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Abstract— Motivated by applications of systems interacting
with their environments, we study the design of passivity-
based controllers for a class of hybrid systems. Classical and
hybrid-specific notions of passivity along with detectability and
solution conditions are linked to asymptotic stability. These
results are used to design passivity-based controllers following
classical passivity theory. An application, pertaining to a point
mass physically interacting with the environment, illustrates the
definitions and the results obtained throughout this work.

I. INTRODUCTION

Dissipativity and its special case, passivity, provide a

useful physical interpretation to stability and stabilizability

problems as they establish a relationship between the energy

injected in and dissipated by a system. Their application in

both the analysis and the design of control systems has been

the subject of several textbooks [1], [2], [3], [4] and seminal

papers [5], [6], [7], [8], [9]. Moreover, the passivity-based

control design technique has been shown to be particularly

useful in designing controllers that can be well understood

from an energetic perspective. The problem of stabilizing

a system to a given equilibrium point, in particular, is

addressed by designing a feedback controller such that the

overall energy function has the desired form and minimum,

and by selecting the input so that the energy of the system

is dissipated (see, e.g., [7]).

Dissipativity and passivity have been recently considered

for several types of hybrid systems. Passivity of switching

systems was investigated in [10]. Motivated by haptic and

teleoperation applications, a notion of passivity for systems

in which the controller switches between different operative

modes was proposed in [11]. Results about dissipativity of

switching systems appeared also in [12], where multiple

storage functions were considered. Passivity and passivity-

based control for systems undertaking impacts and unilateral

constraints have been investigated in [13]. The results are

applied to mechanical systems including robotic manipu-

lators with rigid or flexible joints. In [14], passivity-based

control techniques are employed to regulate walking for

a class of bipedal robots (see also [15]). Impact Poincaré

maps are considered as a tool to investigate stability of
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the periodic orbits characterizing the desired walking be-

havior. In [16], the authors consider dissipativity theory for

a class of impulsive dynamical systems. In particular, the

framework in [16] considers different inputs and outputs

maps for respectively the continuous-time evolution and the

instantaneous changes, and results linking observability to

asymptotic stability for the design of feedback controllers

are presented. More recently, a general notion of dissipativity

for a class of hybrid systems was linked to detectability

and used to establish asymptotic stability for large-scale

interconnections of hybrid systems in [17].

Building from the ideas in [16] and [17], and driven

by an application of a mechanical system interacting with

the environment, this paper studies the design of passivity-

based controllers for a class of hybrid systems. In particular,

we study the case of hybrid systems in which the energy

dissipation may only happen along either the continuous or

the discrete dynamics. For such systems, a weaker notion

of passivity, encompassing the definition given in [16], is

introduced and shown how it can be linked to asymptotic sta-

bility. For this purpose, a notion of detectability is employed.

The result is then applied to an application that consists of

a mechanical system capturing the dynamics of a simple

robotic manipulator (see also [18], [19]) that is required to

interact physically with the environment through the effect

of a control input affecting the continuous dynamics.

The remainder of the paper is organized as follows. In

Section II, the application is presented. Section III presents

the general definition of passivity and the conditions to

link this property to asymptotic stability. In Section IV, a

passivity-based control result is given and then applied to the

special passivity case of the application. Numerical results

are then presented in Section V.

II. MOTIVATIONAL APPLICATION

0-1-2-3

position

input

Fig. 1. Motivational application: a point mass interacting with the
environment.

We consider the mechanical system depicted in Figure

1, which consists of a point mass driven by a controlled
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force. The mass is constrained to move horizontally and,

during its motion, it may come into contact with a surface

located at the origin of the line of motion. The position and

the velocity of the mass have been denoted with x1 and

x2, respectively. In order to model collisions between the

ball and the surface, inspired also by [20], we consider a

discontinuous contact model that depends on the velocity

of the system at impacts. More specifically, when the impact

velocity is lower than a certain threshold, denoted as x̄2 > 0,

the mass is subject to a contact force that depends on the

viscoelastic properties of the contact material. Assuming

unitary mass for sake of simplicity, the system is described

by the following equations:

ẋ1 = x2, ẋ2 = vc − fc(x), (1)

where vc ∈ R denotes the input force, fc(x) the contact force

fc(x) =

{
kcx1 + bcx2 if x1 > 0

0 if x1 ≤ 0

in which kc > 0 and bc > 0 are, respectively, the elastic and

damping coefficients of the compliant contact model.

On the other hand, when a collision with the surface occurs

with a velocity of the mass greater or equal than x̄2, the

impact is assumed to be impulsive and, accordingly, the

rigid body instantaneously rebounds or jumps. The contact

condition can be modeled as

x1 ≥ 0 and x2 ≥ x̄2 (2)

in which x1 = 0 denotes the position of the vertical surface,

while the new value of the state variables after the impact,

denoted in the following with the superscript +, can be

described by the reset law x+
1 = x1, x+

2 = −̺x2, where

̺ ∈ [0, 1] represents the restitution coefficient.

Suppose that the control goal is to stabilize this simple

mechanical system to a fixed position in contact with the

vertical surface, say, the origin. Consider the quadratic func-

tion V (x) = 1
2x

2
1 +

1
2x

2
2 and note that the following holds:

1) For each x such that (2) holds, since x1 = 0 and ̺ ∈
[0, 1],

V (x+) =
1

2
x2
1 +

1

2
̺2x2

2 ≤
1

2
x2
1 +

1

2
x2
2 = V (x).

2) For each x not in (2), if x1 ≤ 0
〈
∇V (x),

[
x2

vc − fc(x)

]〉
= x2(x1 + vc)

and if x1 > 0
〈
∇V (x),

[
x2

vc − fc(x)

]〉
= x2((1− kc)x1

+vc − bcx2)

Picking vc = −x1+wc for x1 ≤ 0 and vc = −(1− kc)x1+
bcx2 + wc for x1 < 0, where wc is a new input, makes

the right-hand side of the expressions in item 2) above to

be equal to x2wc. The resulting expressions imply that the

variation of V during flows is no larger that the product

x2wc, which can be interpreted as a passivity property of

the system with input wc and output yc := x2. However, a

similar passivity property does not seem to hold at jumps for

this storage function. This motivates to investigate passivity-

based control design methods for hybrid systems that are

applicable when passivity holds only during one regime only.

III. GENERAL DEFINITIONS AND RESULTS

A. Passivity Notions

We consider hybrid systems H as in [21] given by1

H





ẋ ∈ F (x, vc) (x, vc) ∈ C
x+ ∈ G(x, vd) (x, vd) ∈ D
y = h(x, v)

(3)

with state x ∈ R
n, input v =

[
v⊤c , v⊤d

]⊤
∈ R

m in which

vc ∈ R
mc and vd ∈ R

md are respectively the inputs acting

on the flows and jumps, and output y ∈ R
p. The sets C ⊂

R
n×R

mc and D ⊂ R
n×R

md define the flow and jump sets,

respectively; the set-valued mappings F : Rn × R
mc ⇉ R

n

and G : Rn × R
md ⇉ R

n define the flow map and jump

map, respectively; finally the function h : Rn × R
m → R

p

defines the output. Since only some components of the output

y might be involved in the changes of energy during flows

and jumps, we define yc = hc(x, vc) ∈ R
mc and yd =

hd(x, vd) ∈ R
md , which corresponds to the case when the

size of inputs vc and vd coincide with the size of the outputs

yc and yd, respectively (property that in [4] is called duality

of the output and input space).

For this class of hybrid systems we consider the following

concept of passivity. Below, hc, hd and a compact set A ⊂
R

n satisfy hc(A, 0) = hd(A, 0) = 0.

Definition 1: A hybrid system H for which there exists a

function V : Rn → R≥0

• continuous on R
n;

• continuously differentiable on a neighborhood of C;

• satisfying for some functions ωc : R
mc × R

n → R and

ωd : Rmc × R
n → R

〈∇V (x), ξ〉 ≤ ωc(vc, x) ∀(x, vc) ∈ C, ξ ∈ F (x, vc) (4)

V (ξ)− V (x) ≤ ωd(vd, x) ∀(x, vd) ∈ D, ξ ∈ G(x, vd) (5)

called a storage function, is said to be

• passive with respect to a compact set A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc (6)

(vd, x) 7→ ωd(vd, x) = v⊤d yd. (7)

It is then called flow-passive (respectively, jump-

passive) if it is passive with ωd ≡ 0 (respectively,

ωc ≡ 0).

• strictly passive with respect to a compact set A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − ρc(x)
(vd, x) 7→ ωd(vd, x) = v⊤d yd − ρd(x),

1At times, for simplicity in the notation, we will drop the dependency
on v on the data (C, F,D,G, h) and write, for example, F (x) instead of
F (x, v) and x ∈ C instead of (x, v) ∈ C.
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where ρc, ρd : Rn → R≥0 are positive definite with

respect to A. It is then called flow-strictly passive (re-

spectively, jump-strictly passive) if it is strictly passive

with ωd ≡ 0 (respectively, ωc ≡ 0).

• output strictly passive with respect to A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − y⊤c ρc(yc)
(vd, x) 7→ ωd(vd, x) = v⊤d yd − y⊤d ρd(yd),

where ρc : R
mc → R

mc , ρd : R
md → R

md are

functions such that y⊤c ρc(yc) > 0 for all y with

yc 6= 0 and such that y⊤d ρd(yd) > 0 for all y with

yd 6= 0. It is then called flow-output strictly passive

(respectively, jump-output strictly passive) if it is output

strictly passive with ωd ≡ 0 (respectively, ωc ≡ 0).

The definitions of passivity above include the ones typi-

cally defined for the continuous and discrete-time settings as

well as special cases when passivity holds only for the flow

or jump equation. These special cases, denoted respectively

as flow-passivity and jump-passivity, are motivated also by

the application introduced in Section II, in which energy

dissipation happens along flows, but not necessarily along

jumps. It will be shown in Section III-C that such notion of

passivity can be linked to asymptotic stability under weaker

conditions than when using the standard notions. Passivity-

based control techniques for such special cases will also be

provided in Section IV.

1) Application revisited: Consider the mechanical system

introduced in Section II. By considering the Filippov regu-

larization of the discontinuous contact force fc(x) given by

f r
c (x) =





kcx1 + bcx2 if x1 > 0
con {0, bcx2} if x1 = 0

0 if x1 < 0 ,
(8)

the mechanical system of interest can then be described by

means of the following (regularized) hybrid system

HS






ẋ ∈ F (x, vc) :=

[
x2

vc − f r
c (x)

]
x ∈ C

x+ = G(x) :=

[
x1

−̺x2

]
x ∈ D

(9)

with state x = [x1, x2]
⊤ ∈ R

2, input vc ∈ R, and sets C and

D given by

C := {x ∈ R
2 : x1 ≤ 0} ∪ {x ∈ R

2 : x1 ≥ 0, x2 ≤ x̄2}
D := {x ∈ R

2 : x1 ≥ 0, x2 ≥ x̄2} .
(10)

In the following we show how the control input vc can

be designed to obtain a new hybrid system, denoted as HS1 ,

which, by choosing as output yc = hc(x) := x2, is flow

passive with respect to the compact set A = (x⋆
1, 0), where

x⋆
1 ≥ 0 denotes the desired set-point position for the mass.

The choice x⋆
1 ≥ 0 requires the mass to maintain a contact

with the vertical surface. Inspired by the energy shaping

approach, see among others [7], which consists in assigning

a desired potential energy to the closed-loop mechanical

system, let the control input vc in (9) be given by

vc=v⋆c (x1, wc) :=

{
kcx1 − kP (x1 − x⋆

1) + wc if x1 > 0
−kP (x1 − x⋆

1) + wc if x1 ≤ 0
(11)

in which kP > 0 and wc ∈ R is a new input. Accordingly,

the resulting hybrid system is then given by

HS1






ẋ ∈ FS1(x,wc) :=[
x2

v⋆c (x1, wc)− f r
c (x)

]
x ∈ C

x+ = G(x) x ∈ D.
(12)

By considering the storage function

V (x) =
1

2
kP (x1 − x⋆

1)
2 +

1

2
x2
2, (13)

along flows we obtain (see [22])

〈∇V (x), η〉 ≤ wcyc ∀η ∈ FS1(x,wc) .

Along jumps we have V (G(x))−V (x) ≤ − 1
2 (1−̺2)y2c ≤ 0

for all x ∈ D. The two properties above show that system

(12) is flow-passive with respect to the compact set A with

output yc, input wc, and function ωc(wc, x) := wcyc.
Finally, the new input wc in (12) can be designed to induce

flow-output strict passivity. In particular, let the control input

wc in (11) be chosen as

wc = −k1x2 + w̃c (14)

in which k1 > 0 is the damping injection gain and w̃c ∈
R is a new control input. By considering the same storage

function (13), with the choice (14) along flows it now holds

〈∇V (x), ξ〉 ≤ w̃cyc − k1y
2
c ∀ξ ∈ FS1(x,wc) .

Since we have that V (G(x)) − V (x) ≤ 0, as shown above,

system (12) with wc given by (14) is flow-output strictly

passive with respect to the compact set A = (x⋆
1, 0) with

output yc = x2, input w̃c, and functions ωc(w̃c, x) := w̃cyc
and ρc(yc) := k1yc.

B. Stability and Detectability Notions

In this work, for a hybrid system H, we consider the

notion of solution given in [23]. Moreover, we consider the

following stability definitions for hybrid systems when their

input is set to zero.

Definition 2: A compact set A ⊂ R
n is said to be

• 0-input stable if for each ε > 0 there exists δ > 0
such that each maximal solution pair (φ, 0) to H and

φ(0, 0) = ξ, |ξ|A ≤ δ, satisfies |φ(t, j)|A ≤ ε for all

(t, j) ∈ domφ;

• 0-input pre-attractive if there exists µ > 0 such that

every maximal solution pair (φ, 0) to H and φ(0, 0) =
ξ, |ξ|A ≤ µ, is bounded and if it is complete satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• 0-input pre-asymptotically stable if it is 0-input stable

and 0-input pre-attractive.

7418



When every maximal solution is complete, the prefix “pre”

can be removed. Asymptotic stability is said to be global

when the attractivity property holds in C ∪D.

We define a general detectability property for hybrid

systems H with inputs set to zero. In the next section, this

notion will permit linking passivity with stability.

Definition 3 (see Definition 6.2 in [24]): Given sets A
and K ⊂ R

n, the distance to A is 0-input detectable relative

to K for H if every complete solution pair (φ, 0) to H such

that

φ(t, j) ∈ K ∀(t, j) ∈ domφ
⇒ lim

t+j→∞, (t,j)∈domφ
|φ(t, j)|A = 0.

(15)

If H does not have inputs, the distance to A is detectable

relative to K for H if every complete solution φ to H satisfies

(15).

When K is given by the set of points x such that h(x, 0) =
0, the condition φ(t, j) ∈ K for all (t, j) ∈ domφ is

equivalent to holding the output to zero. In such a case,

Definition 3 reduces to the classical notion of detectability.

C. Basic Properties

We relate different forms of passivity to asymptotic sta-

bility with zero input, that is, for the hybrid system H with

v = 0 given by

H0





ẋ ∈ F (x, 0) (x, 0) ∈ C
x+ ∈ G(x, 0) (x, 0) ∈ D
y = h(x, 0).

(16)

Below, given a set S ⊂ R
n × R

m, let

Π0(S) := {x ∈ R
n : (x, 0) ∈ S} .

Also, we say that a set-valued mapping φ : S ⇉ R
n with

S ⊂ R
n × R

m is outer semicontinuous relative to S if

for any z ∈ S and any sequence {zi}
∞
i=1 with zi ∈ S,

limi→∞ zi = z, and any sequence {wi}
∞
i=1 with wi ∈ φ(zi)

and limi→∞ wi = w we have w ∈ φ(z).

For the next proposition to hold, the data of H0 has to

satisfy the following properties:

(A1) The sets Π0(C) and Π0(D) are closed in R
n.

(A2) The set-valued mapping (x, 0) 7→ F (x, 0) is

outer semicontinuous relative to R
n × {0} and locally

bounded, and for all x ∈ Π0(C), F (x, 0) is nonempty

and convex.

(A3) The set-valued mapping (x, 0) 7→ G(x, 0) is

outer semicontinuous relative to R
n × {0} and locally

bounded, and for all x ∈ Π0(D), G(x, 0) is nonempty.

Observe that property (A1) simply requires that the set C
and D are closed for the case in which v = 0.

Proposition 1: Given a compact set A ⊂ R
n, if the hybrid

system H satisfying (A1)-(A3) is

1) passive with respect to A with a storage function V
that is positive definite with respect to A then A is

0-input stable for H.

2) output strict passive with respect to A with a storage

function V that is positive definite with respect to A
and the distance to A is detectable relative to

{
x ∈ Π0(C) : hc(x, 0)

⊤ρc(hc(x, 0)) = 0
}
∪{

x ∈ Π0(D) : hd(x, 0)
⊤ρd(hd(x, 0)) = 0

}

(17)

for H0 then A is 0-input pre-asymptotically stable for

H.

3) strictly passive with respect to A with a storage func-

tion V that is positive definite with respect to A then

A is 0-input pre-asymptotically stable for H.

For the proof of the above proposition the reader is referred

to [22].

Remark. The 0-input stability property of A in items 1

and 2 of Proposition 1 can be established without insisting

on conditions (A1)-(A3). The attractivity property in item

2 requires these conditions due to the use of an invariance

principle from [24]. Conditions (A1)-(A3) guarantee required

structural properties of the solution set to H0, in particular,

sequential compactness. The second item of Proposition

1 can also be asserted from [17, Theorem 2] (its proof

does not use an invariance principle) when specializing the

general dissipativity concept therein to the passivity case.

The purpose of Proposition 1 is to enable the special cases

that are considered in Proposition 2 below. ⊳

The results given in Proposition 1 can also be applied to

the special cases of flow and jump passivity given in Defi-

nition 1. However, for these latter cases, less conservative

conditions can be obtained as shown in the following result

whose proof is available in [22].

Proposition 2: Given a compact set A ⊂ R
n, if the hybrid

system H satisfying (A1)-(A3) is

1) flow-passive or jump-passive with respect to A with a

storage function V that is positive definite with respect

to A then A is 0-input stable for H.

2) flow-output strictly passive with respect to A with a

storage function V that is positive definite with respect

to A and

2.a) the distance to A is detectable relative to
{
x ∈ Π0(C) : hc(x, 0)

⊤ρc(hc(x, 0)) = 0
}

(18)

for H0,

2.b) every complete solution φ to H0 is such that

for some δ > 0 and some J ∈ N we have tj+1 −
tj ≥ δ for all j ≥ J ,

then A is 0-input pre-asymptotically stable for H.

3) jump-output strictly passive with respect to A with a

storage function V that is positive definite with respect

to A and,

3.a) the distance to A is detectable relative to
{
x ∈ Π0(D) : hd(x, 0)

⊤ρd(hd(x, 0)) = 0
}

(19)

for H0,

3.b) every complete solution φ to H0 is Zeno,
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then A is 0-input pre-asymptotically stable for H.

4) flow-strict passive with respect to A with a storage

function V that is positive definite with respect to A,

and 2.b) holds, then A is 0-input pre-asymptotically

stable for H.

5) jump-strict passive with respect to A with a storage

function V that is positive definite with respect to A,

and 3.b) holds, then A is 0-input pre-asymptotically

stable for H.

IV. PASSIVITY-BASED CONTROL

The concepts of flow- and jump-passivity introduced in

Definition 1 can be combined with the notion of detectability

introduced in Section III-B and the properties of the solution

given in Proposition 2 for stabilization by means of static out-

put feedback. The result given in the following theorem, in

particular, allows to directly employ passivity-based control

paradigms – see for instance [4], [7] – for the special cases

of flow and jump passivity in hybrid systems.

Theorem 1: Given a compact set A ⊂ R
n and a hybrid

system H satisfying (A1)-(A3) with continuous output maps

x 7→ hc(x) and x 7→ hd(x) the following hold:

1) If H is flow-passive with respect to A with a storage

function V that is positive definite with respect to A
and there exists a continuous function kc : R

mc →
R

mc , with y⊤c kc(yc) > 0 for all yc 6= 0 having defined

yc = hc(x), such that the resulting closed-loop system

with vc = −kc(yc) and vd = 0 has the following

properties:

1.1) the distance to A is detectable relative to
{
x : hc(x)

⊤kc(hc(x)) = 0, (x,−kc(hc(x))) ∈ C
}

(20)

with vd = 0,

1.2) every complete solution φ with vd = 0 is such

that for some δ > 0 and some J ∈ N we have

tj+1 − tj ≥ δ for all j ≥ J ,

then the control law vc = −kc(yc), vd = 0 renders A
pre-asymptotically stable.

2) If H is jump-passive with respect to A with a storage

function V that is positive definite with respect to A
and there exists a continuous function kd : R

md →
R

md , with y⊤d kd(yd) > 0 for all yd 6= 0 having defined

yd = hd(x), such that the resulting closed-loop system

with vc = 0 and vd = −kd(yd) has the following

properties:

2.1) the distance to A is detectable relative to
{
x : hd(x)

⊤kd(hd(x)) = 0, (x,−kd(hd(x))) ∈ D
}

(21)

with vc = 0,

2.2) every complete solution φ with vc = 0 is Zeno

then the control law vd = −kd(yd), vc = 0 renders A
pre-asymptotically stable.

For the proof of Theorem 1, the reader is referred to [22].

Remark. Theorem 1 extends the classical passivity control

results (see for instance [2], [3], [1], [4]) to the class of

hybrid systems considered in this work. With respect to

other existing approaches available in literature, such the the

ones in [16] for impulsive dynamical systems, the proposed

framework here focuses also on the special cases of flow and

jump passivity which have been shown to be relevant in some

applications. In fact, the results in [16] cannot be applied

to the application considered in this paper since the output

strict passivity property does not hold both along flows

and jumps. The approach proposed here links passivity to

asymptotic stability thought detectability and, for the special

cases, it requires also some properties of the solutions. The

detectability conditions required here are weaker than the

observability property imposed in [16]. ⊳

A. Application re-revisited

Consider the hybrid system HS given in Section III-A.1.

The control goal is to stabilize the point-mass to a position

in contact with the vertical surface, namely to render the set

A = (x⋆
1, 0), with x⋆

1 ≥ 0, globally asymptotically stable

for the closed-loop hybrid system. Theorem 1 can be em-

ployed to assert that property by means of the energy-based

controller (11) (passivation by feedback and energy shaping)

in which the remaining control input wc is synthesized as a

damping injection. This fact is established by the following

proposition for which a proof is available in [22].

Proposition 3: For the hybrid system (9) with control

input vc chosen as in (11), the control law wc = −k1yc,
with k1 > 0, renders the compact set A = (x⋆

1, 0) globally

asymptotically stable.

Remark. Observe that asymptotically the control input vc
in (11) is given by v⋆c (x

⋆
1, 0) = kcx

⋆
1. From a physical

viewpoint, the mass is then applying a force to the vertical

surface that can be varied according to the choice of the set-

point position x⋆
1 ≥ 0. Passivity-based control techniques are

in fact employed in several force control schemes (see [25]

and references therein). ⊳

V. SIMULATIONS

Taking advantage of the framework for numerical simula-

tions of hybrid systems available at [26], this section presents

some numerical results obtained considering the passivity-

based control law derived in Section IV for the mechanical

system described respectively in Sections II and III-A.1. The

parameters of the system and of the passivity-based control

law used in the simulations are M = 1 kg, ̺ = 1, kc = 8
N/m, bc = 10 Ns/m, kP = 10, k1 = 2, x̄2 = 0.1 m/s and

x⋆
1 = 0.1 m.

By considering as initial condition for the mass a certain

constant distance from the vertical surface, in particular

x(0, 0) = (1, 0), for the position x1 and the velocity x2

we obtained the trajectories depicted respectively in Figures

2 and 3. Observe that at t = 0, j = 0 the mass, governed

by the passivity-based control law (11) with wc = −k1yc,
starts accelerating towards the surface. Then at t ≈ 0.5
sec the surface is reached with a velocity larger than x̄2.

Accordingly, the mass instantaneously rebounds subject to
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the jump map in (9). After the collision, the ball continues

to flow until another rebound occurs. It is worth to note that,

since during the continuous-time evolution the controller is

dissipating kinetic energy, collisions are achieved with pro-

gressively decreasing impact velocities. As a consequence,

once collisions are achieved with a speed lower or equal

than x̄2, the impacts become compliant and the mass finally

remains in contact with the surface reaching asymptotically

the final desired position x⋆
1 = 0.1 m by flowing only.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x
1

[m
]

t [sec]

Fig. 2. Position x1 of the mass during a simulation.
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Fig. 3. Velocity x2 of the point mass during a simulation.

VI. CONCLUSION

In this paper we considered the design of passivity-based

controllers for a class of hybrid systems. Motivated by an

application of a mechanical systems interacting with the

surrounding environment, a weak notion of passivity, for sys-

tems in which dissipation of energy is allowed to happen only

during the continuous or the discrete time behavior respec-

tively, has been proposed and linked, through detectability,

to asymptotic stability. The proposed methodology was em-

ployed to show the effectiveness of classical passivity-based

control design in the application of interest. Future work will

be focused on showing the effectiveness of passivity-based

control paradigms for aerial vehicles physically interacting

with the surrounding environment.
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