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Abstract— We address the problem of designing experiments
to obtain guaranteed and as good as possible parameter
estimates for linear systems subject to bounded disturbances.
First, we review some existing results relevant for the set-
membership parameter estimation and outer-bounding. Based
on these results, we approach the a priori experimental design
problem. By considering a min–max setup, a selection approach
is proposed to choose experiments which provide maximum
information in worst-case. The proposed approach allows us
furthermore to study identifiability from a practical perspective,
to investigate the role of initial conditions for identification, and
to analyze how disturbances affect the desired estimates.

I. INTRODUCTION

Obtaining or refining the parameters of a mathematical
model describing a dynamic process is an ubiquitous problem
and required for prediction or control synthesis. To this end,
experiments have to be performed with the process, to obtain
measurements for parameter estimation. The data however is
typically affected by some noise or disturbances, which has
to be considered at stage of experimental design and for
parameter estimation.

The parameter estimation and experimental design prob-
lem for dynamical systems has been studied extensively for
the case the data uncertainty is caused by (random and
additive) noise, see e.g. [14], [19] and references therein. An
alternative approach, known as set–membership or bounded
error description, is to assume the uncertainty to be bounded,
but otherwise unknown.

Early references of this approach are [27] and [22] in
the domain of state estimation, and for parameter estimation
of linear (output) systems see e.g. [26], [17], [4] and the
references therein; for an application of the set–membership
approach to nonlinear systems see e.g. [9], [10] and [20].
For linear systems, the membership setting allows to derive
a polytopic set of the feasible parameters, and various
approaches have been derived to determine simple–shaped
sets which are guaranteed to contain the set of feasible
parameters. For example, ellipsoids [22], [23] and [12] have
been considered, as well as orthotopes ([16]), zonotopes
([25], [18]), or homothety ([6]).

In this contribution, we outline a novel min–max ex-
perimental design and identifiability analysis approach for
linear, discrete time systems, in membership setting. We
extend our previous one–step ahead approach [6] to the
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multi–step case. The robust experimental design problem is
approached in a min-max setting, where the volume of the
consistent parameter set is considered as selection criterion.
The methods are illustrated by several examples.

Paper Structure: We first outline the considered setup
in Section II. In Section III, we review shortly the set–
membership parameter identification approach [6] following
the ideas of set–dynamics employed in [2], [1]. In Section IV,
we focus on the min–max experimental design problem. In
Section V, we relate the results to the (N–step) identifiability
problem. In Section VI, we present an learning strategy based
on one–step experiments.

Basic Nomenclature: The sets of non–negative and non–
negative real numbers are denoted, respectively, by N,R+.
All sets considered in the remainder are compact and con-
vex sets (unless otherwise stated). The collection of non–
empty compact sets in Rn is denoted by Com(Rn). For
shorthand of notation, we denote zk=̇(z1,k, z2,k, . . . , znx,k)T

and uk=̇(u1,k, u2,k, . . . , unu,k)T the state and input vectors
at time k. The integer sequence is denoted by N[a:b]=̇{a, a+
1, . . . , b} with a ∈ N, b ∈ N, a < b.

II. SETUP

We consider linear systems of the form:

xk+1 = A(λ)xk +B(λ)uk + wk, (1)

where xk ∈ Rnx , uk ∈ Rnu and wk ∈ Rnx are the current
state, control and the unknown disturbance respectively, xk+1

is the successor state, and λ ∈ Rnλ denotes the (unknown)
system parameters. The system structure is known, i.e. the
matrices A(λ), B(λ) are given by:

A(λ) =

nλ∑
i=1

Aiλi, B(λ) =

nλ∑
i=1

Biλi, (2)

where λ = (λ1, λ2, . . . , λnλ), and for all i ∈ {1, 2, . . . , nλ},
the matrix pairs (Ai, Bi) are known and are of compatible
dimension, i.e. (Ai, Bi) ∈ Rnx×nx × Rnx×nu .

We furthermore assume some (limited) prior knowledge on
the parameters and the disturbances to be available, i.e. prior
bounding sets of the parameters and the disturbance. We
denote the sets by Λ and W respectively, and assume for
simplicity that both sets are polytopic (compact and convex)
sets in Rnλ and Rnx respectively,

Λ : = {λ ∈ Rnλ : M0λ ≤ l0}, (3)
W : = {w ∈ Rnx : Mww ≤ lw},

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2602



with known matrix–vector pairs (M0, l0) ∈ Rri×nλ × Rri
and (Mw, lw) ∈ Rrw×nλ × Rrw .

Remark 1: The parameters λ are not known apart from
being bounded, though they do not change with time. In
contrast, the disturbances w can take different values in time,
known only to be bounded.

For ease of notation, we denote for any state/control pair
(xk, uk) ∈ Rnx × Rnu and for any i ∈ {1, 2, . . . , nλ},

yi(x, u) =̇ Aixk +Biuk, (4)
Y (xk, uk) =̇ (y1(xk, uk) y2(xk, uk) · · · ynλ(xk, uk)),

where yi(xk, uk) ∈ Rnx , Y (xk, uk) ∈ Rnx×nλ . No-
tice that, under the construction above, for any (xk, uk),
Y (xk, uk)λ = A(λ)xk +B(λ)uk.

Finally, when referring to an N–step experiment, we mean
an instance E(x0,u) with feasible initial condition x0 ∈
X0 ⊂ Rnx and feasible N–step input sequence u = {uk ∈
U}N−1

k=0 , where X0 ⊂ Rnx denotes an initial condition, and
U an input domain. Performing such an experiment yields,
typically disturbed, state sequences {xk ∈ Rnx}Nk=1.

III. SET–MEMBERSHIP PARAMETER ESTIMATION

Parameter estimation is the task of obtaining as good
as possible parameter estimates considering the available
measurements.

We assume given, besides prior knowledge on the initial
parameter and disturbance bounds (3), a possibly disturbed
state sequence {xk}Nk=1 obtained from an (N–step) experi-
ment E(x0,u). For simplicity, we consider all states to be
measured; the more general case can be found in [7], [20].
The set–membership parameter estimation problem takes
then the following form:

Problem 1 (Parameter identification): Estimate the set
ΘN ⊆ Λ of parameters that is consistent with the avail-
able experimental data {xk}Nk=0, {uk}

N−1
k=0 , i.e. estimate the

consistent parameter set

ΘN =̇ {λ ∈ Λ : ∀k ∈ N[0:N−1], (5)
xk+1 = A(λ)xk +B(λ)uk + wk,

wk ∈W}.

A. Exact Description

Recall that the model parameters λ are known only to the
extend that λ ∈ Λ and that they do not change over time
(i.e. the values of λ are, at any time instance k ∈ N, equal
to its values at the beginning of the process). However, the
disturbance w is not known and it can take, at any point in
time, any arbitrary value in the set W . Following the set–
dynamics ideas presented in [2], [1], we have:

Proposition 3.1 (Parameter set dynamics): The consistent
parameter set (5) is described by the dynamic map

Θk+1 = F (Θk, xk+1, xk, uk), (6)

where F (·, ·, ·, ·) : Com(Rnλ)× Rnx × Rnx × Rnu → Rnλ
is given by:

F (Θk, xk+1, xk, uk) = {λ ∈ Θk : xk+1−Y (xk, uk)λ ∈W}.
(7)

The proof can be found in the appendix. Hence, parameter
identification reduces to the determination of the sequence
{Θk}Nk=1 of consistent parameter sets, for the given initial
parameter set Θ0 = Λ, and the available data {xk}Nk=0

and {uk}N−1
k=0 . In the considered linear–polytopic setting, the

computation of the sequence {Θk}Nk=1 simplifies then:

Proposition 3.2 (Consistent parameter set): The consis-
tent parameter sets Θk, k ∈ {1, 2, . . . , N} are given by:

Θk = {λ ∈ Λ : Mkλ ≤ lk}, (8)

with Θk = F (Λ, {xi}k1 , x0, {ui}k−1
0 ), where for all j ∈

{1, 2, . . . , k}:

Mj =

(
Mj−1

−MwY (xj−1, uj−1)

)
, lj =

(
lj−1

lw −Mwxj

)
. (9)

The proof is provided in the appendix. The exact consistent
parameter set (8) is constructed recursively. In the case
of parameter estimation, usually only few inequalities of
(8) contribute to the boundary of the consistent parameter
set. Redundant constraints can be neglected, e.g. following
[15], to obtain a minimal representation of the consistent
parameter set.

B. Outer–Bounding

For the considered system class, the consistent parameter
sets Θk (8) are polytopic, see Prop. 3.2. In practice, one is
often interested in the uncertainty interval associated with
a parameter λi, i.e. the axis–aligned projection of the con-
sistent parameter set ΘN (8) onto the respective coordinate
axis. Its length provides e.g. a measure of the quality of the
estimate, analogously to the confidence intervals considered
in a statistical setting.

The lower and upper bound which define the (compact)
uncertainty interval of the i–th parameter, i ∈ {1, . . . , nλ},
are given by:

Oi(ΘN ) =̇ [λi, λi], (10)
λi = min

λ
{λi}, λi = max

λ
{λi},

s.t. λ ∈ ΘN .

The length of the (inner and outer) bounding interval of a
parameter λi ∈ ΘN is denoted by

`Ni = λi − λi. (11)

For ease of presentation, we define the bounding orthotope
as the Cartesian product of all nλ bounding intervals, i.e.

O(ΘN )=̇O1(ΘN )×O2(ΘN )× . . .×Onλ(ΘN ).
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By definition, O(ΘN ) is Lebesgue measurable (see e.g.
[21]), and its volume V ol(·) : Com(Rnλ) → R+ takes
the form

V ol (O(ΘN )) =

nλ∏
i=1

`Ni .

The bounding orthotope and in particular its volume are
used later on as selection criterion for experimental design,
obtained by (10) solving 2nλ linear programs. Alternatively,
the bounding orthotope can be obtained via a single geomet-
ric optimization, which is required later on for experimental
design, as follows:

Proposition 3.3 (Bounding orthotope): The collection of
bounds of ΘN and respective volume are obtained by:

O(ΘN ) = arg max
λ,λ
{
i=nλ∏
i=1

(λ
(i)

i − λ
(i)
i )} (12)

s.t. ∀i ∈ N[1:nλ], λ
(i)

i ≥ λ
(i)
i ,

λ
(i) ∈ ΘN , λ

(i) ∈ ΘN .

The volume is simply obtained by replacing “argument”
with “max” in (12). The proof immediately follows from
construction.

Remark 2: Notice that 2nλ (independent) variables are
introduced, denoted by λ(i) and λ

(i)
for i ∈ {1, 2, . . . , nλ},

and that λ = (λ
(1)
1 , . . . , λ(nλ)nλ

), λ = (λ
(1)

1 , . . . , λ
(nλ)

nλ
).

Remark 3: Note that by construction it holds that Θk+1 ⊆
Θk, hence O(Θk+1) ⊆ O(Θk) and `k+1

i ≤ `ki , i.e. the uncer-
tainty intervals sequences are monotonically non–increasing
(compare Ex. 1). Also, whenever V ol (O(Θk)) = {∅} 12,
Θk = {∅}, thus providing fact that the model (1) is invalid
(inconsistent with the measurements).

Illustrative Example 1

As example we consider the following uncertain linear
system

xk+1 =

(
λ1 λ2
λ3 λ4

)
xk +

(
λ5
λ6

)
uk + wk (13)

with nx = 2, nu = 1, and nw = 2. The disturbances wk =
(w1,k, w2,k)T are bounded, 0 ≤ w1,k ≤ 0.2, 0 ≤ w2,k ≤ 0.2,
and the six parameters are unknown to the extend

Λ = Θ0 = {λ ∈ R6 : ∀i ∈ N[1:6], 0 ≤ λi ≤ 1}.

We generate artificial measurements (N = 30) using the
reference parameters λ∗ = (0.1, 0.2, 0.1, 0.3, 0.2, 0.1)T . We
consider two experiments with same initials x0 = (0, 0)T ,
same input sequence u0 = 1, {uk ∼ {0, 1}}291 . Two different
realizations are obtained by considering two independent
random disturbance sets {w(i)

i,k ∼ [0, 0.2]}291 , i = {1, 2}, by
which two sequences {x(i)k }30k=0, i = {1, 2} are obtained.

For this two measurement sequences, we estimate the
dynamics of bounding intervals for the six parameters ac-
cording to Prop. 3.3. The results are depicted in Fig. 1. The
example demonstrates that although parameters intervals can
be narrowed, the estimates quality strongly depends on the
actual disturbances.

Fig. 1. Orthotopic outer bounding. Evolution of the bounding intervals
Oi(Θk) for two realizations of the same experiment, shown in different
colors. Reference values are indicated by the black lines.

IV. EXPERIMENTAL DESIGN

We now turn on the problem of designing optimal ex-
periments in membership setting. Particularly, we aim to
plan experiments which lead to a minimal volume consistent
parameter set in worst–case, ideally a singleton set, thereby
providing a maximum of information. Since the actual pa-
rameters are unknown, “worst–case” here means the most
unfavorable disturbances and parameters (in Λ).

Obviously, this problem is much more challenging then
parameter estimation, since, apart from prior knowledge (3),
little further information is available. Actual measurements
are not known and can take any feasible value. However, we
can exploit the information that N consecutive, singleton,
and feasible measurements will be available.

We denote by z=̇{zk ∈ Rnx}Nk=1 a feasible state se-
quence, and consider again the system (1) with prior bounds
on parameters and disturbance (3). Controls of the domain
U = {u : u ∈ Rnu} can be applied, and the initial condition
can be chosen from x0 ∈ X0 ⊂ Rnx . The experimental
design problem in min–max setting takes the following form:

Problem 2 (Experimental design): Plan an experiment
E(x∗0,u

∗) with initial condition x0 ∈ X0 and N–step input
sequence u=̇{uk ∈ U}N−1

k=0 , which minimizes, for worst
possible measurements z∗, parameters λ∗, and disturbances
w∗, the volume of the consistent parameter set ΘN (8),
i.e. find

(x∗0,u
∗, z∗, λ∗,w∗) = arg min

x0,u
max
z,λ,w

{V ol (ΘN )}, (14)

where V ol(·) : Com(Rnλ)→ R+ defines the selection cri-
terion, and the consistent parameter set ΘN = F (Λ, z, x0,u)
as in (8)–(9) a family of polytopic sets.
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Problem 2 is in general hard to solve. To obtain the desired
guaranteed results we propose the following two relaxations.
First, determining the exact volume of polytopic sets is very
difficult for the general case nλ ≥ 3. Therefore, we consider
instead the volume of the bounding orthotope V ol (O(ΘN )).
This provides a (outer) bound of the actual volume, and
hence guarantees can still be provided. Second, we consider
a discrete domain of initial conditions and the control set,
e.g. x0 ∈ Xd = {xj ∈ Rnx , j ∈ {1, 2, . . . , nxd}}, and
uk ∈ Ud = {uj ∈ Rnu , j ∈ {1, 2, . . . , nud}} respectively.

Problem 2 then consist in selecting the experiment
E(x∗0,u

∗), for which the volume of O(ΘN ) is minimized
in worst–case.

Proposition 4.1 (Experimental selection): The experi-
ment E(x∗0,u

∗) (15) minimizes the volume of the consistent
parameter set O(ΘN ) (16) for worst–case disturbances,
where

(x∗0,u
∗) = arg min

x0,u
{V ol (O(ΘN ))

∗}, (15)

V ol (O(ΘN ))
∗

= max
z,λ,λ,w

{
i=nλ∏
i=1

(λ
(i)

i − λ
(i)
i )} (16)

s.t. ∀i ∈ N[1:nλ],

λ
(i)

i ≥ λ
(i)
i , λ

(i) ∈ ΘN , λ
(i) ∈ ΘN .

Hereby, V ol(·) : Com(Rnλ) → R+, ΘN = F (Λ, z, x0,u)
as in (8)–(9). Proof immediately follows from construction
(Prop. 3.2 and Prop. 3.3).

Analogously to (12), 2nλ independent variables are in-
troduced. It is important to note that for one–step ahead
(N = 1), Problem (16) is log–max concave, i.e. a geometric
program (see e.g. [8]). We discuss this important case in
more detail in Section VI; for the general case, problem (16)
is non–convex due to bilinear constraints, and hence requires
to solve a polynomial programs. To this end, global optimiza-
tion approaches can be considered, for example the method
of moments [13], branch and bound procedures [24], or using
a relaxation approach as in [7].

The computational complexity of the proposed approach
depends in general on the number of considerable experi-
ments. When considering a discrete input and initial domain
as in Prop. 4.1, the proposed experimental selection approach
requires solving nxdn

N
ud

programs (16).
Remark 4: Note that for the trivial case nλ = 1,

V ol(O(λ))∗ = V ol(λ)∗, i.e. the input design problem
is solved exactly. Also for the case nλ = 2, where the
consistent parameter set is an area whose measure can be
explicitly described using vertex enumeration (e.g. following
[3]), outer–bounding is not required.

Remark 5: The proposed N–step experiment selection ap-
proach can also be scheduled in closed loop, i.e. by updating
the “initial” parameter set when a new measurement is
available.

TABLE I
N–STEP EXPERIMENTAL DESIGN APPROACH. WORST–CASE VOLUME

V ol(O(ΘN ))∗ AND ASSOCIATED GUARANTEED BOUNDING INTERVALS

`1, . . . , `4 FOR EXPERIMENTS E(x0 ≡ 0, {uk}N−1
0 ).

N input Volume bounding intervals
u0 u1 u2 O(ΘN ) `1 `2 `3 `4

1
0 - - 1e4 10 10 10 10
1 - - 5e2 10 10 10 0.5

2
0 0 - 1e4 10 10 10 10

1 - 5e2 10 10 10 0.5

1 0 - 0 10 0 10 0.5
1 - 0 10 0 10 0.5

3

0
0 0 1e4 10 10 10 10

1 5e2 10 10 10 0.5

1 0 0 10 0 10 0.5
1 0 10 0 10 0.5

1
0 0 0 0 0 0.5 0.5

1 0 0 0 0.66 0.5

1 0 0 0 0 0.5 0.5
1 0 0 0 0.66 0.5

Illustrative Example 2

Consider the system

xk+1 =

(
λ1 λ2
λ3 0

)
· xk +

(
0
λ4

)
· uk +

(
0
wk

)
, (17)

where the disturbance wk can take any values in 0 ≤ wk ≤
0.5, and the four parameters are unknown to the extend

Λ = {λi ∈ R : 1 ≤ λi ≤ 11, i = {1, . . . , 4}}.

We now consider the case where the initial condition x0 =
(0, 0)T is fixed, and aim to design worst case optimal inputs,
considering binary input signals U = {0, 1}. Remind that
future states z = {xk}N1 are unknown. Tab. I shows the
results.

As a conclusion, already a three–step experiment provides
improvement of the outer–bounds for the parameters in
worst–case, to the extend provided in Tab. I. Here, the
sequences u = {1, 0, 0} and u = {1, 1, 0} are distinguished
as optimal inputs, minimizing the volume of the (anticipated)
consistent parameter set and the associated bounding inter-
vals.

V. PRACTICAL IDENTIFIABILITY

An important conclusion can be drawn from the case
V ol (O(ΘN ))

∗
= 0 for a feasible experiment E(x0,u).

Then, by construction, at least one parameter bounding
interval is a singleton set, i.e. `Ni = 0 for some i (in
worst case). Hence, the respective parameter can be uniquely
identified in N–steps by E(x0,u), in worst case.

Note that identifiability, in classical notion, is concerned
with the theoretical existence of unique solutions [5], and
hence strictly a mathematical problem. The identifiability
problem in the worst–case membership setting, as considered
here, is rather motivated from a practical point of view,
namely whether point estimates of parameters can be actually
obtained. To this end, we have:
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Proposition 5.1 (N–step identifiability): Given a system
as in (1), with unknown parameters λ ∈ Λ, bounded distur-
bance as in (3), and a feasible N–step experiment E(x0,u).
If `Ni = 0 with

`Ni = max
z,λ,λ,w

{(λi − λi)} (18)

s.t. λi ≥ λi, λ ∈ ΘN , λ ∈ ΘN ,

ΘN = F (Λ, z, x0,u) (8)–(9), then λi is identifiable in N
steps by E(x0,u). If for all i ∈ {1, . . . , nλ} we have `Ni =
0, then model (1) is said identifiable (in N steps) by the
experiment E(x0,u).

Prop. 5.1 provides a sufficient criterion for parame-
ter/model identifiability. This notion of identifiability directly
extends to the robust case; we say a parameter is (µ–)
estimable if `Ni ≤ µ < `0i with µ ∈ R+ a desired threshold
and `0i the initial bounding interval of parameter λi (possibly
unbounded).

As a consequence, the experimental selection approach
Prop. 2 necessitates a prior selection criterion such as iden-
tifiability (Prop. 5.1), or more generally the dimension (i.e.
box–counting dimension [11]) of the consistent parameter
set ΘN . To this end, the objective of (16) can be tailored to
a reduced orthotope excluding identifiable parameter(s) λj .
(15).

As an example, reconsider Ex. 2, Tab. I; the experiment
with the input sequence u = {1, 0, 0} allows to identify
λ1, λ2, and to estimate λ3, λ4 with µ = 0.5 ≤ 10 in worst
case, i.e. for any admissible disturbances.

VI. ONE–STEP DESIGN

In this section, we explore the possibility to estimate all the
model parameters with one–step experiments. We consider
systems as in (1) with single–entries

A(λ) =


λA11 · · · λA1n
λA21 · · · λA2n

...
λAn1 · · · λAnn

 , B(λ) =


λB11 · · · λB1m
λB21 · · · λB2m

...
λBn1 · · · λBnm

 ,

where λAij and λBil (∀i, j ∈ N[1:nx], l ∈ N[1:nu]) denoting
the unknown parameters. Without loss of generality, we
furthermore focus on the case where the disturbances are
unknown with

W = {w ∈ Rnx : ∀i ∈ N[1:nx], wi ≤ wi ≤ wi}.

For this simplified setup, the following “learning approach”
based on one–step experimental design can be considered:

First, choose for all j ∈ {1, . . . , nx} one–step experiments
of the form

E(j)(cjej , u ≡ 0), (19)

where ej ∈ Rnx denote the unit–vector of the j–th coordinate
and cj ∈ R the respective amplitude scalar. Second, we
choose for all l ∈ {1, . . . , nu} one–step experiments of the
form

E(l)(x0 ≡ 0, dlel), (20)

where el ∈ Rnu denote the l–th unit vector and dl ∈ R the
input’s amplitude. Then:

Proposition 6.1 (One–step design): nx+nu one–step ex-
periments (19)–(20) are sufficient to determine all unknown
parameters λAij and λBil (∀i, j ∈ N[1:nx], l ∈ N[1:nu]) where

1

cj
(z(j) − w) ≤

 λA1j
...

λAnxj

 ≤ 1

cj
(z(j) − w),

1

dl
(z(l) − w) ≤

 λB1l
...

λBnxl

 ≤ 1

dl
(z(l) − w),

with z(j), z(l) ∈ Rnx denoting the state measurements.

The proposed approach offers two important insights. First,
the role of the initial conditions for identifiability, i.e. by
choosing experimental initial conditions from a Cartesian ba-
sis of nx linearly independent initial states, the components
of the system matrix A can be inferred. This is general not
possible when fixing the initial condition. In this case, the N–
step experimental design approach can be used. And second,
since the length of the parameter bounding intervals depend
on the amplitudes cj and dl

`(λAij) =
1

|cj |
(wi − wi), `(λBil ) =

1

|dl|
(wi − wi),

the influence of the disturbance on parameter bounding
intervals decreases with increasing amplitudes.

Illustrative Example 4

Reconsider the system given in Ex. 1; to infer the six
model parameters, we apply Prop. 6.1, i.e. the proposed nx+
nu = 3 one–step experiments, considering low E and high
amplitudes E. The results are provided in Tab. II.

TABLE II
ONE–STEP “LEARNING APPROACH”. PARAMETER BOUNDING

INTERVALS `1, . . . , `6 FOR LOW (E) AND HIGH (E) INTENSE ONE–STEP

EXPERIMENTS.

experiment bounding intervals
# x0 u0 `1 `2 `3 `4 `5 `6

E(1) (1, 0) 0 0.2 1 0.2 1 1 1
E(2) (0, 1) 0 1 0.2 1 0.2 1 1
E(3) (0, 0) 1 1 1 1 1 0.2 0.2

E
(1)

(10, 0) 0 0.02 1 0.02 1 1 1
E

(2)
(0, 10) 0 1 0.02 1 0.02 1 1

E
(3)

(0, 0) 10 1 1 1 1 0.02 0.02

Evidently, the six unknown parameters can be deduced
from the proposed three (independent) one–step experiments
as shown in Tab. II. Furthermore, considering experiment
E(3) as considered also in Ex. 1, we have `15 ≤ 0.2 and
`16 ≤ 0.2; this provides proof that for all possible realizations
(of experiments as in Ex. 1), λ5 and λ6 (compare Fig. 1) are
estimated to the extend µ ≤ 0.2 (after one–step).
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Comparing the two sets of experiments E(i) and E
(i)

,
i = {1, 2, 3}, it is demonstrated that high intense experiments
countervail the effects of disturbances, i.e. high ample stimuli
provide better estimates.

VII. CONCLUSIONS

In this contribution, we proposed a guaranteed approach
for a priori experimental design and identifiability analysis of
linear discrete time systems subject to bounded disturbances.
Assuming bounded disturbances is, in many practical cases,
more realistic and less demanding than a statistical error
distribution [17]. It enables to derive the set of consistent
parameters and bounding intervals, analog to confidence in-
tervals in statistical error setting. This set is constructed using
available prior information and posterior measurements in
case of parameter estimation; then, the consistent parameter
set is a convex polytope. For experimental design, it defines
a family of polytopes, where the worst case volume provides
a guaranteed upper bound, used as selection criterion.

When investigating the insightful one–step ahead case, the
role of initial conditions, inputs and their scaling is outlined.
As shown, nx + nu one–step experiments are sufficient to
identify all parameter of a fully parametrized system, where
the influence of the disturbance on the estimates can be
decreased by increasing the respective amplitudes. This is
provided when the initial conditions can be manipulated
freely, i.e. a basis of linear independent initial state vectors
can be considered for design of experiments.

Future work will address extension of the guaranteed
approach to input–output systems and to polynomial systems
using relaxations [7], and experimental design for purpose of
model selection.
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[5] R. Bellman and KJ Åström. On structural identifiability. Mathematical
Biosciences, 7(3-4):329–339, 1970.
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APPENDIX

Proof 1 (Prop. 3.1): Let Θk, xk+1, xk, uk be given. By
(6)–(7) we have Θk+1 = F (Θk, xk+1, xk, uk), with

F (Θk, xk+1, xk, uk) = {λ ∈ Θ : xk+1 − Y (xk, uk)λ ∈W}
= {λ ∈ Θk : xk+1 − Y (xk, uk)λ = wk, wk ∈W}
= {λ ∈ Θk : xk+1 = A(λ)xk +B(λ)uk + wk, wk ∈W}.

Since Θ0=̇Λ, it follows that Θk+1 = F (Θk, xk+1, xk, uk)
generates the desired sequence {Θk}Nk=1 of the consistent
parameter sets. �

Proof 2 (Prop. 3.2): Pick a j ∈ {0, 1, . . . , j, . . . , N − 1}
and assume that Θj = {λ ∈ Λ : Mjλ ≤ lj}. Then, by
Prop. 3.1,

Θj+1 = F (Θj , xj+1, xj , uj)

= {λ ∈ Θj : xj+1 −A(λ)xj −B(λ)uj ∈W}.

Hence, from the description of W (3) and Θj , we have:

Θj+1 = {λ ∈ Θj : Mj+1λ ≤ lj+1}

with Mj+1, lj+1 as in (9). Since Θ0=̇Λ, the claim follows
by induction. �
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