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Abstract— We consider load balancing with routing games
in a multiclass traffic environment. The servers are M/M/1
type servers and charge an admission price to each customer
that joins the queue for service. Service requirements of all
arriving customers are i.i.d. and they can receive service from
any of the servers. Customers also have a waiting time cost
that is proportional to their expected waiting times. Arrivals
are from a multiclass population with the different classes
differing in the their waiting time costs and having different
arrival rates. In this paper we consider the following two
load balancing schemes. (1) Both classes are non atomic; each
arriving customer independently chooses one of the servers with
a probability that optimizes an individual objective function. (2)
One of the classes has a dispatcher that routes customers of
that class to the servers with probabilities that minimize the
total cost for that class; customers of the other class choose
a server like in the first scheme. We analyze the equilibrium
behavior of both the systems. We also describe a system that
can be used to bound the price of anarchy in such systems.

I. INTRODUCTION

We consider a multi server system of non identical servers

that uses admission price to achieve load balancing. The

system is open—customers arrive into the system and leave

after receiving the required service. Traffic is non elastic,

i.e., each class of customers has an inherent arrival rate

and every arrival receives service. Customers form a multi

class population; each class has a unique cost function with

expected delay and admission price as variables. Arriving

customers do not know the instantaneous queue lengths but

know the admission price and system performance expressed

as the expected delay at the queue of each server. Arriving

customers are independently routed to a server with proba-

bilities that optimize a prescribed cost function.

In this paper we introduce different levels of ‘centraliza-

tion’ of the load balancing routing policy and compare their

performances under a cost model. Such schemes were first

considered in [1], where a system with single class traffic is

served by a set of M/G/1 queues but there is no admission

price to the queues. A waiting cost proportional to the

sojourn time is associated with each queue (and not a class).

An arriving customer joins a queue using an individually

optimal policy which leads to a Wardrop equilibrium for

the system. In [1] it is shown that the socially optimal

allocation, is not the same as the allocation at Wardrop

equilibrium. In [2], the optimal allocation is compared with

that at Wardrop equilibrium and an upper bound on the
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Price of Anarchy (PoA) is obtained for a system with single

class traffic and M/M/1 queues with identical waiting costs.

Multi-class traffic was considered in [3] where a class is

distinguished by the service time distributions. Each queue

is served according to the PS discipline and each customer

has a waiting cost proportional to the waiting time in the

queue. It is shown that an optimal allocation of customers to

the servers is independent of the knowledge of the customer

service requirements. The PoA for the individually optimal

joining scheme is also calculated.

A more centralized queue-join policy than the individually

optimum policies of [1], [2], [3] is in the use of dispatcher

for each class. Here, the dispatcher allocates its customers

among the queues to minimize the expected delay to its

customers. Such a system is considered in [4]. A Class i
dispatcher allocates Class i traffic in such a way that the

expected waiting time of Class i customers is minimized. It is

shown in [4] that a Nash equilibrium (with traffic allocation

as the strategy) between the dispatchers exists and the PoA

for the system is also obtained. An even more centralized

approach would be to use a global objective function and

allocate the probabilities for each class-queue pair as in

[5]. Here, each queue becomes an M/G/1 queue under a

probabilistic allocation and the allocation to minimize the

mean waiting time is analyzed in [5].

In the preceding discussion, we see that each customer

experiences a waiting cost that is proportional to the sojourn

time. The above models assume that this cost depends on the

queue and not on the customer class. An alternative pricing

mechanism is that of an admission price, e.g., the Paris Metro

pricing scheme [6], [7] and Tirupati pricing schemes [8],

[9]. Here each queue has a different admission price and

an admission price is charged to each customer that joins

the queue. A cost function with expected waiting time and

admission price is used by each customer to determine the

individually optimum queue to join. In such a system, it

would be reasonable to have a waiting cost that depends on

the customer class and not necessarily on the queue. In this

paper we consider such systems.

The rest of the paper is organized as follows. In the next

section we consider a non atomic system of two queues

with an admission price to each queue. Two classes of

traffic arrive into this system. The classes are distinguished

by the different waiting time costs. Each arrival randomly

chooses one of the queues to minimize an individual ob-

jective function. We analyze the equilibrium behavior and

characterize the prices that achieve various objectives. In

Section III, we consider a similar system except that one
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of the traffic classes has a dispatcher while the other class

is a ‘non atomic class’ in which the arrivals join the queue

that minimizes an individual objective function. Once again,

we characterize the equilibrium in this system. Finally, in

Section IV we consider a genie-based ‘ideal model’ and

compare the optimum allocation obtained that can be used

to obtain bounds on the PoA for each model.

We briefly mention the recent interest in elastic source

models analyzed in [10]. In these systems an aggregate utility

function is associated with each class of traffic and there

is an admission price for each arrival. Conditions on the

admission prices that would lead to optimal behavior of the

system are provided. Such a system for multi-class traffic are

also analyzed in, among others, [11]. We will not consider

such systems in this paper.

A. Model Overview, Notation and Preliminaries

Customers from two different classes are serviced by

queues at two servers. Customers of Class i arrive according

to a stationary Poisson process of rate λi and Server j is an

exponential server of rate µj with i, j = 1, 2; cj ≥ 0 is the

admission price charged at the queue of Server j; βi is the

cost per unit waiting time incurred by a Class i customer;

we assume β1 > β2. Also without loss of generality we

assume c2 = 0. An arriving Class i customer joins Server 1

with probability pi independent of all other customers. pi

is determined by the optimization model; let qi = 1 − pi.
Since arriving customers choose the server randomly and

independently of the other customers, we have 2 M/M/1

queues in the system. Let γj be the total arrival rate to

Server j; we have γ1 = p1λ1 + p2λ2 and γ2 = q1λ1 + q2λ2,
and the expected waiting time in the queue of Server j is

Dj(γj) := 1
µj−γj

. Thus the expected total cost, sum of the

admission price and the expected waiting cost, incurred by a

Class i customer receiving service at Server 1 and at Server 2

are, respectively,

δi1 = c + βiD1(γ1) and δi2 = βiD2(γ2),

the expected total cost for a Class i customer, denoted by

δi will be δi = piδi1 + qiδi2 and the expected total cost per

customer will be δs = (λ1δ1 + λ2δ2) / (λ1 + λ2) .

II. TWO NON ATOMIC CLASSES

Recall that in this model, each customer performs an

individual optimization and joins the queue that minimizes its

expected cost. This decision is based on the admission price

and the mean waiting time at the servers. The customers

do not know the instantaneous queue lengths. Thus, at

equilibrium, if Class i traffic is using two different servers at

equilibrium, then the expected total cost at the two servers

should be the same. If this is not the case, then some Class i
customers would move to a cheaper server indicating the

traffic earlier was not at equilibrium. At equilibrium, the

servers that are not used by a class of customers have a

higher expected cost than that of servers that have a non

zero arrival rate from that class. The equilibrium is clearly

a Wardrop equilibrium.

A. Traffic Distribution at Wardrop Equilibrium

We begin with the following theorem.

Theorem 1: Only one of the following is true

1) p1 = 1 and 1 ≥ p2 ≥ 0.
2) 1 > p1 ≥ 0 and p2 = 0.

Proof: Under Wardrop equilibrium we have the follow-

ing. For Class i, i = 1, 2, the following is true.

pi = 0 iff c + βiD1(γ1) > β1D2(γ2).
0 < pi < 1 iff c + βiD1(γ1) = βiD2(γ2).
pi = 1 iff c + βiD1(γ1) < βiD2(γ2).

(1)

From the preceding inequalities,

• p1 = 0 iff c > β1 (D2(γ2) − D1(γ1)) . Since β1 > β2

by assumption, c > β2 (D2(γ2) − D1(γ1)) which

implies p2 = 0.
• p2 = 1 iff c < β2(D2(γ2)−D1(γ1)) < β1(D2(γ2)−

D1(γ1)). This means that p2 = 1 implies p1 = 1.
• 0 < p2 < 1 iff c = β2(D2(γ2) − D1(γ1)). Because

β1 > β2, this means c 6= β1(D2(γ2) − D1(γ1)). This

in turn means that with 0 < p2 < 1, we cannot have

0 < p1 < 1. However, c = β2(D2(γ2) − D1(γ1))
implies c < β1(D2(γ2) − D1(γ1)). Therefore, if 0 <
p2 < 1, then p1 = 1.

• 0 < p1 < 1 iff c + β1D1(γ1) = β1D2(γ2). This also

implies c > β2(D2(γ2) − D1(γ1)). In this case only

p2 = 0 is possible. �

Theorem 1 determines the pattern of traffic flows in the

two queues at Wardrop equilibrium for different values c, λi

and µi. The following five regimes can now be defined—

(1) Regime 1 for which p1 = p2 = 1, (2) Regime 2 for

which p1 = 1 and 0 < p2 < 1, (3) Regime 3 for which

p1 = 1 and p2 = 0, (4) Regime 4 for which 0 < p1 < 1 and

p2 = 0, and (5) Regime 5 for which p1 = 0 and p2 = 0.
We first analyze the effect of c on the traffic distribution

by fixing the arrival rates λi and the service rates µi to obtain

the change in the equilibrium traffic when the admission

price is increased from 0. Of course, a regime is feasible

only if both the queues are stable, i.e., µi > γi for i =
1, 2. This characterization is then used to analyze c as a

control parameter that (1) maximizes the revenue rate, and

(2) minimizes the waiting time costs.

In Regime 1, p1 = p2 = 1 and hence γ1 = λ1 + λ2 and

γ2 = 0. Here, we will need c < β2(D2(0) − D1(λ1 + λ2)).
Let c1 := β2 (D2(0) − D1(λ1 + λ2)) , i.e.,

c1 :=
β2

µ2
− β2

µ1 − λ1 − λ2
(2)

Thus, if µ1 > λ1 + λ2 and 0 < c < c1, then the Wardrop

equilibrium will be in Regime 1.

Regime 3 requires p1 = 1 and p2 = 0, i.e., γ1 = λ1 and

γ2 = λ2. This leads to the following condition on c.

β2(D2(λ2) − D1(λ1)) < c < β1(D2(λ2) − D1(λ1))

Let

c2 := D2(λ2) − D1(λ1) =
1

µ2 − λ2
− 1

µ1 − λ1
(3)
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Regime 2

Regime 1 Regime 3

Regime 4

Regime 5

γ1 = 0γ1 = λ1

β2c2

γ1 = λ1 + λ2

β1c2 price cc3c1

Fig. 1. The operating regimes as c is increased from 0. In addition to the
requirement on c, the stability conditions also need to be satisfied. c1, c2
and c3 are as in Eqns. 2, 3 and 4 respectively.

Thus if µ1 > λ1, µ2 > λ2 and 0 < β2c2 < c < β1c2,
then the Wardrop equilibrium will operate in Regime 3. The

condition c2 > 0 is possible only if µ1 − λ1 > µ2 − λ2

which thus becomes a necessary condition for this regime to

be possible.

If the equilibrium is in Regime 2, then p1 = 1 and 0 <
p2 < 1 and γ1 = λ1 + p2λ2 and γ2 = q2λ2. For Regime 2

to to be possible for all p2 ∈ [0, 1], we need µ1 > λ1 + λ2

and µ2 > λ2. Since p1 = 1 and 0 < p2 < 1, for the queue

to be in this regime we require

c =
β2

µ2 − q2λ2
− β2

µ1 − λ1 − p2λ2.

Observe that as we move from Regime 1 (p2 = 1) to

Regime 3 (p2 = 0) through Regime 2, p2 decreases from

1 to 0. This happens as c is increased from c1 to β2c2. We

can show that c1 ≤ β2c2 with equality if λ2 = 0.
For equilibrium in Regime 5, we need p1 = p2 = 0, i.e.,

γ1 = 0 and γ2 = λ1 + λ2. This requires c > β1((D2(λ1 +
λ2)−D1(0))). Define c3 := β1(D2(λ1 + λ2)−D1(0)), i.e.,

c3 :=
β1

µ2 − λ1 − λ2
− β1

µ1
. (4)

Thus the equilibrium will be in Regime 5 if c3 > 0, µ2 >
λ1 + λ2 (stability condition), and c > c3.

Operating in Regime 4 requires p2 = 0 and 0 < p1 < 1
which in turn means γ1 = p1λ1 and γ2 = q1λ1 + λ2. Thus,

a particular (p1, p2) satisfying 0 < p1 < 1 and p2 = 0 is

achieved with

c = β1

(

1

µ2 − q1λ1 − λ2
− 1

µ1 − p1λ1

)

.

Thus, as c increases from β1c2 to c3, p1 decreases from 1 to

0. The equilibrium will be in Regime 4 if 0 < β1c2 < c < c3

and the stability condition µ1 > λ1 and µ2 > λ1 + λ2.
Figure 1 summarizes the preceding discussion.

B. Maximizing Revenue Rate

We now characterize the c∗ that maximizes the revenue

rate for the two-queue system. Observe that as c is increased

from c1 > 0 to β2c2, γ1 decreases from λ1 + λ2 to λ1,
whereas as c is increased form β1c2 to c3, γ1 decreases from

λ1 to 0. Clearly, if Regime 1 is the preferred regime for

equilibrium, then c = c1 maximizes the revenue rate. Also,

c > c3 results in γ1 = 0 and would provide no revenue.

Thus for c1 ≤ c ≤ c3, and 0 < γ1 < λ1 + λ2, there is a non

zero revenue rate.

Let ck(γ1) be the admission price that achieves an arrival

rate of γ1 to Queue 1 in Regime k, c∗k be the c that maximizes

the revenue when operating in Regime k and γ∗
1,k the arrival

rate into Queue 1 when c = c∗k. Clearly, c∗1 = c1 and c∗3 =
β1c2 and γ∗

1,1 = (λ1 + λ2) and γ∗
1,3 = λ1. Further,

c2(γ1) = β2

(

1

µ2 − γ2
− 1

µ1 − γ1

)

c4(γ1) = β1

(

1

µ2 − γ2
− 1

µ1 − γ1

)

(5)

It can be shown that γ1c2(γ1) is concave in γ1 if µi > γi

for i = 1, 2; hence c1 ≤ c∗2 ≤ β2c2. Let γ̂1,2 be a feasible

solution of

µ2 − λ1 − λ2

(µ2 − λ1 − λ2 + γ̂1,2)2
=

µ1

(µ1 − γ̂1,2)
2

which is the maximizing condition obtained by after differ-

entiating γ1c2(γ1) w.r.t γ1 and equating to zero. Solving the

quadratic equation for γ̂1,2, we require (µ2 − λ1 − λ2) > 0
for the roots to be real; this will render one of the roots

infeasible because it will require γ̂1,2 > µ1. Thus the feasible

solution will be γ̂1,2 =
µ1−

√
µ1(µ2−λ1−λ2)

1+
q

µ1
(µ2−λ1−λ2)

. γ̂1,2 is feasible

if c1 < c2(γ̂1,2) < β2c2. Using the concavity of γ1c2(γ1),
we obtain

c∗2 =

8

>

<

>

:

c1 if c1(λ1 + λ2) > λ1β2c2 & c2(γ̂1,2) /∈ (c1, β2c2)

β2c2 if c1(λ1 + λ2) < λ2β2c2 & c2(γ̂1,2) /∈ (c1, β2c2)

c2(γ̂1,2) otherwise

c∗4 can be obtained analogously and c∗ is obtained as

arg maxck:1≤k≤4{γ∗
1,kc∗k}.

C. Minimizing the Waiting Time Cost in the System

Let us now obtain the c⋆, equivalently the γ⋆
1 , that min-

imizes the waiting time cost at equilibrium. Let ∆i be the

waiting time cost for a Class i customer; ∆i = piβi/(µ1 −
γ1) + (1− pi)βi/(µ2 − γ2). The system waiting time cost

when the total arrival rate into Queue 1 is γ1 is denoted by

∆γ1
= (∆1λ1 + ∆2λ2) / (λ1 + λ2) . As before, let c⋆

k be the

c that minimizes ∆γ1
when operating in Regime k and γ⋆

1,k

the arrival rate into Queue 1 when c = c⋆
k. In Regimes 1,

3 and 5, the traffic distribution does not vary with c and

γ⋆
1,1 = λ1 + λ2, γ⋆

1,3 = λ1, and γ⋆
1,5 = 0. We can thus use

c⋆
1 = 0, c⋆

3 = β2c2, and c⋆
5 = c3. In Regime 2 p1 = 1, and

hence

∆γ1 =
β1λ1 + p2β2λ2

(µ1 − γ1)(λ1 + λ2)
+

(β1λ1 + β2λ2) − (β1λ1 + p2β2λ2)

(µ2 − γ2)(λ1 + λ2)

Let γ̂1,2 be a feasible solution of

β2λ2µ2

(µ2 − γ2)2
=

β2λ2(µ1 − λ1) + β1λ1λ2

(µ1 − γ1)2
.

which is the minimizing condition obtained by differentiating

∆γ1
w.r.t p2 with p1 = 1, and equating to zero. Solving for

γ̂1,2, and using z = (β2λ2(µ1 − λ1) + β1λ1λ2) / (β2λ2µ2) ,
we have two feasible roots given by γ̂1a,2 =
(µ1 − (µ2 − λ1 − λ2)

√
z) / (1 +

√
z) and γ̂1b,2 =
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(µ1 + (µ2 − λ1 − λ2)
√

z) / (1 −√
z) . The two roots

are feasible if 0 ≤ γ̂1a,2, γ̂1b,2 ≤ λ1 + λ2.
It can be shown that ∆γ1

is convex in p2; hence

γ⋆
1,2 =

8

>

>

>

<

>

>

>

:

γ̂1a,2 if λ1 ≤ γ̂1a,2 ≤ λ1 + λ2 & ∆γ̂1a,2
< ∆γ̂1b,2

γ̂1b,2 if λ1 ≤ γ̂1b,2 ≤ λ1 + λ2 & ∆γ̂1b,2
< ∆γ̂1a,2

λ1 if ∆λ1
<∆λ1+λ2

& γ̂1a,2, γ̂1b,2 /∈ [λ1, λ1 + λ2]

λ1 + λ2 otherwise

The corresponding c⋆
2 can be obtained from (5).

γ⋆
1,4 is obtained analogously as

γ⋆
1,4 =

8

>

>

>

<

>

>

>

:

γ̂1c,2 if 0 ≤ γ̂1c,2 ≤ λ1 and ∆γ̂1c,2 < ∆γ̂1d,2

γ̂1d,2 if 0 ≤ γ̂1d,2 ≤ λ1 and ∆γ̂1d,2 < ∆γ̂1c,2

λ1 if ∆λ1 < ∆0 and γ̂1c,2, γ̂1d,2 /∈ [λ1, λ1 + λ2]

0 otherwise.

Here, γ̂1c,2 = (µ1 − (µ2 − λ1 − λ2)
√

w) / (1 +
√

w) ,
γ̂1d,2 = (µ1 + (µ2 − λ1 − λ2)

√
w) / (1 −√

w) , and

w = (β1λ1µ1) / (β2λ1λ2 + β1λ1(µ2 − λ2)) .
Finally, γ⋆

1 is obtained as

arg min
γ⋆
1,k

:1≤k≤5
{∆γ⋆

1,k
}.

III. A DISPATCHER AND A NON ATOMIC CLASS

We now consider the system where Class 1 customers are

routed by a dispatcher that chooses the routing fraction to op-

timize the total cost for Class 1 customers. Class 2 customers

are routed to optimize and individual objective function. In

our analyzes below we will often fix p1 and let Class 2

customers be routed to achieve Class 2 equilibrium. This

equilibrium is clearly distinct from the system equilibrium

at which p1 and p2 are in mutual equilibrium, i.e., p1 is

the optimum for the corresponding p2 and p2 achieves the

Class 2 equilibrium for the corresponding p1.
If p1 is fixed and Class 2 equilibrium is achieved with p2,

then the total cost for a Class 1 customer is

δ1(p1) = p1

„

c +
β1

µ1 − p1λ1 − p2λ2

«

+

„

β1(1 − p1)

µ2 − q1λ1 − q2λ2

«

.

(6)

It can be shown that when the queues are stable, δ1(p1) is

convex in p1.
Like in the previous section we begin by analyzing the

system equilibrium as c is increased from 0. Also, the

definitions of c1, and c2 and c3 are also as in the previous

section. We look on the same scale of the admission price

as that of the non-atomic model, i.e., we start with c > 0
and increase c beyond c1, β1c2 and c3 and observe the

resulting system equilibrium between the Class 1 and Class 2

traffic where the Class 1 traffic flow is now regulated by the

dispatcher.

Property 1: At system equilibrium, if c < c1, then p2 = 1
and if c > β2

β1
c3, then p2 = 0.

Proof:

c < c1 =
β2

µ2
− β2

µ1 − λ1 − λ2

≤
(

β2

µ2 − q1λ1
− β2

µ1 − p1λ1 − λ2

)

which in turn implies p2 = 1. Similarly, for c > β2

β1
c3,

c > β2

β1
c3 =

β2

β1

(

β1

µ2 − λ1 − λ2
− β1

µ1

)

≥ β2

µ2 − q1λ1 − λ2
− β2

µ1 − p1λ1
.

which implies p2 = 0 for Class 2 at system equilibrium. �

Property 2: For 0 < c < c1, at system equilibrium the

following are true.

1) p1 6= 0.

2) If c ≤ β1

µ2
− β1(µ1 − λ2)

(µ1 − λ1 − λ2)2
< c1,then p1 = 1.

3) If
β1

µ2
− β1(µ1 − λ2)

(µ1 − λ1 − λ2)2
< c < c1, then 0 ≤ p1 ≤ 1.

Proof: From Property 1, for c < c1, p2 = 1. We will

show that with p2 = 1, the cost for Class 1 is lower with

p1 = 1 than with p1 = 0. Thus p1 = 0 will not be a feasible

system equilibrium. For p1 = 1, δ1 = c +
β1

µ1 − λ1 − λ2

and for p1 = 0, δ1 =
β1

µ2 − λ1
. Using the assumption that

β2 < β1, and the definition of c1, for c < c1, we can write,

c +
β1

µ1 − λ1 − λ2
< c1 +

β1

µ1 − λ1 − λ2

<
β1

µ2
<

β1

µ2 − λ1
.

This proves part 1. Let δ′1(p1) be the derivative of δ1 (in (6))

w.r.t p1. From the convexity of δ1, and using the fact that at

system equilibrium, p1 6= 0,, δ′1(1) > 0 implies that at system

equilibrium 0 < p1 < 1. Conversely, δ′1(1) ≤ 0 implies

p1 = 1. We can show that, if c >
β1

µ2
− β1(µ1 − λ2)

(µ1 − λ1 − λ2)2
,

δ′1(1) > 0. And c ≤ β1

µ2
− β1(µ1 − λ2)

(µ1 − λ1 − λ2)2
, implies δ′(1) ≤

0. Parts 2 and 3 are thus proved. �

We now explain the system equilibrium for c > β2

β1
c3.

Property 3: For 0 < β2

β1
c3 < c, the system equilibrium p1

satisfies 0 ≤ p1 ≤ 1.
Proof: Like in the proof of the preceding property,

consider δ′1(p1), the derivative of the RHS of (6) w.r.t p1 but

with p2 = 0. Arguing as before, δ′1(0) > 0 implies p1 = 0.

We can show that this if c >
β1(µ2 − λ2)

(µ2 − λ1 − λ2)2
− β1

µ1
.

Similarly, δ′1(1) < 0 implies p1 = 1 which is true when

c <
β1

(µ2 − λ2)
− β1µ1

(µ1 − λ1)2
.

Finally, for 0 < β2

β1
c3 < c and

β1

(µ2 − λ2)
−

β1µ1

(µ1 − λ1)2
≤ c ≤

β1(µ2 − λ2)

(µ2 − λ1 − λ2)2
−

β1

µ1

we have 0 < p1 < 1 at system equilibrium. �

We now consider the equilibrium traffic distribution when

0 < c1 < c < β2

β1
c3. We begin with the following result.

Lemma 1: For c1 < c < β2

β1
c3 and for a fixed, (not nec-

essarily the optimum or equilibrium) p1, if the equilibrium

p2 of Class 2, satisfies 0 < p2 < 1 then the p2 is unique.
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p1
1

1

00

p2

γ1 > γ+

γ1 < γ+

p1a p1b

Line satisfying γ1 = p1λ1 + p2λ2 = γ+

Fig. 2. For c1 < c < β2
β1

c3, and a fixed p1, the p2 that achieves Class 2

equilibrium is plotted as a function of p1.

Proof: Recall that under the conditions of the lemma,

at equilibrium, the following equality holds.

c +
β2

µ1 − p1λ1 − p2λ2
=

β2

µ2 − q1λ1 − q2λ2
(7)

The LHS of (7) is monotone increasing and RHS is mono-

tone decreasing in p1. Further, at p1 = 0 the RHS is larger

than LHS while at p1 = p2 = 1, the LHS is larger than RHS

for c1 < c < β2

β1
c3. �

Denote the unique γ1 obtained in Lemma 1 by γ+. We

now use Lemma 1 to characterize p2 at Class 2 equilibrium

for a fixed p1, 0 ≤ p1 ≤ 1. For the conditions of Lemma 1,

defining p1a := γ+−λ2

λ1
, we see that at Class 2 equilibrium,

if p1 = p1a and p2 = 1, then we will have γ1 = γ+. This

means that if p1 < p1a then we have γ1 < γ+ and hence

c +
β2

µ1 − γ1
<

β2

µ2 − γ2
.

From the Class 2 equilibrium conditions this implies that

p2 = 1 when p1 is fixed to p1 < p1a. Defining p1b = γ+/λ1,
and arguing similarly, we see that if p1 is fixed at p1 > p1b,
then at Class 2 equilibrium γ1 > γ+ and

c +
β2

µ1 − γ1
>

β2

µ2 − γ2
,

and the Class 2 equilibrium conditions implies that p2 = 0.
Summarizing the preceding discussion, for a fixed p1, at

Class 2 equilibrium, if 0 ≤ p1 ≤ p1a ≤ 1, then p2 = 1 and

if 0 ≤ p1b ≤ p1 ≤ 1, then p2 = 0. Also, for p1a < p1 < p1b

with γ1 = γ+ we have 0 < p2 < 1. This is summarized in

Fig. 2.

We remind the reader that the preceding discussion applies

to each c satisfying c1 < c < β2

β1
c3. We now observe

that if p1a ≤ p1 ≤ p1b, then we will have γ1 = γ+ and

hence c + β2

µ1−γ+ = β2

µ2−λ1−λ2+γ+ . This also implies that

c+ β1

µ1−γ+ < β1

µ2−λ1−λ2+γ+ . Now as δ1 = p1

(

c + β1

µ1−γ+

)

+

(

β1(1−p1)
µ2−λ1−λ2+γ+

)

it is obvious that for p1a ≤ p1 ≤ p1b, δ1 is

minimized at p1 = p1b with the corresponding p2 = 0. We

thus have the following property.

Property 4: For 0 < c1 < c < β2

β1
c3 the equilibrium

(p1, p2) satisfies one of the following conditions.

1) 0 ≤ p1 ≤ p1a ≤ 1 and p2 = 1.
2) 0 ≤ p1b ≤ p1 ≤ 1 and p2 = 0.

3) If p1b /∈ [0, 1] then p1 = 1 and p2 = γ+−λ1

λ2
.

The proof follows from Fig. 2 and the preceding discus-

sion. Thus, corresponding to every c in the said range, of the

three conditions above, the one which has the least δ1 will

prevail as the system equilibrium.

IV. TOWARDS A BOUND ON THE PRICE OF ANARCHY

The price of anarchy (PoA) is the ratio of the value of

the objective function at the social optimum routing to that

at equilibrium. The social optimum routing policy of the

customers is not known. Although the Bernoulli routing of

[5] is a centralized scheme and optimizes the system cost, it

is not known if this is indeed the socially optimal routing.

In this section we describe a two-class, two-server system

in which the total expected cost per customer will be lower

than that under a socially optimal scheme and hence can be

used to obtain an upper bound on the PoA for the various

load balancing schemes that we have outlined in this paper.

Consider the following system. Arriving customers of

Class i wait in queue Qi before receiving service. Both the

servers complete ‘virtual services’ irrespective of whether the

corresponding queue is non-empty. Thus, the virtual service

process at server j is a Poisson(µj) process. (By the mem-

oryless property of the exponential distribution, it makes no

difference whether we start serving before a customer arrives

at the queue, or wait till it arrives.) Customer arrivals form

a Poisson process of rate λi for class i. After completion of

each service by a server, if there are waiting customers in

any of the queues then, the completed service is ‘allocated’

to one of them according to a policy that we describe below.

The customer then leaves the system.

We now motivate the allocation policy. Consider a service

completion epoch t. At this epoch, let M1 and M2 be the

number of Class 1 and Class 2 customers in queues Q1 and

Q2 respectively. If we choose to allocate the service to a wait-

ing customer, then it has to pay the corresponding admission

price. On the other hand, if this service is discarded, then the

an opportunity cost resulting from an increase in the waiting

time costs is incurred. If the service is not allocated the

opportunity to send out a waiting customer will arrive only

at the next service completion epoch. And the customers that

are already in the queue will experience at least that much

extra waiting time. Further, those customers that arrive before

the next service completion epoch will have to wait more

than they would have if this service is allocated to a waiting

customer. We can now derive our service allocation policy—

a service completion is allocated to a waiting customer if the

additional waiting time cost is more than the admission price

for that queue. Also the allocation will be to the customer that

will cause a maximum reduction in the system cost. We now
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Fig. 3. The Markov chain representation for the bounding system.

calculate the waiting time cost when a service completion is

not allocated.

The time until the next service completion epoch is

exponential with rate µ1 + µ2. Thus the total waiting cost

from all customers that are in queue at a service completion

epoch is (β1M1 +β2M2)/(µ1 +µ2). The extra waiting time

for every customer that arrives between service completion

epochs is 1/(µ1+µ2) and the total cost from such customers

will be (β1λ1 +β2λ2)/
(

(µ1 + µ2)
2
)

. Thus the total cost of

missing an opportunity to use a service is

M̄ =
β1M1 + β2M2

µ1 + µ2
+

β1λ1 + β2λ2

(µ1 + µ2)2

Thus we can form the following allocation rule at the

completion of a service as follows.

• When Server 2 finishes service,

– if M1 > 0, then the service is allotted to a Class 1

customer,

– else if M1 = 0, M2 > 0, then the service is allotted

to a Class 2 customer,

– else the service is discarded.

• When Server 1 finishes service,

– If M1 > 0 and c < M̄, then the service should be

allocated to a customer of Class 1,

– else if M1 = 0 and M2 > 0 and c < M̄ then the

service is allotted to a Class 2 customer,

– else the service is discarded.

Since the service allocation is being performed after a

service, it can be seen that the system cost (sum of the

admission waiting time costs) in this system is less than that

in any system with a non anticipatory policy.

The two-dimensional process (M1(t),M2(t)) is a continu-

ous time Markov chain. Let πi,j be the stationary distribution

of the Markov chain. Let N̄i be the expected number of

Class i customers. The waiting time cost per unit time of a

Class i customer is thus N̄iβi. Let M be the set of states

for which c < M̄. Then the rate at which the admission cost

is accrued is c
∑

ij∈M πijµ1. Thus the system cost per unit

time is obtained as the sum of the two costs.

While a closed form stationary distribution appears to be

rather hard to obtain, a numerical evaluation is immediately

possible with a suitable truncation of the state space. A more

detailed analysis like in [12], [13] also seem possible.

V. DISCUSSION

We considered multiclass traffic being serviced by non

homogeneous servers. We first considered a decentralized

model of each customer routing itself to optimize individual

objective functions. We then allowed one class to have a

dispatcher that routes to optimize for the class. Note that in

the second model, our assumption of β1 > β2 is not general

and an identical analysis can be carried out for β1 < β2.
Two other models are also possible. (1) Provide a separate

dispatcher for each traffic class. Here the dispatchers compete

with each other with their respective class traffic allocation

as their strategy. This is similar to the one in [4], except

that we now have an admission price into the queues. The

analysis will mirror that in [4]. (2) A centralized scheme of

a single dispatcher that determines the routing fractions to

optimize a global objective. This has similarities to that in

[5] except that we assume identical service requirements for

each class and there is an admission price.
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