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Abstract— Control is traditionally applied using periodic
sensing and actuation. In some applications, it is beneficial
to use instead event based control, to communicate or make
a change only when necessary. There are no known general
closed form solutions to such event based control problems. We
consider stationary event-based control problems with mixed
continuous/discrete time dynamics and stochastic disturbances.
The system is modelled by a set of path constraints, which are
converted into constraints on trajectories’ moments up to some
order N ; upper and lower bounds on the control objective for
any system that meets the constraints are derived using sum-of-
squares techniques and convex semidefinite programming. Joint
optimization of upper bound and controller parameters is non-
convex in general; approaches to such controller optimization
are investigated, including local optimization using bilinear
matrix inequalities. Examples show that the bounds are sig-
nificantly tighter than earlier results obtained using quadratic
value functions.

I. INTRODUCTION

Digital control is traditionally carried out using periodic
sampling and actuation. Sometimes, however, there is a
bottleneck in the control loop. There may be a fixed cost or
a minimum time between events such as to transmit a state
estimate or change a control signal. In Event-based control,
the decision when to generate an event is taken dynamically,
rather than to pick a fixed sample rate a priori.

Event-based control can mean many different things. It
can be phrased in a stochastic, deterministic, or worst-case
setting, with linear or nonlinear dynamics, in continuous or
discrete time, with the aim to reduce computation, communi-
cation or actuation. In a non-stochastic setting, some authors
predict the next event time in advance, see e g [17], [18].

This paper considers systems with linear dynamics and
stochastic disturbances, and the objective to reduce commu-
nication or actuation. Both continuous time (CT) and discrete
time (DT) settings will be considered; in fact, trajectories
may switch back and forth between flow (CT) and jump
(DT), see Fig. 1.

One way to approach the class of problems considered in
this paper is to discretize the system into a Markov chain,
and then solve the optimal control problem using dynamic
programming [1]; this is applied to single state plants in [7].
This method has exponential complexity in the number of
state variables. To deal with more than a few states, we will
consider instead value functions up to some fixed polynomial
degree N , which gives polynomial complexity.
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In [2], impulse control of a continuous time (CT) integra-
tor plant with a white noise disturbance was considered. It
was shown that the mean event frequency can be reduced to
a third by using a threshold based event triggering strategy
instead of periodic events, for the same state variance.
However, such a control policy is aperiodic; the time be-
tween two events may be arbitrarily short, making it hard
to implement in practice. Several other authors have also
investigated aperiodic CT problems, e g [13], [14], [8]. To
get an implementable control law, some authors, e g [4], [3],
[9], [15] have considered event-based control in discrete time
(DT), with a cost term for each sample with an event.

We are interested in the slightly broader class of sporadic

controllers [7], with a guaranteed waiting time between any
two events. After this period of inactive state, the controller
may begin to monitor the plant state continuously, or at some
sample rate. CT and DT sporadic control is also considered
in [5], (where sporadic CT is called non-uniform control)
under the objective of ultimate boundedness.

In the last decade, moment relaxations (see e g [16]),
and their dual, sum-of-squares (SOS) restrictions (see e g
[12], [11]), have gained popularity to approximate nonlinear
optimal control problems without closed form solutions.
Typically, lower bounds on achievable cost are found, which
improve as the problem size grows with relaxation order.
This paper is an adaptation of such techniques to event-based
optimal control problems. By including the controller in the
model, we can also find and optimize upper bounds on cost.

One motivating example that can be (approximately)
solved with the methods in this paper is the following
sporadic control problem: a classic linear quadratic (LQ)
problem with the added constraints that 1) the control signal
is zero except for control events, when it may be a (vector)
Dirac impulse, 2) there is a minimum time ∆T between
control events. A fixed cost per control event may be added,
and a filter on the plant input to shape the control waveform.
A jump transition is created by sampling the system for a
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Fig. 1. Example of a mixed flow/jump trajectory. When entering a jump
(dots), the system jumps to a new state x+ and time t+ = t+∆T (squares).
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Fig. 2. General mode switching model: each time the trajectory leaves a
mode, the controller decides to enter either Mode 1, Mode 2, or terminate.

time ∆T after each control event (see Fig. 1), which recasts
the sporadic control problem into a mode switching control
problem (see Fig. 2). The mode without control may be CT
or DT (possibly with a time step 6= ∆T ).

The paper is outlined as follows: After preliminaries in
Section II, the event-based control problem is formulated
in Section III. Path constraints to model the system are
described in Section IV, and combined in Section V using
convex optimization to show bounds on cost for any system
that meets them; these problems are cast as semidefinite pro-
grams (SDP:s) in Section VI to facilitate efficient solution.

For lower bound problems, the degrees of freedom of the
controller can be left unconstrained; the bound will hold
for any controller, including the optimal. For upper bound
problems, the controller must be included as a constraint.
Section VII considers approaches to joint optimization of
controller parameters and upper bounds, which is in gen-
eral non-convex. Results are presented in Section VIII and
conclusions are given in Section IX.

The source code for the toolbox used to produce the
numerical results in this paper is available online [6].

II. PRELIMINARIES

For matrices A,B, let A � B denote that A−B is positive
semidefinite. Given that X = R

n: Let V(X ) be a space
of test functions (typically polynomials) V : X 7→ R. For
f, g ∈ V(X ), let f ≥ g denote pointwise inequality: f(x)−
g(x) ≥ 0, ∀x ∈ X . Let V+(X ) ⊂ V(X ) be the convex cone
of (pointwise) positive functions V ≥ 0, V ∈ V(X ).

Let VN (X ) be the space of (multivariate) polynomials over
X of degree ≤ N . Let ΣN (X ) ⊂ VN (X ) be the convex
cone of sum-of-squares polynomials of degree ≤ N , i e the
convex closure of VN/2(X )·VN/2(X ). Given a basis ψ(x) for
VN/2(X ), it is well known that λ ∈ VN (X ) is also ∈ ΣN (X )
iff there is a matrix Λ � 0 such that λ(x) = ψ(x)TΛψ(x).

III. PROBLEM FORMULATION

Consider a system that can switch between two modes

m ∈ M = {flow, jump}, with different dynamics for the
state x ∈ X = R

nx . A trajectory (or path) consists of parts

k ∈ K = {1, 2, 3, . . . }, each within one mode mk ∈ M.
The controller may switch modes freely between parts, see
Fig. 2. The trajectory begins at time k = 0, t = tink = tinitial

and state x = xin
k = xinitial.

Entering the flow mode at time t = tink and state xk(tink ) =
xin
k , the state x evolves until t = tout

k , xk(t
out
k ) = xout

k , by the
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Fig. 3. Flow-jump mode switching model: When the controller decides to
exit flow, it must take a jump. After a jump, it may decide either way.

(stochastic differential equation) dynamics

dxk = Axkdt+Buflow
k dt+ dw, E(dwdwT ) = Rdt,

(1)
where uflow

k (t) ∈ Uflow = R
nuflow is the control signal, w is

a Wiener Process, (independent of the past trajectory), and
R � 0, A,B are model matrices of appropriate dimensions.
The controller may decide to exit the flow mode at any time.

Entering the jump mode at t = tink causes a jump that ends
at t = tout

k = tink +∆T ,∆T ≥ 0 and state

xout
k = Φxin

k + Γujump
k + wk, wk ∈ N (0, Pjump), (2)

where u
jump
k ∈ Ujump = R

nujump is the control signal, the
Gaussian disturbance wk is independent of the past trajectory,
and Pjump � 0,Φ,Γ are model matrices of appropriate
dimensions. The jump time ∆T is also a model parameter.

Remark 1: For brevity, we describe only the case with one
flow and one jump mode. The switching model of Fig. 3 is
appropriate in this case, since it disallows consecutive flow
parts; we will still use Fig. 2 in calculations for brevity. The
methods in this paper apply also in the case of two jump
modes, possibly with different time steps ∆T i.

The expected cost over trajectories jacc is a sum of
integrals over each flow interval and a term for each jump:

jacc = E





∑

k∈Kflow

∫

Tk

cflow
(

zk(t)
)

dt+
∑

k∈Kjump

cjump(zk)



 , (3)

where the index sets Km and part intervals Tk are given by

Km = {k ∈ K;mk = m}, Tk = [tink , t
out
k ],

the extended state z in flow and jump respectively by

zk(t) =

(

xk(t)
uflow
k (t)

)

∈ Zflow, zk =

(

xin
k

u
jump
k

)

∈ Zjump,

Zm = X × Um, and the cost functions cm ∈ V+(Zm).
Remark 2: The function cflow(z) is the cost per time unit

in flow mode, while cjump(z) is the cost per jump.
The controller consists of two parts:
• A switching law θ(x) to choose mode m = flow when
θ(x) ≥ 0, and mode m = jump otherwise.

• Modal control laws um = fm(x),m ∈ M.
The control objective is to minimize the average cost

J = R̄(jacc) = lim sup
tspent→∞

1

tspent
jacc, (4)
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where the trajectory duration tspent is given by

tspent = tfinal − tinitial =
∑

k∈K

tout
k − tink . (5)

IV. PATH CONSTRAINTS

We will now list a number of path constraints to model the
considered system. In order to show bounds on path integrals
such as the cost (3) in the next section, nonnegative path
integrals are derived from the constraints. We first introduce
a compact notation for path integrals using measures.

A. Path measures

Define the occupation measure µ and jump event measure

ϕ, with arguments f ∈ V(Zflow), f ∈ V(Zjump) respectively:

µ(f) = E
∑

k∈Kflow

∫

Tk

f
(

zk(t)
)

dt, ϕ(f) = E
∑

k∈Kjump

f(zk).

Given a function f(z) of the extended state z = (x, um),
µ(f) can be thought of as an accumulator that integrates
f(z)dt along the parts of the trajectory in flow, and ϕ(f) as
one that adds up f(z) for each jump.

Using µ and ϕ, the accumulated cost (3) and trajectory
duration (5) can be expressed more compactly as

jacc = µ(cflow) + ϕ(cjump), (6)

tspent =
∑

k∈Kflow

∫

Tk

dt+
∑

k∈Kjump

∆T = µ(1) + ϕ(∆T ), (7)

where 1 in µ(1) means the constant function f(z) = 1, and
in the same way for ϕ(∆T ).

To describe mode switching such as in Figs. 2 and 3, we
define, for the initiation and termination events, measures

ϕinitial(f) = E f(xinitial), ϕfinal(f) = E f(xfinal),

and, accumulating mode entry and exit events, measures

ϕm
dir(f) = E

∑

k∈Km

f(xdir
k ), m ∈ M, dir ∈ {in, out}.

Note that the jump event measure ϕ and jump entry measure
ϕ

jump
in are not the same, since ϕ is defined over the extended

state zjump, and ϕ
jump
in over the state x only. However, they

coincide for ujump-independent test functions:

ϕ(V ) = ϕ
jump
in (V ), ∀V ∈ V(X ). (8)

Having defined the path measures, we will now use them to
formulate path constraints and nonnegative path integrals.

B. Pointwise path constraints

The simplest form of path constraints express feasible
regions of the (extended) state space. (Such algebraic equa-
tions can be used for differential-algebraic equation (DAE)
systems modelling.) Consider the constraint that f(zflow) = 0
when the trajectory is in flow mode, for some given function
f(z). Then also f(zflow)V (zflow) = 0 for any function V ∈
V(Zflow), as is the path integral

µ(fV ) = 0, ∀V ∈ V(Zflow).

The same can be done for event measures, e g ϕ(fV ) =
0, ∀V ∈ V(Zjump) if f(zjump) = 0 for all jumps.

Now consider the inequality constraint that f(zflow) ≥ 0
when in flow mode. Then also f(zflow)λ(zflow) ≥ 0 for any
nonnegative function λ, as is the path integral

µ(fλ) ≥ 0, ∀λ ∈ V+(Zflow).

The constraint f(z) = 1 ≥ 0 apparently holds in any mode,
and will be used since it establishes positivity of the path
measures.

C. Control laws

Control laws can be expressed as path constraints; deter-
ministic ones usually as pointwise ones. Examples:

• A switching law such that θ(x) ≥ 0 in flow and θ(x) ≤
0 in jump.

• A control law ujump = fjump(x) is equivalent to the
constraint that g(zjump) = ujump−fjump(x) = 0 in jumps.

• A random switching law, causing Poisson jumps in
flow with a state-dependent intensity such that njump(x)
jumps are expected per tflow(x) time in flow, where
njump, tflow ∈ V+(X ). Then

µ(θnjump)− ϕ(θtflow) = 0, ∀θ ∈ V(X ). (9)

This is not a pointwise constraint since the control law
is random, but it holds in expectation, which is what
we need.

D. Dynamics constraints

Dynamics constraints express how the trajectory may
evolve from one instant to another.

1) Mode switching: The mode switching dynamics of the
model in Fig. 2 are contained in the center point. Since
each trajectory initiation and mode exit event is paired with
exactly one termination or mode entry event, with the state
x preserved across transitions, the switching constraint

ϕinitial + ϕflow
out + ϕ

jump
out − (ϕfinal + ϕflow

in + ϕ
jump
in ) = 0 (10)

holds, where the argument V ∈ V(X ) to each measure
has been suppressed for brevity. For the mode switching
dynamics of Fig. 3 we have two switching points; they are
modelled in the same way by pairing inflow and outflow,

ϕinitial + ϕ
jump
out − (ϕflow

in + ϕjj) = 0,

ϕflow
out + ϕjj − (ϕjump

in + ϕfinal) = 0,
(11)

again with the common argument V ∈ V(X ) in either
equation suppressed. We see that the sum of these two
equations is (10), thus (11) is a stronger constraint than (10).

2) Flow dynamics: Consider the flow dynamics (1). Given
a (twice differentiable) function V ∈ V(X ), the expected
change in V (x) by the dynamics, conditioned on the ex-
tended state z, is (using Itō’s Lemma)

E(dV |z) = E(dxT )∇V (x) + 1

2
tr
(

E(dxdxT )∇2V (x)
)

=
(

(Ax+Bu)T∇V (x) + 1

2
tr
(

R∇2V (x)
)

)

dt

= (A∗
flowV )(z)dt;
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this defines the backwards flow dynamics operator A∗
flow, a

Kolmogorov backwards operator. Equating the expectations
of the left and right hand sides over the time spent in flow
gives the flow dynamics constraint

0 = E
∑

k∈Kflow

∫

Tk

(

(A∗V )(z)dt− dV
)

= µ(A∗
flowV )−

[

V
]xout

k

xin
k

= µ(A∗
flowV ) + ϕflow

in (V )− ϕflow
out (V ), ∀V ∈ V(X ).

(12)
3) Jump dynamics: Consider the jump dynamics (2).

Given a function V ∈ V(X ), the expected value of V (xout)
after a jump, conditioned on z = (x, u) before the jump, is

E
(

V (xout)
∣

∣

∣
z
)

= E
(

V (Φx+ Γu+ w)
∣

∣

∣
z
)

= (φ ∗ V )(Φx+ Γu),

= (H∗V )(z),

where the probability density φ is Gaussian ∼ N (0, Pjump);
this defines the backwards single jump operator H∗. Sum-
ming over all events gives the jump dynamics constraint

E
∑

k∈Kjump

V (xout
k ) = E

∑

k∈Kjump

(H∗V )(zk)

=⇒ ϕ
jump
out (V ) = ϕ(H∗V ), ∀V ∈ V(X ).

(13)

V. BOUNDS ON COST BY CONVEX OPTIMIZATION

To show bounds J ≤ J ≤ J̄ on the average cost (4)
of a system, we will show positivity of path integrals such
as l = jacc − Jtspent and l = J̄ tspent − jacc, by expressing
them as a sum of nonnegative path integrals. In practice, it
is sufficient to show that

l + ϕinitial(V )− ϕfinal(V ) ≥ 0, (14)

for some value function V ∈ V(X ) such that ϕfinal(V )
is uniformly bounded from below as tspent → ∞. This
boundedness can be established in many ways:

• For a lower bound, it may be sufficient that the bound
holds for solutions with bounded moments of xfinal; then
ϕfinal(V ) will be bounded as well, for polynomial V .

• xfinal will have bounded moments if the flow region
{x ∈ X ; θ(x) ≥ 0} is bounded and the jump dynamics
(2) are exponentially stable.

• ϕfinal(V ) is uniformly bounded from below if V is.

A. Lower bound

To show the lower bound J ≤ J , we want to show that

jacc + ϕfinal(V )− ϕinitial(V ) ≥ Jtspent. (15)

Note that the sign of V has been chosen opposite from (14).
Using first (10), and then (8), (12) and (13), we see that

ϕfinal(V )− ϕinitial(V )

=ϕflow
out (V )− ϕflow

in (V ) + ϕ
jump
out (V )− ϕ

jump
in (V )

=µ(A∗
flowV ) + ϕ(H∗V )− ϕ(V )

(16)

The inequality (15) is then implied by

jacc + µ(A∗
flowV ) + ϕ(H∗V )− ϕ(V )

=Jtspent + µ(λflow) + ϕ(λjump) ≥ Jtspent, λm ∈ V+(Zm),

where we have used (16) and µ, ϕ ≥ 0. Collecting terms
inside µ and ϕ, this condition is in turn implied by

cflow +A∗
flowV = J + λflow,

cjump +H∗V − V = J∆T + λjump,
(17)

for some λflow ∈ V+(Zflow), λjump ∈ V+(Zjump).

B. Lower bound with controller

To add a switching law such that θ(x) ≥ 0 in flow, and
−θ(x) ≥ 0 in jump, we use

µ(θνflow)− ϕ(θνjump) ≥ 0, ∀νm ∈ V+(Zm). (18)

The control law ujump = fjump(x) is incorporated by adding

ϕ(gW ) = 0, ∀W ∈ V(Zjump),

to the left hand side of (15), where g(zjump) = ujump −
fjump(x). With these control laws, (17) is strengthened into

cflow +A∗
flowV = J + λflow + θνflow,

cjump +H∗V − V + gW = J∆T + λjump − θνjump.
(19)

C. Upper bound with controller

To show the upper bound J ≤ J̄ , we want to show that

jacc + ϕfinal(V )− ϕinitial(V ) ≤ J̄ tspent.

We proceed as before, but now all inequality terms have to
be introduced with opposite sign. With controller constraints,
the conditions (19) are turned into

cflow +A∗
flowV = J̄ − λflow − θνflow,

cjump +H∗V − V + gW = J̄∆T − λjump + θνjump.
(20)

We see that the bound conditions above are convex, since
they are linear with convex constraints on {λm}, {νm}. Thus
maximization of J subject to (17) or (19) is a convex
problem, as is minimization of J̄ subject to (20).

VI. PRACTICAL OPTIMIZATION

To get problems that can be solved by a convex program-
ming solver, we must choose some finite basis for the test
functions V, {λm}, {νm} and W . We will use polynomials
up to some degree N of trajectory moments. A sum-of
squares restriction yields semidefinite programs (SDP:s).

We let the terms in (17), (19), and (20) be polynomials
of degree ≤ N . Since it is in general hard to determine the
global positivity of a polynomial, we use ΣN ⊂ VN,+ to
assure positivity; this can be expressed as a linear matrix
inequality (LMI). The optimal bound can only improve with
increasing N , as a solution to the bounds with lower N is
still valid with higher N .

Making sure that no term in (17), (19), and (20) has higher
degree than N , we can optimize over J ∈ R or J̄ ∈ R, and

V ∈ VN (X ), λm ∈ ΣN (Zm),

νm ∈ ΣN−deg θ(Zm), W ∈ VN−deg g(Zjump).

The conditions (20) still give an SDP if we fix νm and W ,
and include instead as optimization variables

θ ∈ VN−maxm∈M deg νm
(X ), g ∈ G ⊆ VN−degW (Z),

where the space G is chosen to give a desirable form for the
ujump controller, e g linear feedback.
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VII. CONTROLLER OPTIMIZATION

Now that we can model a system and derive upper and
lower bounds J ≤ J ≤ J̄ on the average cost J , how can
we optimize for good controllers? We would like to prescribe
a form for the switching law and modal controllers such
as θ ∈ VNθ

(X ), {fm ∈ Vnf
(Zm)}m∈M, and then find the

controller parameters that give the lowest cost.
Since the actual cost J is unknown, we have to content

with minimizing an upper bound J̄ instead. Unfortunately,
joint optimization of upper bound and controller is generally
non-convex because of the product terms between controller
parameters and dual variables that appear in controller con-
straints, such as θνflow in (20).

These product terms make the controller optimization into
a bilinear matrix inequality (BMI) problem; we can still
optimize locally given an initial guess. The formulation also
allows various structural constraints on the controller such
as limited polynomial degrees of θ and {fm}, or sparsity
constraints, e g limiting the set of states that a control signal
may depend on.

The controller optimization problem becomes convex if
we fix enough decision variables so that no product terms
with free variables remain. It is then possible to do global
optimization by gridding over remaining variables. By mak-
ing the problem simple, with low relaxation order N and
few constraints, few parameters have to be scanned.

We next give some results relating tightness of the upper
bound J̄ and problem complexity, and consider especially
the case when global optimization can be done by scanning
over a single real parameter.

A. Mixing controllers

Consider a deterministic switching controller modelled by

θ(x) ≥ 0, in flow, −θ(x) ≥ 0, in jump, (21)

and a controller stochastically mixing time in flow:jump as
tflow(x) : njump(x). By section IV-C, the positive path integral
given by the former is

µ(θνflow)− ϕ(θνjump) ≥ 0, ∀{νm ∈ V+(Zm)}m∈M.

This is exactly the same term as (9), if we identify njump =
νflow, tflow = νjump. The bound derived from the deterministic
switching constraint (21) can thus be achieved by a stochas-
tically mixing controller with njump = νflow, tflow = νjump!
Since we expect the optimal switching law to be determin-
istic, this gives a hint of how tight the upper bound can be
as function of the polynomial order deg νm ≤ N − deg θ.

The result does not hold in general if we introduce more
constraints for the deterministic switching law, such as

θϕflow
out = 0, θϕflow

in ≥ 0, θϕjj ≤ 0,

where θϕflow
out = 0 holds only in the mixed flow/jump setting.

These tighter constraints have been used to produce the upper
bounds in the results, except for when the equivalence to
random switching has been exploited.

B. Single parameter sweep: Poisson controller

We will now describe a case when global optimization
can be performed by scanning over a single real variable.
Consider the upper bound problem with constraints (20), no
modal control law um (i e gW = 0), N = 2 and quadratic
threshold θ ∈ V2(X ) to be optimized. Since deg νm ≤ N −
degθ = 0, the polynomials νm are constants, e g νm ∈ R.
The problem can thus be solved globally by sweeping the
ratio νflow : νjump (a common scaling can be accommodated
in θ). This is the procedure outlined in [3] for the case of
two jump modes with the same ∆T .

Since deg νm = 0, the upper bound J̄ optimized in this
formulation can be achieved by a Poisson controller; a ran-
dom switching controller with state independent switching
ratio! Still, the derived threshold θ may realize a better cost
than the Poisson controller, and can be used as an initial
guess for local optimization.

[3] considers also the case with modal control law ujump =
−Kx. This can be accommodated in our formulation by
solving the lower bound problem with Poisson switching
constraint, since the solution turns out to be exact for N = 2
in this case.

VIII. RESULTS

Consider an integrator process (with state x ∈ X = R)

dx = udt+ dw, E(dw2) = dt, (22)

where w is a Wiener Process. The control input u is a train
of Dirac pulses with minimum time between them ∆T = 1,

u(t) =

nevents
∑

i=1

uiδ(t− ti), ti+1 − ti ≥ ∆T .

We let ui = −x(ti−0) to immediately reset the state at any
control event ti. The cost function is

jacc =

∫

T

x(t)2dt+ ρnevents,

where T is the interval of time spent in the system. We want
to find an event triggering strategy to minimize J = R̄(jacc),
the average cost as tspent = |T | → ∞.

To achieve the minimum inter-event time ∆T , the jump
mode is constructed as an immediate reset to x = 0, followed
by the dynamics (22) sampled for time ∆T . The flow mode
is just (22) with control input u = 0.

Figure 4 shows the optimal average cost J as a function of
event cost ρ (calculated in [7] for this problem), the cost of
periodic control with optimal period h ≥ ∆T , and lower and
upper bounds, which fit quite tightly around the optimum.
The upper bound J̄N=4 was found by BMI optimization
using the solver PENBMI [10]. The curve J̄N=6, θBMI4 ,
calculated with the same thresholds, show that they are in
fact almost optimal. The cost of optimal Poisson Sampling
lies far above the other bounds, almost coinciding with the
cost of periodic control. (In fact, they both choose periodic
sampling with h = ∆T when ρ ≤ 0.5) The upper bound
J̄N=6, θPoisson shows that the thresholds from Poisson control
are considerably better than the bound.

4727



J

ρ

JN=4

J̄N=6, θBMI4

J̄N=4,BMI

Poisson

optimal

periodic

J̄N=6, θPoisson

0.0
0.0

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

2.5

Fig. 4. Cost J as a function of event cost ρ for the integrator with ∆T = 1.
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Fig. 5. Cost J as a function of event cost ρ for the double integrator with
∆T = 1. Thresholds for upper bounds are from Poisson control.

Now consider a double integrator process (with state x ∈
X = R

2)

dx1 = x2dt, dx2 = udt+ dw, E(dw2) = dt,

with immediate reset to x = 0 at events, minimum time
between them ∆T , and the cost function

jacc =

∫

T

x1(t)
2dt+ ρnevents.

Figure 5 shows upper and lower bounds for the cost J as a
function of event cost ρ. All upper bounds were found using
thresholds from Poisson control. We see that Poisson control
and periodic control are comparable, but that the Poisson
thresholds perform distinctly better. Still, the gap between
upper and lower bounds suggests that there is room to realize
a lower cost with better thresholds.

IX. CONCLUSIONS AND FUTURE WORK

We have modelled a broad class of event based optimal
control problems using path constraints, and shown how to
derive interval bounds on the control objective from these
using convex semidefinite programming. Joint optimization
of upper bound and controller parameters is non-convex in
general; approaches to it using global and local optimization
have been investigated. The examples show that the bounds

are significantly tighter than previous results using quadratic
value functions; they also clearly demonstrate that event-
based control is superior to periodic control in the examples.

Interesting directions for future work include further case
studies and extension to other kinds of stochastic hybrid
control problems, improved controller optimization and nu-
merical conditioning.
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