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Abstract— This paper presents a distributed Model Predictive
Control framework based on a primal decomposition and a
bundle method to control the indoor environmental conditions
in a multisource/multizone building. The control aims to min-
imize the total energy cost under restrictions on global power
consumption and local constraints on comfort and saturations
on actuators. Moreover, each power source is supposed to have
a time varying tarification. The distributed Model Predictive
Control algorithm is based on two layers: a zone layer which
is responsible of local zone decisions and a coordination layer
that handles decisions that go beyond the scope of the zone.
Simulation results are finally provided for a three zones building
with a local power production and a changing price grid power.
A computational study is also provided in order to assess the
effectiveness and the real-time implementability of the proposed
control method.

I. INTRODUCTION

Nowadays, the part of primary energy consumed by buildings
is estimated at over 40 % of total primary energy produced
worldwide, making building area the largest energy consumer
of the world. This explains that decreasing energy consump-
tion in buildings, has become an important component of the
CO2 emission reduction policy and an active research field
as witnessed by the important number of publications on this
topic [1].
It goes without saying that a complete review of all existent
and proposed control strategies lies beyond the scope of
the present contribution. Nevertheless, it has to be noticed
that Model Predictive Control is identified as a promising
methodology in building energy related issues [2].
Unlike usual "rule based strategies" [3], Model Predictive
Control is able to give some coherence in the process of
decision and to handle economical objectives and multi-
variable systems, which are very suitable capabilities for the
so called Building Energy Management Systems.
Several predictive control strategies have been proposed in
the literature. In [4] a thermal predictive control strategy
has been proposed for high inertia buildings to deal with
overheat problem. [5] used a predictive controller to manage
polygeneration systems. Some very recent experiments [6]
showed that Model Predictive Control substantially decreases
energy usage comparing to other control strategies. An
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estimation of the potential gain is also given in [2], where
a large variety of studies have been conducted to asses the
relevance of such control strategy in buildings.
In fact, Model Predictive Control is becoming a crucial
paradigm for energy efficiency in building control. Never-
theless, one of the major drawbacks in Model Predictive
Control lies in the resulting computational burden that may
be prohibitive for real-time implementation. This is generally
the case in large scale applications. In such situations, the
resulting MPC optimization problem is hard to solve given
restrictions on computational resources in term of time and
memory. On the other hand, it can be unsuitable to centralize
the computation of the optimal solution of a large process in
one controller.
This fact is reported in [7], [8], where a distributed frame-
work is adopted to deal with thermal regulation of a mul-
tizone building. In [7], a Bender’s decomposition strategy
is used to take in charge some coupled inputs in presence
of multiple heating sources. A multi-agent paradigm is also
adopted, in a different way than the previous in [9], [1].
Actually, multi-agent framework is suitable for building
application since the decomposability of the problem is quite
natural.
The main originality of the present contribution lies in
proposing a distributed framework to handle global limita-
tions on consumption in presence of more than one power
source in a multizone building. Moreover, the zones be-
haviors are described by a multi-input/multi-output bilinear
state space representations, each zone has to ensure local
constraints on actuators and outputs. To the extent of our
knowledge, the combination of these features has not been
proposed previously.
The designed distributed Model Predictive Control is based
on two layers: a zone layer and a coordination layer. The
zone layer gathers zonal model predictive controllers which
are responsible of handling local zonal decision variables
to regulate indoor local conditions that are represented by
indoor temperature, CO2 level and illuminance for each
zone [10]. The coordination layer ensures that a limitation
on global consumption of the building is always respected
and enables an optimal dispatch of the limited resources
between zones. Moreover, the building is supposed to dispose
of a certain number of power sources (e.g: grid + local
production) that have time varying tarifications.
The algorithm is based on a primal decomposition and a
bundle method for the resolution of the master problem in
the coordination layer. It consists of an iterative procedure
that ensures always feasible iterates, which is an interesting
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feature for certification purpose. The sequence of iterates
converges toward the optimal solution enabling to recover
the optimal solution of centralized problem.
The paper is organized as follows: section II states the
problem. Section III presents the distributed model predictive
while giving essential recalls on bundle method. In section
IV some simulations are proposed to illustrate the algorithm.
Finally, section V gathers conclusions and presents some
further issues.

II. PROBLEM FORMULATION

In Model Predictive Control, a model of process is used as
well as prediction on disturbances in order to find the best
open loop control sequence over some prediction horizon of
length N by minimizing an objective function J(·). Only the
first part of the optimal control sequence is applied to the
process. This procedure is repeated at the following decision
instant based on a new measurement or estimation of the
current state and new disturbance prediction. Reader may
refer to [11] for a more detailed presentation.
In the sequel, the bolded vectors are used to denote predicted
trajectories over the prediction horizon N starting from the
current instant t. Namely, if V ∈ Rnv then:

V(t) := [V (t|t)T , . . . , V (t+N − 1|t)T ]T ∈ Rnv×N (1)

is the predicted trajectory over the prediction horizon. For
convenience, the current instant t is dropped in the notation
V(t) and it will be simply denoted V ≡ V(t) when no
ambiguity results. In the following, the model of the process
will be described as well as the MPC related optimization
problem.

A. Model description

Consider a building with nz zones, where ` ∈ Z =
{1, . . . , nz} is the zone index and let the following nonlinear
state space representations describe the dynamical behavior
of each zone ` ∈ Z:

x+
` = A`x` + [B`(y`, w`)]u` +G`w` (2a)
y` = C`x` + [D`(w`)]u` + F`w` (2b)

Where: x` ∈ Rnx
` , u` ∈ Rnu

` ,w` ∈ Rnw
` , y` ∈ Rn

y
` are

respectively state, input, disturbance and output vector of
the zone `.
The key features of the model and some explanations on its
form can be found in [10], [12]. However, let us give some
necessary elements to understand the sequel:
• The model (2) is a bilinear model since the matrices

[B`(y`, w`)] and [D`(w`)] are affine in their arguments.
• Depending on the configuration of each zone `, the

vector u` gathers control of local equipments (HVAC1,
lighting, shading) that may differ between zones. Nor-
malized inputs are considered, i.e u` ∈ [0, 1]n

u
` .

1HVAC: Heating, Ventilation and Air Conditioning

• The output vector y` = [T in` , CO2in` , Lum
in
` ]T includes

indoor air temperature, CO2 level and illuminance in the
zone `.

• w` = [φ1
` , . . . , φ

n`
f

` , T out,OC`, COout2 ]T is the distur-

bance vector. Where: φ1
` , . . . , φ

n`
f

` are the global irra-
diance fluxes on each of the n`f facades of the zone
`, T out is the outdoor temperature, OC` is the number
of occupants in the considered zone and COout2 is the
outdoor CO2 level.

B. Global restrictions on power consumption

It is clear that since no physical coupling between zones
is explicitly considered, the zones are totaly independent.
Nevertheless, let us mention that a dynamical estimation is
used to recover any non predicted disturbances that were
not taken into account in w`. This enables to take in charge
indirectly physical interactions between zones as well non
measured disturbances. Suppose now that each zone has
access to np power sources in the building. These power
sources can be of the same nature (e.g electrical: grid + local
renewable production) or different (e.g electrical/thermal :
grid + boiler). These resources are limited, let us note:

• P
j

the maximum power profile on the each resource
j ∈ E = {1, . . . , np},

• Lj the cost prediction of the resource j ∈ E .
Moreover, let us define for each zone pj` to be the amount
of power j consumed by the zone `. Assuming that power
consumption is linear with respect to control input, it comes
that:

u` = α` · p`, ` ∈ Z, α` ∈ RN ·n
u
`×N ·np (3)

We are now able to formulate the centralized MPC optimiza-
tion problem, namely:

Argmin
{u`,p`,δ`}`∈Z

∑
`∈Z

J` (4a)

Subject To : ∀` ∈ Z
y
`
− δ−` ≤ y` ≤ y` + δ+` (4b)

u` = α` · p` (4c)∑
`∈Z

pj` ≤ P
j
, ∀j ∈ E (4d)

0 ≤ u` ≤ 1, δ+` ≥ 0, δ−` ≥ 0 (4e)

Where:
• J` =

∑
j∈E〈Lj ,p

j
`〉 + ρ` · 〈1`, δ`〉. 〈·, ·〉 is the inner

product and 1` is a vector of ones with appropriate size.
• y

`
and y` are respectively lower and upper output

bounds that must be respected in order to ensure occu-
pants comfort. They are obviously linked to the presence
of occupants in the zone [10], [8].

• δ` = [δ−`
T
, δ+`

T
]T are relaxation variables. They ensure

that the optimization problem remains always feasible
by relaxing the constraints on outputs.

• The weight ρ` > 0 is adjusted to avoid excessive
violation of the constraints on outputs.
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Fig. 1. Distributed Model Predictive in a multizone building. The
coordinator gathers global information and ensures coordination of local
controllers.

It is worth reminding that this optimization problem has to
be solved at each decision instant. Since this problem is high
dimensional and nonlinear, it can be impossible to solve it in
a reasonable amount of time particularly when the number of
zones nz is high. In the next section a distributed predictive
control algorithm is designed to tackle this issue.

III. DISTRIBUTED MODEL PREDICTIVE
CONTROL

As mentioned, the centralized optimization problem (4) is
very hard to solve or even impossible if nz is very high as
it is the case in office buildings for instance. In addition to
the non scalability of the centralized solution, one has to
mention that it is generally unsafe to centralize the decision
process in the same physical controller because any failure
affects to the whole system.
To overcome these difficulties, the idea of distributing the
computation of the optimal solution among agents appears
to be clearly adapted to this situation. The principle of
distributed Model Predictive Control [13] is to design local
predictive controllers that are responsible of local decision
making. The agents have to come with an agreement through
iterations in order to recover the solution of the centralized
problem or to achieve a relevant sub-optimal solution. The
structure of the distributed control and the nature of the
exchanged information between agents (and/or a coordinator
agent) are the two key points in distributed model predic-
tive control. In this section, the decomposition scheme is
presented as well as the coordination mechanism which is
performed by a coordinator (fig. 1).

A. Decomposing the problem

The centralized problem (4) is non separable due to the
presence of the global constraints (4d). In order to split the
problem into subproblems, let us firstly introduce the set
of positive auxiliary variables denoted p := {pj`}(`,j)∈Z×E ,

such that:

∀(`, j) ∈ Z × E : pj` ≤ pj` (5)

Each vector pj` represents the resource restriction assigned
to the zone ` ∈ Z with respect to the power source j ∈ E .
Clearly, the centralized optimization problem can be sep-
arated into nz subproblems for a fixed p. In fact, each
subproblem defines the local MPC` optimization problem:

MPC`({pj`}j∈E) : Argmin
u`,p`,δ`

J` (6a)

Subject To :
y
`
− δ−` ≤ y` ≤ y` + δ+` (6b)

u` = α` · p` (6c)
pj` ≤ pj` ,∀j ∈ E (6d)
0 ≤ u` ≤ 1, δ+` ≥ 0, δ−` ≥ 0 (6e)

It is easy to see that each zone related MPC` problem is
always feasible thanks to the introduction of the relaxation
variables δ` and the positivity of the auxiliary variables
{pj`}(`,j)∈Z×E . Actually, this problem is not a linear pro-
gramming problem because the model (2) is not a linear
model. The resolution of MPC` has been studied in [10]
where a fixed-point iterative procedure has been proposed
to solve it, this point will not be detailed in this short
communication.
Moreover, if p ∈ D, where:

D := {q ≥ 0 | ∀(`, j) ∈ Z × E :
∑
`∈Z

qj` = P
j} (7)

then, the centralized problem (4) admits a feasible solution.
Nevertheless, it remains now to find the optimal resource
dispatch p?, such that:

p? := Argmin
p∈D

J(p) :=
∑
`∈Z

J?` ({pj`}j∈E) (8)

where J?` ({pj`}j∈E) is the optimal objective function value
corresponding to each MPC`({pj`}j∈E). The problem (8)
is called the master problem. The coordination mechanism
can be summarized as follows:

step 1: (Coordination layer) Affect for all local
MPC`, ` ∈ Z candidate power restriction profiles
{pj`}(`,j)∈Z×E .
step 2: (Zone layer) Solve in parallel the local
MPC`({pj`}j∈E), ` ∈ Z and send to the coordinator
J?` ({pj`}j∈E) and related subgradients {gj`}(`,j)∈Z×E .
step 3: go to (step 1) until convergence.

Note that g := {gj`}(`,j)∈Z×E is the set of subgradients
corresponding to p. These subgradients are directly given
by the dual variables resulting from the resolution of each
MPC`∈Z . In the next subsection we will see how the coordi-
nator generates candidate power restrictions(step 1), namely
how to solve the master problem.
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Fig. 2. Representation of J(·) and its piece-wise linear approximation
J̌(3)(·) at third iteration. The approximate function is a global underesti-
mator if J(·) is convex.

B. Solving the master problem - bundle method

There are several methods that can be used to solve the
master problem. However, motivated by the fact that classical
subgradient methods may fail to achieve good performances
given that J(·) is not differentiable, a bundle method is used.
Firstly, let us give a brief recall on the basic idea of bundle
method, a more detailed description can be found in [14].
At the kth iteration of the bundle method, k evaluations of
J(·) have been performed at k trial points p(1), . . . ,p(k).
Moreover k subgradients g(p(1)), · · · , g(p(k)) (also denoted:
g(1), · · · , g(k) ) have been returned from the zone layer
MPC`∈Z . The information obtained over the last k iterations
is stored in a bundle denoted B(k):

B(k) := {p(i), J(p(i)), g(p(i))}i=1,...,k (9)

Based on the bundle B(k), the so called cutting plane
approximation J̌ (k)(·) is constructed:

J̌ (k)(p) := Max
i=1,...,k

J(p(i)) + 〈g(i),p− p(i)〉 (10)

Actually, each linear piece i defines a half space
CUT(i)(p) := J(p(i)) + 〈g(i),p − p(i)〉 − J(p) ≤ 0 as
depicted on Fig. 2.
Given J̌ (k)(·) at iteration k, one would simply use its mini-
mizer as the updated value p(i+1). However, this may lead to
some instability because J̌ (k)(·) can be a poor approximation
of J(·) particularly in the first iterations, when only few
linear-pieces are available. Hence, instead of minimizing
J̌ (k)(·), the following Quadratic Programming problem is
considered:

p(k+1) = Argmin
p∈D

[J̌ (k)(p) + µ‖p− p(k)
C ‖2] (11)

Where the so called proximal term ‖p−p(k)
C ‖2 is introduced

in order to prevent any drastic movement from the current
best candidate point p(k)

C , which is called the central point.
The positive parameter µ is adjusted to adequately weight

Coordinator

...

Zone 1

...

Zone ℓ Zone nz

yℓ ynzunzuℓu1 y1

{P
j
}j∈E

MPCℓ MPCnzMPC1

{gjnz}j∈E{pjnz}j∈E{pjℓ}j∈E {gjℓ}j∈E{pj
1
}j∈E {gj

1
}j∈E

Fig. 3. Illustration of the coordination mechanism. Each MPC`∈Z aim
to minimize its local objective (local constraints on actuators + comfort
constraints) given some restrictions {pj

`}j∈E on power consumption. Each
local MPC`∈Z sends subgradients related to these limitations. The coordi-
nator gathers all the information to solve the master problem by forming
J̌(·) and resend new resources restriction {pj

`}(`,j)∈Z×E , and so on until
convergence.

the distance from the current central point. Actually, µ may
be adapted at each iteration k [14]. In order to give an
update rule of the central point p(k)

C and a stopping test for
the algorithm, we need to define the predicted decrease at
iteration k:

d(k) := J(p(k)
C )− J̌ (k)(p(k+1)) ≥ 0 (12)

The point p(k)
C is updated (replaced by p(k+1)), if the real

decrease is greater than a certain fraction m ∈ [0, 1] of the
predicted decrease namely:

p(k+1)
C ← p(k+1) if: J(p(k)

C )− J(p(k+1)) ≥ m · d(k) (13)

In this case, the step k is called a serious step, otherwise it
is called a null step. However, it is important to notice that
in both situations the accuracy of the approximation J̌ (k)is
improved by adding a new element in the bundle:

B(k+1) = B(k) ∪ {p(k+1), J(p(k+1)), g(p(k+1))} (14)

The algorithm stops when the predicted decrease is lower
than a predefined accuracy on the objective function:

d(k) ≤ εJ , εJ > 0 (15)

Or if the iteration counter k reaches the maximum allowed
number of iterations permitted kmax. Finally, it has to be
noticed that a FIFO storage strategy is employed to manage
the size of the bundle which is limited to nB. This means
that the oldest element of the bundle is dropped and replaced
by the newer one.
Under the assumption of convexity on J(·), iterates of the
bundle algorithm (summarized on fig. 3) converge toward the
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optimal solution of the centralized optimization problem (4),
[14].
Let us also emphasize the fact that all iterates are feasible in
the sense of respecting all global and also local constraints.
This is ensured by forcing iterates to belong to the domain
D, this feature is very interesting since the algorithm can be
stopped, if necessary, at any iteration.

IV. SIMULATION RESULTS

A. Simulation results

The following scenario is assumed:
• The number of zones is nz = 3. The zones models

are derived from SIMBAD simulation tool [15]. They
have different dynamical behaviors and equipments
consumptions. However their occupation schedules are
identical. Each zone disposes of an electrical heating, a
ventilation system as well as a lighting device and two
shutters (fig. 4).

• The number of power sources is np = 2. The zones
have access to electrical power via grid and local elec-
trical production via solar and eolian production. The
power consumed from grid is supposed to be limited
at P1(·) = 10[kW ] (the zones are able to consume
18.45[kW ] if no limitation is introduced). The grid
power price changes over time: it is two times higher
during the period [6 a.m, 10 p.m]. The profile of local
production P2 is depicted on fig 5, its price is zero.

• The prediction horizon is N = 720[min.] = 12[hour].
The update period (control horizon) of the predictive
control is fixed to 20[min]. This means that a new
optimal solution has computed each 20[min].

• The meteorological data in our experiment corresponds
to Paris weather station of January 1st (winter season)
provided with SIMBAD.

We remind that the objective of each zone is to keep its
outputs (air temperature, CO2 level, illuminance) between
predefined profiles y`,y`, ` ∈ Z beside respecting local
constraints (∀` ∈ Z : u` ∈ [0, 1]5). The bounds on outputs
obviously depend on the occupation of the zone as depicted
on fig. 4 (lines in bold cyan and bold red).
The bundle algorithm related tuning parameters are:
• The accuracy on objective function εJ = 10−3 ,
• The maximum number of iteration and the bundle size,
kmax = nB = 50 ,

• The parameter µ = 10−2 and the ratio m = 0.1.

B. Simulation discussion

Fig. 4 depicts closed loop profiles of zones variables (inputs
and outputs) while Fig. 5 shows the resulting closed loop
power profiles as well as power consumption of the zones.
Note that global constraints on power consumption are
respected (fig. 5), this is also the case for zones inputs
saturations (fig. 4). This is not surprising since hard con-
straints are imposed on these variables. However, it has to
be noticed that the anticipative effect of the control strategy
enables the zones to take advantage of their inertia in order to

Fig. 4. Closed loop simulation results for nz = 3 zones. The local
constraints on comfort (bold cyan and bold red) and on actuators are
respected (u` ∈ [0, 1]5). During occupation time the constraints on comfort
are more stringent [10].

Fig. 5. Global constraints on power consumption. Top figure: power
consumed from grid, the constraints are respected while anticipating heating
when power is cheaper (before 6 a.m). The second figure shows its related
price (p.u : price unit). Third figure: local production power, the constraints
are saturated. The last figure shows the price of local prod. power (0).
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store energy (heat) during the period when energy is cheaper
(before 6 a.m) in order to minimize the amount of energy
bought from grid during the period when energy is more
expensive. This is performed without violation of the global
constraint on available powers (see temperature profiles and
heating control on Fig. 4 and grid power consumption Fig. 5).
It is interesting to remark that the temperature peak observed
in zone 3 is higher than the ones in the other zones. Shortly
speaking, it means that storing energy (heat) in the zone 3
is more economically interesting than to perform it in other
zones (actually, the zone 3 is well isolated comparing to the
others). This illustrates the optimal power dispatch performed
by the coordinator, remember that the coordinator doesn’t
have explicitly access to zones dynamical representations and
that zone related information is "summarized" in the bundle.
On the other hand, notice that the total amount of local
production is consumed in order to reduce the amount of
power both from grid. Finally, see also that, thanks to control
profiles, the constraints on outputs are respected, ensuring
comfort for occupants.

C. Analysis of the computational burden

An important issue concerns the computational time required
to achieve convergence. Since the local zone controllers
solve their related optimization problems in parallel, the total
amount of time T Tot/Iter spent during one iteration can be
stated as:

T Tot/Iter = Max
`∈Z

(T Zone/Iter
` ) + TQP/Iter (16)

Where: T Zone/Iter
` , ` ∈ Z is the computation time of each

zone MPC, this time obviously dependents exclusively on the
complexity of the local problems. However, TQP/Iter, which
is the amount of time required to solve the master problem,
is linked to the number of zones as well as the number of
power sources and the bundle iteration counter k. Fig. 6
depicts histograms of T Zone/Iter

` and TQP/Iter, it can be seen
that TQP/Iter and T Zone/Iter

` are quite equivalent. This indicates
that the computational efficiency of the master problem is
crucial since it is far from being negligible comparing to the
local MPC’s optimization problems as it can be the case with
other methods.
Moreover, let T tot := TQP +TZone be the total computation
time required for convergence of the bundle algorithm.
TQP ,TZone are respectively the total amount of time spent in
solving the QP master problem and the amount of time spent
in the zone layer. It can be noticed that the maximum com-
putation time is approximately 8.5[s]. This computational
time is sufficiently small for our application enabling for
instance a refreshing period of 1[min]. This corresponds to
a maximum number of iterations of 29, however the mean
number of iterations needed to achieve convergence (in our
case study) is 6 (Fig. 7).
Finally, an evaluation of the computational time of the master
problem when the number of zones increases is performed
(Fig. 8). Notice that this computational time remains reason-
able even when the number of zones is quite high (100).

Fig. 6. Distribution of the computation time for one iteration in the zone
layer (left) and coordination layer - master problem - (right). It can be
noticed that they are quite equivalent.

Fig. 7. Total computation time and number of iterations required for
convergence at decision instant.

Fig. 8. Computation time of the master problem for one iteration TQP/Iter

vs. number of zones nz . This computational time remains sufficiently small
even when the number of zones is quite high.
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These results were obtained on an Intelr Core(TM) i7 CPU
X920 @ 2.00 GHz, 3.23 Go RAM. ILOG CPLEX 12.1 solver
was used.

V. CONCLUSION

In this paper, a distributed model predictive control algorithm
has been proposed to handle limitations on power con-
sumption of a multizone/multisource building. The algorithm
is based on an iterative procedure that produces feasible
iterates. The use of a bundle algorithm to solve the master
problem ensures the efficiency of scheme. The proposed
algorithm has been assessed on a multisource/multizone
building showing the effectiveness of solution and its real
time implementability as well. While in this preliminary
study, only the fundamental aspects of the scheme have been
exposed, further studies will focus on extending the proposed
technique to handle coupled inputs as well as more complex
energy systems. This is the case for instance in double flow
air handling units. Another issue concerns the resulting QP
optimization problem that may be too large if the number of
zones and/or shared powers is very high. This last issue will
be studied as well.
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