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Abstract— A direct application of the variable-gain super-
twisting algorithm (VGSTA) is implemented for torque feed-
back on a handlebar of a riding simulator. This control
strategy aims to compensate perturbations changing with the
system states. Thanks to the good tracking performance and
robustness/insensitiveness of such a control method, a precise
estimation of the rider’s torque applied on the riding simulator
handlebar is possible. A first-order sliding-mode observer with
stabilization is designed for the estimation of the unknown
input rider action. Experimental implementation and analysis
are provided to point-out the effectiveness of the proposed
approach.

I. INTRODUCTION

In the past, motorcycles were seen as distraction tool than

transportation one. But during the last decade and under

stress of daily life constraints, riders’ attitudes have evolved.

Its squeeze ability and energy consumption have made her

an indispensable means of transportation, especially in large

cities, despite the associated risks.

Nowadays, the driving safety has become the primary con-

cern of authorities. Thanks to high advances of mechatronic

devices, driving simulator are now widely used for risk and

driving behavior studies. A driving simulator is composed

of various sub-systems including the mechanical platform,

visual environment and associated softwares [1], [2]. Even

that driving is mainly a visual task, the multiplication of sen-

sory cues allows to enhance the simulation fidelity. Among

these cues, torque feedback on simulator handlebar/steering-

wheel is one of the most important features of a successful

driver immersion. Nevertheless, in car driving simulator,

torque feedback is intended to supply the driver with a good

information on road friction and hence, a small restitution of

the real induced torque is sufficient.

However, riding a two-wheeled vehicle is more complex

deal than driving a car one. In addition to the road path

following, the rider must ensures the vehicle stabilization.

For example, in a turn maneuver, handy counter-steering

is required beyond a given speed. This action is achieved

mainly by applying an adequate torque on the motorcycle’s

handlebar in order to compensate tire/road efforts, that spread

along the steering mechanism, and thus tilt the bike with

a desired roll angle to hold its equilibrium. This exam-

ple, among others, highlights that two-wheeled vehicles are
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mainly driven by the handlebar applied torque rather than

the wheel steer angle. Consequently, in a motorcycle riding

simulator, a full-scale torque feedback must be realized.

Most of the torque control feedback is done by computing

at each sample time the resulting self-alignment tire-road

effort and next, a PID control is implemented for the DC

motor current tracking. In [3], torque feedback is designed

by modeling the efforts flux exchange, between tire/road

contact and the vehicle driver, as a two-part network haptic

interaction. In this paper, the torque feedback is implemented

as a model-reference following approach, in which, han-

dlebar steer angle reference is computed. Next, a robust

perturbation rejection control for the reference tracking is

designed. This control approach is more efficient since it

avoids the recompilation of the resulted torque, requiring rate

and acceleration information, and also avoids algebraic loops

which may cause numerical instabilities.

In this field, Sliding Mode Control (SMC) is a well

known approach for rejecting matched perturbations (uncer-

tainties/disturbances) [4]. This control approach has greatly

matured recently to overcome associated disadvantages such

as chattering and to be adapted to the real-time implemen-

tation constraints. The High-Order Sliding-Mode (HOSM)

methods, like Super-Twisting Algorithm (STA) are widely

used [5]. However, the homogeneous nature of the standard

STA does not allow to compensate perturbations growing

simultaneously with the state variables. That is why it is

very important to design non homogeneous extension of the

standard STA with variable gains (VGSTA) [6].

This paper is organized as follows: next section is dedi-

cated to the problem statement. In section 3, a sliding-mode

observer is used for the estimation of the rider torque exerted

on the simulator’s handlebar. Section 4 deals with a direct

application of the VGSTA to implement a handlebar torque

feedback. Experimentation and conclusion wrap up the paper.

II. PROBLEM STATEMENT

Actuate the simulator’s mechanical platform amounts to

setting its states motion in accordance with the user’s desired

actions. As shown in figure (1), rider’s actions are the main

inputs to the simulator software which includes, among

others, the vehicle model. This model aims to compute the

dynamics of a virtual motorcycle where the resulting states

will be serve as a basis to generate reference trajectories.

Since the motorcycle is mainly controlled by the applied

rider’s steering torque and due to the absence of a torque

sensor, a precise estimation of the rider’s torque applied

on the simulator’s handlebar is necessary. Moreover, a good
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torque feedback on the simulator’s handlebar is mandatory.

To achieve this goal, the simulator’s handlebar is attached

to a DC motor via a double pulley-belt system. An optical

encoder is mounted on the motor axis for the angle mea-

surement [7]. The use of the pulley-belt system is a suitable

solution to enhance the resolution of the position measure

and for the multiplication of the maximum allowable motor

torque. The resulting system constitutes the new interface

system between the simulator’s rider and the virtual motor-

cycle.
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Fig. 1. Overall motorcycle simulator mechatronic architecture

From this discussion, it arises that our aims is twofold:

• given the handlebar position and motor current informa-

tion, design an observer to estimate the the unknown

torque input applied by the rider on the simulator’s

handlebar,

• design a handlebar full-scale feedback torque.
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Fig. 2. Haptic device for torque feedback

III. SLIDING MODE OBSERVER DESIGN FOR THE RIDER’S

TORQUE ESTIMATION

In this section, we focus on the applied rider’s torque

estimation which is considered as an unknown input. For

this, two sliding mode observers (SMO) will be designed

in view of comparison. The first SMO is that of Walcott-

Zak (WZO) [8], which is an extension of the well known

1st order SMO [9]. The second one is based on the super-

twisting algorithm (STAO) [10].
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Fig. 3. Unknown input sliding observer diagram

The state-space representation of the new handlebar in-

terface is derived given the mechanical equation of the

handlebar/motor assembly as following:

ẋ = Ax+ Bu+Dζ + τsp
y = θh = Cx

(1)

where, x = [θ̇h, θh]
T is the state vector including han-

dlebar position and position rate, u = ktNi is the control

input, ζ = τr is the rider’s torque which is a bounded

Lebesgue measurable unknown input ‖ζ‖ ≤ ρ, ρ ≻ 0. τsp =
−βssign(θ̇h) is considered as a known external bounded

perturbation [11] and D, C are respectively of full column

and row rank.

For system (1), it is easy to check that the observer match-

ing condition is not full-filed since rank(D) 6= rank(CD).
Nevertheless, according to [12], the WZO can be applied

by generating the estimation of the handlebar position rate

(Fig.3). Hence, the new output matrix is computed according

to the relative degree of the system with respect to each

output. In our case, Ca is the 2×2 identity matrix. Then, we

can make use of the following WZO equation :

˙̂x = Ax̂+ Bu+ L(ya − ŷa)−DE(ŷa, ya, η) (2)

where ya = [y, ẏ] and the generated additional output ẏ

is obtained by a robust super-twisting exact differentiator

[13]. ŷ is the output estimate. E(ŷ, y, η) is the discontinuous

injection term which depends on the output estimation error.

The term L(y−ŷ) is intended for stabilization where the gain

matrix L can be freely assigned ((A, C) is observable). After

a finite time convergence (exact convergence if the measured
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output y is noise free), the unknown input is estimated by

(proof in [8]): ζ = −E(ŷa, ya, η).
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Fig. 4. Example of an estimated rider’s torque using simulation test, (a)
using WZO, (b) using STAO. Zoom : At right zoom in [1.8s-3.5s], at left
zoom in [6s-8.5s]

Unfortunately, the realization of the WZO requires filtra-

tion due to the discontinuous term and the time discretization

effect. Recently, thanks to STA, the developed hierarchical

observers (STAO) avoid the filtration and provide asymptotic

accuracy of the derivative estimation at each single realiza-

tion step [9], [10]. Nevertheless, STAO require knowledges

about the unknown input successive derivatives. According

to [10], system (1) satisfy the following assumptions:

(a) system (1) has a relative degree r = n = 2 w.r.t the

unknown input, hence, it is strongly observable,

(b) ζ(t) is a bounded Lebesgue measurable unknown input

‖ζ‖ ≤ ρ, ρ ≻ 0,

(c) ζ(t) is bounded with successive derivatives up to the

order k bounded by the same constant as
∥

∥ζ(k+1)(t)
∥

∥ ≤
ρ′, ρ′ ≻ 0 (herein k = 1).

Next, the observer is implemented by the following ex-

pression:

ż = Az + Bu+ L(y − Cz)
x̂ = z +Kv

v̇ = Λ(y − Cz, v)
(3)

where, vector v and the discontinuous term Λ(y − Cz, v)
are chosen differently depending on what the system is strong

observable or strong detectable (see [10] for equations and

proofs).

Figure (4) illustrates an example of a simulated ±10 (N.m)

steering torque and its estimation by applying the unknown

input WZO and STAO (equations (2) and (3)). As shown in

this figure, both observers provide time finite convergence

and exact unknown input estimation but STAO are more

suitable since they do not require filtering and they are

numerically more stable. We note that the gap, between the

reference and estimated torques, is mainly due to the dry

friction component. Indeed, torque plot gives the absolute

torque τr+βssign(θ̇h) and to recover the rider’s torque, one

must compensate for the dry friction. This compensation will

be covered in the following section.

IV. TORQUE FEEDBACK CONTROL

As aforementioned, the rider torque is considered as the

main input to the virtual motorcycle dynamic model (Figure

5). On simulator, the rider should be able to drive a virtual

motorcycle as close as a real drive situation. For this end, it

is crucial to feedback torque information at full-scale.
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Fig. 5. Diagram for interfacing the virtual motorcycle and the simulator’s
handlebar

Consider the present handlebar system state-space equa-

tion (1). Due to its form, this equation can be written as:

ẋ = Ax+ B(u+ f(x, t)) (4)

where x, u are same signals in equation (1) and f(x, t) =
τr−βssign(θ̇h) is a disturbance including the continuous rid-

ing torque τr and a bounded piecewise smooth perturbation

related to the dry friction.

When the perturbation f(x, t) is bounded by a known

function ρ(x) such that |f(x, t)| ≤ ρ(x), the first-order Slid-

ing Mode Controller (SMC) ν = −ρ(x)sign(σ) can be used

even for a non differentiable perturbations at the expense

of a discontinuous control (chattering). The system under

control is of relative degree 2, thus, we are using VGSTA to

avoid the chattering otherwise we can use twisting algorithm

(STA) and do not use the switching surface. The Super-

Twisting Algorithm (STA) were designed as an absolutely

continuous control law allowing to compensate Lipschitz

unbounded perturbations but with a bounded time derivative

[14]. However, we need VGSTA because the uncertainties

are bounded with known function.

In the reminder of this section, a direct application of

the VGSTA is used for the control purpose of this torque

feedback. More details and proofs are available in [6].

For the current system, A and B have the following forms:

A =

[

a11 0
1 0

]

B =

[

b

0

]

(5)
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For this system, the following assumption are true:

1) B is full column rank, i.e., rank(B) = 2,

2) The pair (A,B) is controllable,

3) The disturbance f(x, t) and its gradient are bounded.

From assumption (1) and (2), one can find a linear

transformation T for which, the system of equation (4) can

be made in the following regular form:

[

η̇

ξ̇

]

= T AT −1

[

η

ξ

]

+ T B(u+ f1(η, ξ, t)) (6)

Referring to the equation (5), a proper choice of T as:

T =

[

B⊥

B†

]

→ T =

[

0 −b

b−1 0

]

(7)

allows to obtain the new system representation as:

{

η̇ = −b2ξ

ξ̇ = a11ξ + u+ f1(η, ξ, t)
(8)

The main idea of sliding mode control is to design the

sliding surface variable:

σ = ξ −Kη (9)

such that, when the motion reaches the sliding surface

(σ = 0), the reduced-order model (η̇ = −b2Kη) has

the prescribed performance. To compensate for disturbance

f1(η, ξ, t), an injection term ν is added to the equivalent

control in order to form the global control variable u. By

using variables [η, σ]T as state vector, the control signal is

expressed by:

u = ueq + ν = −(a11+Kb2)Kη− (a11+Kb2)σ+ ν (10)

and the system representation (8) can be transformed to

the following one :

{

η̇ = −b2ξ

σ̇ = ν + f1(η, σ +Kη, t)
(11)

in which, ν is taken to be a super-twisting algorithm with

variable gain (VGSTA) :

ν = −k1(t, x)ϕ1(σ)−

∫ t

0

k2(t, x)ϕ2(σ)dt (12)

ϕ1(σ) =
√

|σ|sign(σ) + k3σ ϕ2(σ) =
dϕ1(σ)

dσ
ϕ1(σ)

here, k1, k2 are variable gains which make the sliding

surface insensitive to perturbations growing with bounds

given by known functions. k3 allows to deal with pertur-

bations growing linearly in σ. When k3 = 0, k1 and k2 are

constant gains, equation (12) recovers the standard super-

twisting algorithm.

To define the class of perturbations that VGSTA can

compensates, uncertainty/disturbance are divided into two

parts:

f1(η, σ +Kη, t) = g1(η, σ, t) + g2(η, t) (13)

So, according to assumption (3), VGSTA is insensitive to

perturbations f(x, t) satisfying:

|g1(η, σ, t)| ≤ ρ1(t, x) |ϕ1(σ)| (14)
∣

∣

∣

∣

d

dt
g2(η, t)

∣

∣

∣

∣

≤ ρ2(t, x) |ϕ2(σ)| (15)

where, ρ1(t, x) and ρ2(t, x) are both a positive known

continuous functions. Finally, system (11) controlled by the

VGSTA algorithm (12) can be rewritten as:







η̇ = −b2ξ

σ̇ = −k1(t, x)ϕ1(σ) + g1(η, σ, t) + z

ż = −k2(t, x)ϕ2(σ) + ġ2(η, t)
(16)

where, for the present problem g1(η, σ, t) = 0 and :

g2(η, t) = τr − βs

η̇
√

η̇2 + ǫ2

and ǫ is a design parameter.

V. SIMULATION RESULTS AND EXPERIMENTAL TESTS

The aim of the present tests is to point-out the effectiveness

of the overall architecture of figure (5), including unknown

input observer, exact differentiator and the VGSTA control

for the torque feedback. We discuss the reconstruction of

the applied rider’s torque results and the steer angle tracking

performance.
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Fig. 6. Estimation of ±10(N.m) unknown input torque
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Fig. 7. Steer angle tracking and the associated error
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Fig. 8. Steer angle tracking using VGSTA for a double lane change at
100(km/h)

Figure (6) illustrates the simulated steering torque versus

that estimated, by applying the unknown input observer of

equation (3), where we observe a exact convergence in a

finite time. This result is achieved thanks to the ability of

the VGSTA to compensate the dry friction perturbation in

the torque feedback control expressed by the goos steer angle

tracking performance (Figure (7)).

In figures (8-10), we present experiments carried out on

the handlebar system of the motorcycle riding simulator. A

lane change maneuver with different longitudinal speeds (100

and 40 km/h) were performed.

At 100(km/h), one can notice the good estimation of

the driver torque (Figure 8) and the exact tracking of the

handlebar steer angle even for very small handlebar position

reference (Figure 9).

At 40(km/h), the quality of riders torque estimation re-

mains intact even the greater impact of the dry friction torque

(figure 10). The compensation for this component is highly

suitable in this case (at low speed).
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Fig. 9. Rider’s torque estimation using the sliding mode observer and
differentiator for a double lane change at 100(km/h)
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Fig. 10. Rider’s torque estimation using the sliding mode observer and
differentiator for a double lane change at 40(km/h)

Figure (12) shows a comparison between the VGSTA

and an H∞ control performance. In the H∞ method, a
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feedback loop-shaping design procedure is adopted using the

normalized left coprime factor [15]. In this figure, the quality

of rider’s torque estimation using the H∞ method for the

torque feedback control is quite imprecise because of the

greater impact of the dry friction torque. This method falls

in the compensation of a piecewise friction perturbations.
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Fig. 11. Steer angle tracking using VGSTA for a double lane change at
40(km/h)
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Fig. 12. Comparison between the VGSTA and an H∞ control performance
for a double lane change at 40(km/h)

VI. CONCLUSION

In this paper we present a real application of a sliding

mode unknown input observer for rider’s torque estimation.

The estimated torque is used to drive a virtual motorcycle

dynamics model and hence be able to ride a motorcycle simu-

lator. Since, the handlebar plant does not satisfy the matching

observer condition, additional outputs are generated by using

a robust exact differentiator.

Next, the handlebar torque feedback is developed. This

feedback is designed as a model-reference following on

the handlebar steer rather than a motor current control.

For this, a direct application of the VGSTA is achieved.

This approach is chosen because it generates an absolutely

continuous control ensuring chattering reduction and for

the exact compensation of (piecewise) Lipschitz continuous

perturbation with gradients bounded by known functions.

The effectiveness of the overall architecture is simulated

and tested. For our current application (driving simulation),

obtained results are highly acceptable even at low speed

where the dry friction should be compensated.

Future work will deal with the psycho-physical validation

of the proposed control method. The present simulator will

be tested with several riders in order to acquire their feeling

of the torque feedback and thus for various riding scenarios.

Other questions which are arising during the implementation

of the VGSTA will be investigated such that: if we need to

use also variable gain differentiator? What about to put a

third order sliding mode through integrator. These questions

could be investigated in the next steps.
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and modeling of a new motorcycle riding simulator”. in Proceedings

of the 2007 American Control Conference, pp 176-181, New York,
USA, 2007.

[3] H. Mohellebi, A. Kheddar and S. Espié, ”Adaptive Haptic Feedback
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