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Abstract— In this paper, we develop a discrete mechanics ap-
proach to gait generation on slopes for the compass-type biped
robot. We formulate a optimal gait generation problem for the
discrete compass-type robot and show a solving method of it by
the sequential quadratic programming to calculate a discrete
control input. Then, we propose a transformation method from
a discrete control input into a continuous zero-order hold input
based on discrete Lagrange-d’Alembert principle. As a result
of numerical simulations, it is confirmed that stable gaits on
both downward and upward slopes can be generated for the
continuous compass-type robot by the proposed method.

I. INTRODUCTION

In the fields of robotics and control theory, humanoid

robots have become attractive research objects and a lot

of work on them have been done so far. In particular, the

compass-type biped robot has been mainly studied as one

of the simplest models of humanoid robots. For example,

theoretical analysis of passive walking [8], researches asso-

ciated with nonlinear mechanics such as Poincáre section and

limit cycles [9], gait pattern generation based on ZMP (zero-

moment point) [11], self-motivating acquirement of gaits

by learning theory and evolutionary computing. However,

in general, it is quite difficult to realize stable gaits for

humanoid robots in terms of nonlinear problems, and hence

there is still a lot of problems left to solve.

In almost every work on humanoid robots, a model based

on continuous-time mechanics is used. On the other hand,

discrete mechanics, which is a new discretizing tool for

nonlinear mechanical systems and is derived by discretization

of basic principles and equations of classical mechanics, has

been focused on [1], [2], [3], [4], [5], [6]. a discrete model

(the discrete Euler-Lagrange equations) in discrete mechan-

ics has some interesting characteristics; (i) less numerical

error in comparison with other numerical solutions such as

Euler method and Runge-Kutta method, (ii) it can describe

energies for both conservative and dissipative systems with

less errors, (iii) some laws of physics such as Noether’s

theorem are satisfied. (iv) simulations can be performed

for large sampling times. Hence, discrete mechanics has a

possibility of analysis and controller synthesis with high

compatibility with computers.

We have focused on discrete mechanics and considered

its applications to control theory. In [12], [13], [14], we

applied discrete mechanics to control problems for the cart-

pendulum system, and confirmed the application potentiality
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to control theory. Moreover, in [15], [16], we have considered

a gait generation problem for the compass-type biped robot

and confirmed that the proposed method can generate stable

gaits on flats. However, the method cannot be applied to

gait generation problems on more complex grounds such as

slopes, stairs and irregular grounds.

In this paper, we deal with gait generation problems for

the compass-type biped robot on slopes from the standpoint

of discrete mechanics. The contents of this paper is as

follows. In Section II, some fundamental concepts on discrete

mechanics are summed up. Next, we derive the continuous

and discrete compass-type biped robots based on both con-

tinuous and discrete mechanics, respectively in Section III.

Then, in Section IV, we formulate a gait generation problem

for the discrete compass-type biped robot and propose a

solving method of it by the sequential quadratic program-

ming to calculate a discrete control input. Furthermore, a

transformation method from a discrete control input into a

continuous zero-order hold input based on discrete Lagrange-

d’Alembert principle is developed. In Section V, we show

some numerical simulations on gait generation on downward

and upward slopes for the continuous compass-type biped

robot in order to confirm the effectiveness of our method.

II. DISCRETE MECHANICS

This section summarizes fundamental concepts of discrete

mechanics. See [1], [2], [3], [4] for more details. Let Q be

an n-dimensional configuration manifold and q ∈ R
n be a

generalized coordinate of Q. We also refer to TqQ as the

tangent space of Q at a point q ∈ Q and q̇ ∈ TqQ denotes a

generalized velocity. Moreover, we consider a time-invariant

Lagrangian as Lc(q, q̇) : TQ → R. We first explain about the

discretization method. The time variable t ∈ R is discretized

as t = kh (k = 0, 1, 2, · · · ) by using a sampling interval

h > 0. We denote qk as a point of Q at the time step k, that

is, a curve on Q in the continuous setting is represented as

a sequence of points qd := {qk}
N
k=1 in the discrete setting.

The transformation method of discrete mechanics is carried

out by the replacement:

q ≈ (1− α)qk + αqk+1, q̇ ≈
qk+1 − qk

h
, (1)

where q is expressed as a internally dividing point of qk and

qk+1 with an internal division ratio α (0 < α < 1) We then

define a discrete Lagrangian:

Ld
α(qk, qk+1) := hL

(

(1− α)qk + αqk+1,
qk+1 − qk

h

)

,

(2)
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and a discrete action sum:

Sd
α(q0, q1, · · · , qN ) =

N−1
∑

k=0

Ld
α(qk, qk+1). (3)

We next summarize the discrete equations of motion. Con-

sider a variation of points on Q as δqk ∈ TqkQ (k =
0, 1, · · · , N) with the fixed condition δq0 = δqN = 0. In

analogy with the continuous setting, we define a variation of

the discrete action sum (3) as

δSd
α(q0, q1, · · · , qN ) =

N−1
∑

k=0

δLd
α(qk, qk+1). (4)

The discrete Hamilton’s principle states that only a motion

which makes the discrete action sum (3) stationary is real-

ized. Calculating (4), we have

δSd
α =

N−1
∑

k=1

{D1L
d
α(qk, qk+1)δqk +D2L

d
α(qk−1, qk)}δqk,

(5)

where D1 and D2 denotes the partial differential operators

with respect to the first and second arguments, respectively.

Consequently, from the discrete Hamilton’s principle and (5),

we obtain the discrete Euler-Lagrange equations:

D1L
d
α(qk, qk+1) +D2L

d
α(qk−1, qk) = 0,

k = 1, · · · , N − 1
(6)

with the initial and terminal equations:

D2L
c(q0, q̇0) +D1L

d
α(q0, q1) = 0

−D2L
c(qN , q̇N ) +D2L

d
α(qN−1, qN ) = 0.

(7)

It turns out that (6) is represented as difference equations

which contains three points qk−1, qk, qk+1, and we need

q0, q1 as initial conditions when we simulate (6).

Then, we consider a method to add external forces to

the discrete Euler-Lagrange equations. By an analogy of

continuous mechanics, we denote discrete external forces

by F d : Q × Q → T ∗(Q × Q), and discretize continuous

Lagrange-d’Alembert’s principle as

δ
N−1
∑

k=0

Ld
α(qk, qk+1)+

N−1
∑

k=0

F d(qk, qk+1) · (δqk, δqk+1) = 0,

(8)

where we define right/left discrete external forces: F d+,
F d− : Q×Q → T ∗Q as

F d+(qk, qk+1)δqk = F d(qk, qk+1) · (δqk, 0),

F d−(qk, qk+1)δqk+1 = F d(qk, qk+1) · (0, δqk+1),
(9)

respectively. By right/left discrete external forces, a contin-

uous external force F c : TQ → T ∗Q can be discretized

as

F d+(qk, qk+1)=(1−α)hF c

(

(1−α)qk+αqk+1,
qk+1−qk

h

)

,

F d−(qk, qk+1)=αhF c

(

(1−α)qk + αqk+1,
qk+1−qk

h

)

.

(10)

Therefore, by calculating variations for (8), we obtain the

discrete Euler-Lagrange equations with discrete external

forces:

D1L
d(qk, qk+1) +D2L

d(qk−1, qk)

+ F d+(qk, qk+1) + F d−(qk−1, qk) = 0,

k = 1, · · · , N − 1,

(11)

with the initial and terminal equations:

D2L
c(q0, q̇0) +D1L

d
α(q0, q1) + F d+

α (q0, q1) = 0

−D2L
c(qN , q̇N ) +D2L

d
α(qN−1, qN )

+ F d−
α (qN−1, qN ) = 0.

(12)

III. COMPASS-TYPE BIPED ROBOT

A. Setting of Compass-type Biped Robot

In this subsection, we first give a problem setting of the

compass-type biped robot. In this paper, we consider a simple

compass-type biped robot which consists of two rigid bars

(Leg 1 and 2) and a joint without rotational friction (Waist) as

shown in Fig. 1. In Fig. 1, Leg 1 is called the supporting leg

which connects to ground and Leg 2 is called the swing leg

which is ungrounded. Moreover, for the sake of simplicity,

we give the following assumptions; (i) the supporting leg

does not slip at the contact point with the ground, (ii) the

swing leg hits the ground with completely inelastic collision,

(iii) the compass-type biped robot is supported by two legs

for just a moment, (iv) the length of the swing leg gets

smaller by infinitely small when the swing leg and the

supporting leg pass each other. Let θ and φ be the angles

of Leg 1 and 2, respectively. We also use the notations: m:

the mass of the legs, M : the mass of the waist, I: the inertia

moment of the legs, a: the length between the waist and the

center of gravity, b: the length between the center of gravity

and the toe of the leg, l (= a + b): the length between the

waist and the toe of the leg.

Leg 1 Leg 2

Fig. 1 : Compass-Type Biped Robot

In the walking process of the compass-type biped robot,

there exist two modes: the swing phase and the impact phase.

In the swing phase the swing leg is ungrounded, and in the

impact phase the toe of the swing leg hit the ground. As

shown in Fig. 2, it is noted that the swing phase and the
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impact phase occur alternately and the swing leg and the

supporting leg switch positions with each other with respect

to each collision. We denote the order of the swing phase and

the impact phase by i = 1, 2, · · · , L and i = 1, 2, · · · , L−1,

respectively. In addition, we assume that Leg 1 is the swing

leg and Leg 2 is the supporting leg in odd-numbered swing

phases, and Leg 1 is the supporting leg and Leg 2 is the

swing leg in even-numbered swing phases.

Swing Phase

Swing Phase Impact Phase

Swing Phase Impact Phase

Impact Phase

Swing Phase

Impact Phase

Impact Phase

Fig. 2 : Gait of Compass-type Biped Robot

B. Continuous Compass-type Biped Robot (CCBR)

In this subsection, we derive a model of continuous

compass-type biped robot (CCBR) via usual continuous

mechanics. We denote the angles of Leg 1 and 2 in the i-th
swing phase by θ(i), φ(i), respectively. In addition, θ̇(i), φ̇(i)

denote their angular velocities.

First, we consider a model of the CCBR in the i-th swing

phase where Leg 1 is the supporting leg and Leg 2 is the

swing leg. We assume that the torque at the waist can be

controlled, and denote it by v(i) ∈ R. The Lagrangian of this

system Lc is given by (13). Substituting the Lagrangian (13)

into the Euler-Lagrange equations and adding the control

input to the right-hand sides of them, we have the model of

the CCBR in the i-th swing phase as (14), (15).

We then derive a model of the CCBR in the i-th impact

phase. It is assumed that the swing leg hits the ground with

completely inelastic collision, and θ(i) = θ(i+1), φ(i) =
φ(i+1) holds because of an instantaneous impact. Hence, cal-

culating the principle of conservation of angular momentum

for the CCBR, we obtain the model of the CCBR in the i-th
impact phase as (16), where a−, a+ ∈ R

2×2 are coefficient

matrices.

C. Discrete Compass-type Biped Robot (DCBR)

Next, we derive a model of discrete compass-type biped

robot (CCBR) by discrete mechanics in this subsection.

We here use the notations; h: the sampling time, k =
1, 2, · · · , N : the time step, i = 1, · · · , L: the order of the

swing phases, α = 1/2: the internal division ratio in discrete

mechanics, θ
(i)
k , φ

(i)
k : the angles of Leg 1 and 2 at the k-th

step in the i-th swing phase.

In this paper, we use only the model of the DCBR in

the swing phases, and hence we will derive it. By using

the transformation law from a continuous Lagrangian into a

discrete Lagrangian (2), we obtain the discrete Lagrangian

as (17) from (13). Since the left and right discrete external

forces (9) satisfy F d+(qk, qk+1) = F d−(qk, qk+1) for α =
1/2, we set a discrete control input that consists of only the

left discrete external force F d− as

u
(i)
k := F d−(qk, qk+1), k = 1, · · · , N − 1. (18)

Then, substituting (17) into the discrete Euler-Lagrange

equations (11), (12) and using the discrete control input (18),

we have the model of the DCBR in the i-th swing phase as

(19)–(24).

For the impact phases, we use the model of the CCBR

(16), and we rewrite it with the terminal variables of the i-
the swing phase θ

(i)
N φ

(i)
N , θ̇

(i)
N φ̇

(i)
N and the initial variables

of the (i + 1)-the swing phase θ
(i+1)
1 φ

(i+1)
1 , θ̇

(i+1)
1 φ̇

(i+1)
1

as (25). This representation (25) will be utilized in the next

section.

IV. GAIT GENERATION METHOD ON SLOPES

A. Setting of Slopes

In this subsection, we first give the problem setting of

general walking surfaces including downward and upward

slopes. As shown in Fig. 3, we set the x and z axes to

the horizontal and vertical directions, respectively, and P0

denotes the origin of the xz-plane. We then set L points:

P1, P2, · · · , PL in the xz-plane. We represent Pi as Pi =
(ri, ρi) by the polar coordinate with reference to Pi−1 as

illustrated in Fig. 4. It is noted that ri > 0,−π/2 < ρi < π/2
are assumed. This problem setting can treat various walking

surfaces, for examples, ρi = 0 (i = 1, · · · , L): flats,

ρi = ρ− < 0 (i = 1, · · · , L): downward slopes, and

ρi = ρ− < 0 (i = 1, · · · , L): upward slopes. The sequence

of points P1, P2, · · · , PL are reference grounding points for

the compass-type biped robot. Based on the setting above,

we consider the following problem on the gait generation for

the compass-type biped robot.
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Lc(θ(i), θ̇(i), φ(i), φ̇(i)) =
1

2
(I +ma2 +Ml2 +ml2)(θ̇(i))2 +

1

2
(I +mb2)(φ̇(i))2

−mbl cos (θ(i) − φ(i))θ̇(i)φ̇(i) − (ma+mg +Ml)g cosφ(i) +mgb cosφ(i) (13)

d

dt

(

∂Lc(θ(i), θ̇(i), φ(i), φ̇(i))

∂θ̇(i)

)

−
∂Lc(θ(i), θ̇(i), φ(i), φ̇(i))

∂θ(i)
= v(i) (14)

d

dt

(

∂Lc(θ(i), θ̇(i), φ(i), φ̇(i))

∂φ̇(i)

)

−
∂Lc(θ(i), θ̇(i), φ(i), φ̇(i))

∂φ(i)
= −v(i) (15)

a−(θ(i), φ(i))

[

θ̇(i)

φ̇(i)

]

= a+(θ(i), φ(i))

[

θ̇(i+1)

φ̇(i+1)

]

(16)

Ld(θ
(i)
k , θ

(i)
k+1, φ

(i)
k , φ

(i)
k+1) =

1

2
(I +ma2 +Ml2 +ml2)

(

θ
(i)
k+1 − θ

(i)
k

h

)2

+
1

2
(I +mb2)

(

φ
(i)
k+1 − φ

(i)
k

h

)2

−mbl cos

(

θ
(i)
k + θ

(i)
k+1

2
−

φ
(i)
k + φ

(i)
k+1

2

)

θ
(i)
k+1 − θ

(i)
k

h

φ
(i)
k+1 − φ

(i)
k

h

−(ma+mg +Ml)g cos

(

φ
(i)
k + φ

(i)
k+1

2

)

+mgb cos

(

φ
(i)
k + φ

(i)
k+1

2

)

(17)

D2L
d(θ

(i)
k−1, θ

(i)
k , φ

(i)
k−1, φ

(i)
k )−D1L

d(θ
(i)
k , θ

(i)
k+1, φ

(i)
k , φ

(i)
k+1) + u

(i)
k−1 + u

(i)
k = 0 (19)

D4L
d(θ

(i)
k−1, θ

(i)
k , φ

(i)
k−1, φ

(i)
k )−D3L

d(θ
(i)
k , θ

(i)
k+1, φ

(i)
k , φ

(i)
k+1)− u

(i)
k−1 − u

(i)
k = 0 (20)

D2L
c(θ

(i)
1 , θ̇

(i)
1 , φ

(i)
1 , φ̇

(i)
1 ) +D1L

d(θ
(i)
1 , θ

(i)
2 , φ

(i)
1 , φ

(i)
2 ) + u

(i)
1 = 0 (21)

D4L
c(θ

(i)
1 , θ̇

(i)
1 , φ

(i)
1 , φ̇

(i)
1 ) +D3L

d(θ
(i)
1 , θ

(i)
2 , φ

(i)
1 , φ

(i)
2 )− u

(i)
1 = 0 (22)

−D2L
c(θ

(i)
N , θ̇

(i)
N , φ

(i)
N , φ̇

(i)
N ) +D1L

d(θ
(i)
N−1, θ

(i)
N , φ

(i)
N−1, φ

(i)
N ) + u

(i)
N−1 = 0 (23)

−D4L
c(θ

(i)
N , θ̇

(i)
N , φ

(i)
N , φ̇

(i)
N ) +D3L

d(θ
(i)
N−1, θ

(i)
N , φ

(i)
N−1, φ

(i)
N )− u

(i)
N−1 = 0 (24)

a−(θ
(i)
N , φ

(i)
N )

[

θ̇
(i)
N

φ̇
(i)
N

]

= a+(θ
(i)
N , φ

(i)
N )

[

θ̇
(i+1)
1

φ̇
(i+1)
1

]

(25)

Fig. 3 : Reference Grounding Points in xz-Plane

Problem 1: For the continuous compass-type biped robot

(CCBR) (14)–(16), find a control input v(i) (i = 1, · · · , L)
such that the swing leg of the CCBR lands at the reference

grounding points Pi (i = 1, · · · , L) with a stable and natural

gait.

In order to solve Problem 2 above, we will propose a new

synthesis method based on discrete mechanics. The method

consists of two steps: (i) calculation of a discrete control

input by solving a finite dimensional constrained nonlinear

optimization problem (Subsection IV-B), (ii) transformation

a discrete control input into a zero-order hold input by

discrete Lagrange-d’Alembert principle (Subsection IV-C).

Fig. 4 : ri and ρi

B. Discrete Gait Generation Problem

We next consider a problem on generation of a discrete

gait for the DCBR. The discrete gait generation problem for

the DCBR in the i-th swing phase is stated as follows.

Problem 2: For the discrete compass-type biped robot

(DCBR) (19)–(24) in the i-th swing phase, find a control

input u
(i)
k (i = 1, · · · , N − 1) such that the swing leg of
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the DCBR lands at the reference grounding points Pi with

a stable and natural discrete gait.

It is expected that in order to generate a stable gait on a

slope for the CCBR, a periodic behavior in each swing phase

is needed. So, we introduce a cost function of a square of

difference between initial angular velocities in the i-th and

(i+1)-th swing phases, and consider an optimization control

problem for the cost function with some constraints. This

problem is formulated as follows.

min J = (θ̇
(i+1)
1 − φ̇

(i)
1 )2 + (φ̇

(i+1)
1 − θ̇

(i)
1 )2 (26)

s.t. (19), (20), (21), (22), (23), (24) (27)

θ
(i)
1 , φ

(i)
1 θ̇

(i)
1 , φ̇

(i)
1 (28)

θ
(i)
N = sin−1

( ri
2l

)

− ρi, φ
(i)
N = sin−1

(

−
ri
2l

)

− ρi (29)

φ
(i)
1 > φ

(i)
2 > · · · > φ

(i)
N (30)

In the optimization control problem (26)–(30), (29) means

constraints on desired angles of Leg 1 and 2, which can

be obtained from data of the reference grounding points

Pi(i = 1, · · · , N), and (30) indicates constraints that prevent

a reverse behavior of the swing leg and realize a natural

gait. However, since the cost function (26) contains the

angular velocities in the (i+1)-th swing phase θ̇
(i+1)
1 , φ̇

(i+1)
1 ,

we cannot solve the minimization problem (26)–(30). So,

substituting the model of the impact phase (25) into the cost

function (26), we have

J = (a11θ
(i)
N + a12φ

(i)
N − φ̇

(i)
1 )2

+ (a21θ
(i)
N + a22φ

(i)
N − θ̇

(i)
1 )2,

(31)

where

(a+)−1a− =:

[

a11 a12
a21 a22

]

.

Note that the new cost function (31) does not contain

θ̇
(i+1)
1 , φ̇

(i+1)
1 and is represented by only variables in the

i-th swing phase. We can see that the optimization control

problem (31), (19)–(30) is represented as a finite dimensional

constrained nonlinear optimization problem with respect

to the (3N − 1) variables: θ
(i)
1 , · · · , θ

(i)
N , φ

(i)
1 , · · · , φ

(i)
N ,

ui
1, · · · , u

i
N−1. Therefore, we can solve it by the sequential

quadratic programming [4], [21], and obtain a sequence of

discrete control input ui
1, · · · , u

i
N−1.

C. Transformation to Continuous Zero-order Hold Input

In the previous subsection, we show a synthesis method

of a discrete control input for the DCBR by solving a

finite dimensional constrained nonlinear optimization prob-

lem. However, the obtained discrete control input cannot be

utilized for the CCBR. So, we here consider transformation

of a discrete control input into a continuous one.

There exist infinite methods to generate a continuous

control input from a given discrete one, and a continuous

control input generated from a given discrete input has to

be consistent with laws of physics. Hence, in this paper, we

deal with a zero-order hold input in the form:

v(i)(t) = v
(i)
k , (i− 1)kh ≤ t < (i− 1)(k + 1)h, (32)

which is one of the simplest continuous inputs. We need

to derive a relationship between a discrete input u
(i)
k (k =

1, 2, · · · , N − 1) and a zero-order hold input (32). By using

discrete Lagrange-d’Alembert’s principle which is explained

in Section II, we can obtain the following theorem.

Theorem 1: A zero-order hold input (32) that satisfies

discrete Lagrange-d’Alembert’s principle is given by

v
(i)
k =

2

h
u
(i)
k . (33)

(Proof) For the time interval kh ≤ t < (k+1)h, Substituting

(18) and (32) into the definition of the left discrete external

force in (9):

F d−(qk, qk+1) =
h

2
F c

(

(1−α)qk + αqk+1,
qk+1−qk

h

)

,

we obtain

u
(i)
k =

h

2
v
(i)
k .

Hence, we have (33).

By using (33) in Theorem 1, we can easily calculate a

zero-order hold input from u
(i)
k , i = 1, · · · , N − 1 which

are obtained by solving a finite dimensional constrained

nonlinear optimization problem (31), (19)–(30). In addition,

it must be noted that since we use discrete Lagrange-

d’Alembert’s principle to prove Theorem 1, a zero-order hold

input with a gain (33) is consistent with laws of physics.

V. SIMULATIONS

A. Problem Setting

In this section, we carry out some numerical simulations

on continuous gait generation on slopes for the CCBR via

the method proposed in the previous section, and confirm the

effectiveness of our method. First, this subsection gives the

problem setting. we set parameters as follows; parameters

of the CCBR: m = 2.0 [kg], M = 10.0 [kg], I =
0.167[kgm2], a = 0.5[m], b = 0.5[m], l = 1.0[m], and other

parameters: α = 1/2, h = 0.005 [s]. In Subsection V-B, we

will perform a simulation of gait generation for the CCBR

on a downward slope, and then we show a simulation on a

upward slope in Subsection V-C.

B. Simulation I: Downward Slope

In this subsection, we perform a simulation on gait genera-

tion for the CCBR on a downward slope via our new method.

We determine data of reference grounding points on a down-

ward slope as ri = 1.0 [m], ρi = −π/6 [rad] (−30 [degree]).
Parameters of gait generation are set as N = 50, L = 7, and

intial conditions are θ
(1)
1 = 0 [rad], φ

(1)
1 = 1.5 [rad], θ̇

(1)
1 =

0.1 [rad], φ̇
(1)
1 = −0.1 [rad].

Figs. 5–7 show the simulation results for gait generation

on the downward slope. Fig. 5 illustrates the time series of

Leg 1 and 2 (θ and φ). Fig. 6 shows the plot of solution

trajectory in the phase space of θ − φ. In Fig. 7, a snapshot

of the continuous gait is depicted. From these results, we

can confirm that a stable gait on the downward slope for

the CCBR can be generated by the proposed approach.
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Moreover, we also confirm stable gaits for large numbers

of L (the total number of steps in walking).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

t [s]

th
e
ta

, 
p
h
i 
[r

a
d
]

Fig. 5 : Time Series of θ and φ (Downward Slope)

(red line: θ, blue line: φ)
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Fig. 6 : Solution Trajectory on θφ-Space (Downward Slope)
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Fig. 7 : Snapshot of Gait (Downward Slope)

C. Simulation II: Upward Slope

Next, a simulation on gait generation for the CCBR on a

upward slope via our new method is carried out in this sub-

section. We determine data of reference grounding points on

a upward slope as ri = 1.0[m], ρi = −π/4[rad](45[degree]).
Parameters of gait generation are set as N = 50, L =

7, and intial conditions are θ
(1)
1 = −1.3 [rad], φ

(1)
1 =

−0.25 [rad], θ̇
(1)
1 = 0.1 [rad], φ̇

(1)
1 = −0.1 [rad].

Figs. 8–10 show the simulation results for gait generation

on the downward slope. In Fig. 8, the time series of Leg

1 and 2 (θ and φ) are depicted. Fig. 9 shows the plot of

solution trajectory in the phase space of θ − φ. a snapshot

of the continuous gait is illustrated in Fig. 10. From these

results, it can be confirmed that the proposed approach can

generate a stable gait on the upward slope for the CCBR.

In addition, similar to simulation results on the downward

slope in Subsection V-B, we also confirm stable gaits for

large numbers of L.
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Fig. 8 : Time Series of θ and φ (Upward Slope)

(red line: θ, blue line: φ)
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Fig. 9 : Solution Trajectory on θφ-Space (Upward Slope)
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Fig. 10 : Snapshot of Gait (Upward Slope)

VI. CONCLUSION

In this paper, a discrete mechanics approach to gait gener-

ation on slopes for the compass-type biped robot based has

been studied. We have formulated a discrete gait generation

problem for the DCBR and developed a synthesis method

of a discrete control input by solving a finite dimensional

constrained nonlinear optimization problem. We also have

introduced a transformation method from a discrete control

input into a zero-order hold input from the viewpoint of

discrete Lagrange-d’Alembert principle. Simulation results

have confirmed stable gaits on downward and upward slopes

and indicated the effectiveness of our new approach.

Our future work on control of humanoid robots via discrete

mechanics are as follows: (i) stable gait generation of the

CCBR irregular grounds, (ii) experimental evaluation of the

proposed control method, (iii) applications of discrete me-

chanics to more human-like robots and systems represented

by partial differential equations.
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