
 
 

 

  

Abstract— The controllers of PID type remain the most 
wide-used controllers in industrial practice. Many PID 
controller tuning method have been developed since Ziegler 
and Nichols published their technique, but they are not so 
widely used as the Ziegler and Nichols methods. The majority 
of presented tuning methods usually skips tuning of the 
derivative component, or they use set the derivative component 
parameter to be proportional to the integrative component 
parameter. The new approach to the derivative component 
tuning is presented in the paper. 

I. INTRODUCTION 
ONTROLLERS of PID type are the most used in almost 
all industrial branches [2]. It is easy to explain why they 

are in favour so much, even when there are many better 
algorithms in existence, and a new or improved algorithm 
emerges almost every month (some of the recent 
improvements are control error reference course control [20] 
and new model-based tuning rules [10]). The reason is that 
the PID controller is easy to implement. No deep 
mathematical theory is necessary to understand how the PID 
controller works, so everybody is able to imagine what is 
happening inside the controller during the control 
process [21]. 

Many tuning algorithms have been presented, e.g. [3], [4], 
[9], [12], [18], but they are mostly based on a model of the 
controlled process/device. Incredible number of PID tuning 
rules was collected in [14] and some were added to them 
in [15]. Majority of existing tuning rules is model-based, 
only a few of them are model-free. Because that, the more 
than 50-year-old Ziegler-Nichols method [28] is still the 
most-used controller tuning method. It is known that the 
control loops tuned with the Ziegler and Nichols tuning rule 
are oscillatory with low damping. The same statement is 
valid as for the relay method in its basic version [1] as for 
many of its modifications, e.g. [7], [13], [17], [19]. The 
disadvantage of the Ziegler and Nichols method and also of 
the relay method is the necessity to break the control 
function of controller and its problematic use to tune 
controllers of MIMO controlled plants [27]. This was a 
motivation to develop new controller tuning method that 
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does not have these disadvantages. During the development 
the question how to tune properly the derivative component 
occurred. Among the existing method, even model based 
tuning methods skip the derivative component tuning, e.g. 
method described in [22]. The majority of model-free tuning 
method does not solve derivative component tuning 
(e.g. [5], [11], [16]) eventually uses fixed derivative 
component setting according to the integrative component 

setting, usually ID TT
4
1=  is chosen (e.g. [6], [8]). The 

derivative component of PID controller is a small mystery 
and it still not so satisfactory explained when the derivative 
action is useful and when it is better that the controller works 
like PI controller only [2]. 

Because the goal of PID controller tuning is to tune it 
fully with no restriction to fix the derivativative component 
setting to the integrative component setting, an attempt to 
find such a tuning rule that fulfils the demands of our tuning 
methods was made. 

II. FREQUENCY RESPONSE EVALUATION BASED TUNING 
Our tuning method is based on on-line frequency response 

evaluation and the control quality indicators are computed 
consequently [23]. Then, the new controller parameters are 
computed in dependence on the actual and desired values of 
control quality indicators. Even the control quality indicators 
are connected with open loop behaviour characteristics, they 
are evaluable also in closed control loop. 

 
The scheme of the closed control loop with the added 

autotuning based on open loop control quality indicators is 
shown in Figure 1. 
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Fig. 1.  Scheme of a control circuit with an added autotuning 
mechanism. 
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The PID controller is in the form 
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where DD Trr 0=  and II Trr /0= . 
The method uses non-linear controller parameter iterative 

tuning rules, which can be of the following structure: 
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where I1D and I2D are desired values of  the control quality 
indicators, k is the step of iterative tuning. 

In a comparison with other model-free tuning techniques 
it produces usable controller parameters [25]. Currently, the 
algorithm is being tested on small-scale biomass fired 
boiler [24]. More details about the tuning method are 
presented in [26]. 

III. THE DERIVATIVE COMPONENT  TUNING APPROACH 
The form of the derivative component iterative tuning rule 

is given by form of existing proportional and integrative 
component iterative tuning rules (2) and (3). 

The derivative component tuning rule is derived with the 
use of linear control theory and Nyquist plot and it is derived 
similarly like Magnitude Margin and Phase Margin. The 
general principle is demonstrated using the model with 

transfer function 
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PID controller with transfer function 
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=  (parameter rD is variable). When 

comparing the Nyquist plots and the courses of disturbance 
response and when the criteria are 1) the lowest overshoot, 
and 2) the shortest control process, we can see that the 
Nyquist plot corresponding to the response of these two 
criteria has following property: The circumscribed circle 
with the center on real axis around the top part of Nyquist 
(corresponding to phase shift between -180° to -360°) has 
the smallest diameter. When the value of rD value is smaller 
or bigger than the optimal one, the circumscribed circle 
diameter is always bigger. If it is possible to get more circles 
with the same diameter, the circle with the center closest to 
the origin should be taken into account. 
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Fig. 4.  Disturbance response course when rD = 0.2 (the first peak of size 
0.35 is not shown in full size in the figure as it has no illustrative value, it 
occurs always in the same size due the presence of time delay). 
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Fig. 2.  Nyquist plot with marked main control quality indicators. 
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Fig. 3.  Nyquist plots for PID controller with various rD setting 
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Fig. 5.  Disturbance response course when rD = 0.3 (the first peak of size 
0.35 is not shown in full size in the figure). 
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Fig. 6.  Disturbance response course when rD = 0.4 (the first peak of size 
0.35 is not shown in full size in the figure). 
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Fig. 7.  Disturbance response course when rD = 0.5 (the first peak of size 
0.35 is not shown in full size in the figure). 

 

0 10 20 30 40 50
-0.1

-0.05

0

0.05

0.1

0.15

0.2

r
D

 = 0.6

t [s]

y 
[-

]

 
Fig. 8.  Disturbance response course when rD = 0.6 (the first peak of size 
0.35 is not shown in full size in the figure). 
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Fig. 10.  Disturbance response course when rD = 0.7 (the first peak of size 
0.35 is not shown in full size in the figure). 

 
Figures 4 to 8 and Figure 10 show example of responses 

on disturbance for various rD parameter values (values of 
parameters r0 and rI remain the same). We can see that when 
the value of rD increases to 0.5, the oscillations decreasing, 
the third and fourth peaks become lower. The response time 
shorts with growing rD value. When the value of parameter 
rD increases to values over 0.5, the oscillations grow, the 
third and fourth peaks become higher and the response time 
grows. 

However, to find the diameter of circumscribed circle is 
time demanding task, because it depends on the Nyquist plot 
shape and more points of frequency response are needed to 

be evaluated. To simplify the tuning rule, one point of 
Nyquist plot is chosen that should leave on the specified 
distance from origin. The simplified iterative rule used in the 
tuning method then is 
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rD = 0.34, r0 = 0.57, rI = 0.37
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Fig. 12.  Example of control process using the controller with setting obtained with the presented derivative component tuning rule 
(slightly better courses with higher rD values than the found one are shown for comparison) 
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Fig. 11.  Nyquist plot with marked derivative component related 
control quality indicator. 
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This simplification does not produce the optimal setting 
but it is close to the optimal setting. According to 
experiments, the choice of point corresponding to phase shift 
of -240° gives good results. 

The use of rule (4) needs to choose the value of I3D 
carefully. Exceeding its minimal possible value causes 
parameter rD converging to zero. To prevent this, it is 
necessary to test if increase of rD causes increase of I3. If not, 
it is necessary to use alternative rule 
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It ensures that value of rD reaches its minimal value only 
if desired value I3D is not chosen properly or the initial value 
of rD(0) is too big. 

The example of PID controller tuning course is shown in 
Figure 9. The course of control process with the obtained 
controller setting using the derivative component tuning rule 

presented here when the used model is 
12,1
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is shown in Figure 12. The courses obtained with only 
slightly better controller setting are shown in the same figure 
for comparison. 

IV. STABILITY ANALYSIS 
There are two consideration for stability features. First 

consideration is that the derivative component tuning 
presented here should be used as a part of tuning method 
tuning all controller parameters, and the second that it can be 
used to improve the derivative component performance 
when the controller is tuned already. 

When presented method is used to improve derivative 
component performance stability is guaranteed when 
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because then bigger changes in controller parameter value 
causes smaller changes in control quality indicator value and 
then it is guaranteed that more than one iteration step is 
necessary to get desired value of I3. 

If the method is used as a part of tuning of all controller 
parameters, unsignificant instability can be compensated by 
other parameter value changes. 

V. CONCLUSIONS 
The new derivative component tuning approach is 

presented in this paper. In simulation results, it proved the 
ability to obtain suitable derivative component parameter 
value that is very close to the optimal value. In actual state, 
the tuning rule does not reflect the presence of noise. The 
improvement reflecting the presence of noise is planed in 
future. 
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