd1,i+1,

respectively the “original” and the “new” due-dates, and q

the number of jobs of class 2 which have been completed at

the decision time instant at which the change of due-date is

taken into account. �

It is worth noting that if conditions (28) do not hold,

then the optimal control strategies may change or not. As a

matter of fact, (28) are sufficient but not necessary conditions

to ensure that optimal control strategies do not change.

Necessary and sufficient conditions can be defined only for

states belonging to row N2. However, if conditions (28) do

not hold, one can solve the following algorithm to determine

the (possible) new optimal control strategies.

1: if min {dd1,i, dd⋆
1,i} < λ1

i,N2
− ptnom

1 then

2: GETSTRATEGIES(p, q, i − 1, N2)

3: Exit

4: end if

5: for ν2 = N2 − 1 down to q do

6: if min{dd1,i, dd⋆
1,i} < max{λ1

i,ν2
− ptnom

1 , λ2
ν2

−
ptnom

2 } then

7: GETSTRATEGIES(p, q, i − 1, ν2)

8: Exit

9: end if

10: end for

Remark 1: The previous algorithm could be redefined in

order to avoid the execution of unnecessary operations, that

is, the determination of coefficients λ and functions τ which

do not change their value and structure. The result of such

a redefinition would be an extremely more complicated

algorithm. However, since all the optimal costs-to-go of the

states from [p, q, tj ]
T to [i− 1, ν2, tj ]

T change (being ν2 the

first row of the diagram in Fig. 3 for which either (28a)

or (28b) is not satisfied), then the algorithm must always

visit all the states from [p, q, tj ]
T to [i−1, ν2, tj ]

T. Then, the

execution of some simple operations, such as those relevant

to the determination of λ and τ , does not increase the

complexity of the algorithm, which depends on the number

of states that the algorithm visits.

In the previous algorithm, the procedure

GETSTRATEGIES(no
1, n

o
2, n

d
1 , nd

2) calculates, on the basis of

• λ1

ν1,nd
2
+1

, λ2

ν1,nd
2
+1

, J ◦

ν1,nd
2
+1

(tj), for all ν1 =

no
1, . . . , n

d
1 (only if nd

2 < N2),

• λ1

nd
1
+1,ν2

, λ2

nd
1
+1,ν2

, J ◦

nd
1
+1,ν2

(tj), for all ν2 =

no
2, . . . , n

d
2 (only if nd

1 < N1),

the new optimal control strategies backwardly from state

[nd
1 , nd

2 , tj ]
T down to state [no

1, n
o
2, tj ]

T. Such a procedure

(which is not reported due to the lack of space) executes

the equations which characterize the four-steps procedure in

Theorem 1, between two arbitrary states.

B. Change of one due-date with modifications in the EDD

sequence

Consider now the case in which the change of one due-date

causes a modification of the EDD sequence, as previously

discussed. Let the due-date whose value changes be again

the i-th of class 1 and let dd⋆
1,i its new value (remember

that, it must be i > p). Two cases are possible.

In the first case, it is assumed that

dd1,i−r ≤ dd⋆
1,i < dd1,i−r+1 (29)
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· · ·

· · ·· · ·· · ·

dd1,i−r

dd1,i−r

dd1,i−r

dd1,i−r+1

dd1,i−r+1

dd1,i−1

dd1,i−1

dd⋆
1,i

dd⋆
1,i

dd1,i+1

dd1,i+1

dd1,i+1

dd1,N1

dd1,N1

dd1,N1

d̃d1,i−r+1 d̃d1,i−r+2 d̃d1,i

MODIFIED PART OF THE EDD-SEQUENCE

Fig. 4. Modification of EDD sequence when the new due-date is in accordance with (29).

if p ≥ 0, with 2 ≤ r ≤ i − p, or

dd⋆
1,i < dd1,1 (30)

if p = 0. This is the case in which a job (the i-th) becomes

urgent. A new EDD sequence is then necessary, in which r

elements (when (29) holds), that is those from the (i−r+1)-
th to the i-th, or i elements (when (30) holds), that is those

from the first to the i-th, are different than before.

The situation which refers to assumption (29) is illustrated

in Fig. 4, in which the new due-date dd⋆
1,i is “put” between

dd1,i−r and dd1,i−r+1. Then, in the new EDD sequence, the

(i − r + 1)-th position of the sequence is assigned to dd⋆
1,i

whereas positions from the (i − r + 2)-th to the i-th are

assigned to dd1,i−r+1, . . . , dd1,i−1, that is

d̃d1,i−r+1 = dd⋆
1,i d̃d1,i−r+2 = dd1,i−r+1 . . .

. . . d̃d1,i−1 = dd1,i−2 d̃d1,i = dd1,i−1

(31)

(the positions from the p-th to the (i − r)-th and from the

(i+1)-th to the N1-th do not change). It is worth noting that,

owing to (29) and (31), it turns out d̃d1,i−r+1 < dd1,i−r+1

and d̃d1,ν1
≤ dd1,ν1

, with ν1 = i − r + 2, . . . , i.
The situation which refers to assumption (30) can be

handled analogously. In this case, in the new EDD sequence,

it turns out

d̃d1,1 = dd⋆
1,i d̃d1,2 = dd1,1 . . .

. . . d̃d1,i−1 = dd1,i−2 d̃d1,i = dd1,i−1

(32)

(the positions from the (i+1)-th to the N1-th do not change).

Moreover, owing to (30) and (32), it turns out d̃d1,1 < dd1,1

and d̃d1,ν1
≤ dd1,ν1

, with ν1 = 2, . . . , i.
Consider the change of the i-th due-date of class 1, and

assume p > 0 and that the new value dd⋆
1,i satisfies (29), for

some r ∈ {2, . . . , i− p}. In this case, the part of the system

state diagram that is interested by the change of the due-date

is the same illustrated in Figs. 2 and 3. The difference with

respect to the case discussed in Subsection III-A is that now

it is necessary to consider r “new” due-dates (those from

the (i− r + 1)-th to the i-th), as discussed above (see (31));

as a consequence, the nodes of the diagram in Fig. 3 which

directly depend on the new due-dates are those belonging to

columns i − r, i − r + 1, . . . , i − 2, i − 1. This means that

r conditions for the validity of the previously determined

optimal control strategies must be considered for each row

of the diagram in Fig. 3. Such conditions are stated in the

following theorem (again, the proof is not reported).

Theorem 4: Consider the change of the i-th due-date of

class 1, and assume p > 0 and that the new value dd⋆
1,i

satisfies (29), for some r ∈ {2, . . . , i − p}; in this case, the

optimal control strategies are not modified if

d̃d1,i−r+1 ≥ λ1
i−r+1,N2

− ptnom
1 (33a)

(

d̃d1,ν1
≥ λ1

ν1,N2
− ptnom

1 ∧ d̃d1,ν1
< dd1,ν1

)

∨

∨ d̃d1,ν1
= dd1,ν1

(33b)

ν1 = i − r + 2, . . . , i

d̃d1,i−r+1 ≥

≥ max {λ1
i−r+1,ν2

− ptnom
1 , λ2

i−r+1,ν2
− ptnom

2 } (33c)

ν2 = N2 − 1, N2 − 2, . . . , q
(

d̃d1,ν1
≥ max {λ1

ν1,ν2
− ptnom

1 , λ2
ν1,ν2

− ptnom
2 } ∧

∧ d̃d1,ν1
< dd1,ν1

)

∨ d̃d1,ν1
= dd1,ν1

(33d)

ν1 = i − r + 2, . . . , i

ν2 = N2 − 1, N2 − 2, . . . , q

being dd1,ν1
and d̃d1,ν1

, ν1 = i − r + 1, . . . , i, respectively

the “original” and the “new” due-dates (from the (i−r+1)-
th to the i-th), that is, the due-dates in the original EDD

sequence and in the new one (the new due-dates are provided

by (31)), and q the number of jobs of class 2 which have been

completed at the decision time instant at which the change

of the due-date is taken into account. �

It is worth noting that, in (33a)÷(33d) the term

min {dd1,ν1
, d̃d1,ν1

}, which was present in (28a) and (28b)

(for the specific case ν1 = i), does not appear. Now,

only the value d̃d1,ν1
matters. The reason is that, in the

case considered by Theorem 4, d̃d1,i−r+1 < dd1,i−r+1 and

d̃d1,ν1
≤ dd1,ν1

, with ν1 = i − r + 2, . . . , i, as discussed

after (31). Then, it turns out min {dd1,ν1
, d̃d1,ν1

} = d̃d1,ν1

for all ν1 = i − r + 1, . . . , i.
If conditions (33) do not hold, one can solve the following

algorithm to determine the (possible) new optimal control

strategies.

1: for ν1 = i down to i − r + 1 do

2: if d̃d1,ν1
< dd1,ν1

then

3: if d̃d1,ν1
< λ1

ν1,N2
− ptnom

1 then

4: GETSTRATEGIES(p,N2, ν1 − 1, N2)

5: GETSTRATEGIES(p, q, i − 1, N2 − 1)
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6: Exit

7: end if

8: end if

9: end for

10: for ν2 = N2 − 1 down to q do

11: for ν1 = i down to i − r + 1 do

12: if d̃d1,ν1
< dd1,ν1

then

13: if d̃d1,ν1
< max{λ1

ν1,ν2
− ptnom

1 , λ2
ν1,ν2

−
ptnom

2 } then

14: GETSTRATEGIES(p, ν2, ν1 − 1, ν2)

15: GETSTRATEGIES(p, q, i − 1, ν2 − 1)

16: Exit

17: end if

18: end if

19: end for

20: end for

The situation in which p = 0 and the new value dd⋆
1,i

satisfies (30) is very similar. In this case, it is necessary

to consider the new due-dates from the first to the i-th, in

accordance with (32).

The second case, in which it is assumed dd1,i+s−1 <

dd⋆
1,i ≤ dd1,i+s, with 2 ≤ s ≤ N1 − i, or dd⋆

1,i > dd1,N1

(the i-th job is deferred), is not reported here due to the

lack of space. In any case, it is easy to derive both sufficient

conditions and the algorithm to determine the new strategies,

by following a reasoning line that is strictly analogous to that

followed with reference to the first case.

C. Change of due-dates belonging to jobs of different classes

Assume that the due-dates that change are the i-th of class

1 and the h-th of class 2. The new values of such due-

dates are respectively dd⋆
1,i and dd⋆

2,h. Moreover, assume that

dd1,i−1 ≤ dd⋆
1,i ≤ dd1,i+1 and dd2,h−1 ≤ dd⋆

2,h ≤ dd2,h+1,

which mean that the original EDD sequences (for both

classes) are not modified except for the value of the i-th

due-date in the sequence of class 1 and the value of the h-th

due-date in the sequence of class 2. It is obvious that it must

be i > p and h > q, otherwise the considered problem is not

meaningful.

state

[

p

q

]

state

[

i − 1
N2

]

state

[

N1

h − 1

]

Fig. 5. Part of the system state diagram that is interested by the change of
due-dates dd1,i and dd2,h (the first two state variables are indicated only).

In this case, the part of the system state diagram that is

interested by the change of due-dates dd1,i and dd2,h is

different than that illustrated in Fig. 2, as also the states

between [p, q, tj ]
T and [N1, h − 1, tj ]

T are included (see

Fig. 5). The following theorem provides a sufficient condition

about the validity of the optimal control strategies determined

in the off-line phase.

Theorem 5: Optimal control strategies are not modified in

consequence of the change of the i-th due-date of class 1 and

the change of the h-th due-date of class 2 if

min {dd1,i, dd⋆
1,i} ≥ λ1

i,N2
− ptnom

1 (34a)

min {dd1,i, dd⋆
1,i} ≥

≥ max {λ1
i,ν2

− ptnom
1 , λ2

i,ν2
− ptnom

2 } (34b)

ν2 = N2 − 1, N2 − 2, . . . , h

min {dd2,h, dd⋆
2,h} ≥ λ2

N1,h − ptnom
2 (34c)

min {dd2,h, dd⋆
2,h} ≥

max {λ1
ν1,h − ptnom

1 , λ2
ν1,h − ptnom

2 } (34d)

ν1 = N1 − 1, N1 − 2, . . . , i

being dd1,i and dd⋆
1,i, with dd1,i−1 ≤ dd⋆

1,i ≤ dd1,i+1,

respectively the “original” and the “new” due-dates for the i-

job of class 1, and dd2,h and dd⋆
2,h, with dd2,h−1 ≤ dd⋆

2,h ≤
dd2,h+1, respectively the “original” and the “new” due-dates

for the h-job of class 2. �

IV. CONCLUSIONS

The problem of updating, when necessary, optimal control

strategies has been considered in this paper, in connection

with the solution of a specific scheduling problem that has

been recently proposed by the authors. In the paper, three

significant cases have been considered; however, further

cases (as the one in which two or more due-dates relative

to the same class change) can be dealt with by following

the same reasoning lines which have been followed to solve

the considered ones. As introduced at the beginning, these

results will be used in the IRP application of the adopted

scheduling model.
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