
Network Clustering: A Dynamical Systems and Saddle-Point Perspective

Mathias Bürger, Daniel Zelazo, and Frank Allgöwer

Abstract— This paper studies a class of cooperative networks that

exhibit clustering in their steady-state behavior. We consider a collection

of agents with heterogeneous dynamics and a bounded interaction rule

between neighboring systems. We relate the steady state-behavior of

the dynamical network to a static saddle-point problem. The saddle-

point description of the system allows for a precise characterization of

clustering. We show that the graph forms clusters along edges that are

saturated and the corresponding cluster values depend only on these

edges and the objective functions of each agent. We then provide a

Lyapunov stability proof connecting the steady-state behavior of the

dynamic system to the solution of the static saddle-point problem.

I. INTRODUCTION

Clustering is the phenomenon that in a dynamical network of

interacting agents, the network partitions into several groups and

all agents within the same group agree upon a common state. It

is important to understand the mechanisms that lead to network

clustering and to develop analytic tools providing information about

where the network is most likely to split.

The literature relevant to this work can be partitioned into two

broad groups. On one hand, research on the dynamic behavior and

the stability of cooperative networks is relevant. Within the many

contributions in this field, the works [1] and [2] are of particular

interest due to the similarities in the network model we use for this

work. On the other hand, research related to the general area of

clustering behavior in dynamic networks is also relevant. The work

[3] studies the aggregation of cooperative dynamic networks where

the notion of time-scale separation between strongly connected

groups is the main analytic tool. However, the heterogeneity of the

agent dynamics is not taken into account to explain partitioning of

the network. The contributions [4], [5] and [6] focus more on this

aspect. However, the literature in this field is by far not as extensive

as in the first group, and up to now clustering in dynamical networks

seems to not be fully explained.

The contributions of this paper are as follows. We propose a

class of dynamic network models that exhibit clustering in their

steady-state behavior. We consider a collection of agents with

heterogeneous dynamics that are coupled over a graph. A distin-

guishing feature in the model we adapt is that the interaction rule

between neighboring agents are bounded. We establish a relation

of the dynamical network model to a specific static saddle-point

problem. The static saddle-point problem allows us to explicitly

characterize network clustering. In particular, we show that the

solution of the saddle-point problem leads to clustering behavior

if a sub-set of the variables associated with the edges in the graph

are saturated. The notion of saturation relates constraints that are

active to the flow space of the graph. This result also allows us

to explicitly characterize the value that each cluster obtains. We

The authors thank the German Research Foundation (DFG) for financial
support of the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart and the Priority
Programme 1305 “Control Theory of Digitally Networked Dynamical
Systems”.

M. Bürger, D. Zelazo, and F. Allgöwer are with the Institute for Systems
Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9,
70550 Stuttgart, Germany, {mathias.buerger, daniel.zelazo,

frank.allgower}@ist.uni-stuttgart.de.

then show, using a Lyapunov stability proof, that the trajectories

of the dynamics system will always converge to a solution of the

saddle-point problem. This result allows to analyze the clustering

behavior of the dynamical system by studying a static saddle point

problem, and in this way to relate the properties of the nodes and

of the network structure to the resulting clustering pattern.

The remainder of the paper is organized as follows. In §II the

notion of clustering is defined. The dynamical network is presented

in §III. We then present in §IV a static saddle-point problem that

explains network clustering. The connection between the dynamical

network and the static saddle point problem is finally established

in §V.

Notation: For a vector x ∈ R
n, its transpose is given by x′ and

the ith component by xi; The ijth element of a matrix A is denoted

[A]ij . The inner-product of two vectors is denoted 〈x, y〉 = x′y; the

standard Euclidean norm is ‖x‖ = 〈x, x〉1/2. The null space and

range space of a matrix is denoted as N (A) and R(A) respectively.

The boundary of a set Γ is denoted as ∂Γ and the interior by intΓ.

The vector 1 is the vector of all ones.

II. PRELIMINARIES

Throughout this paper we consider systems defined over graphs

[7]. A graph G = (V,E), consists of a set of nodes, V =
{v1, . . . , vn}, and a set of edges, E = {e1, . . . , em} describing

the incidence relation between pairs of nodes. The notation vi ∼
vj denotes that node vi is connected (or adjacent) to node vj .
Equivalently, e = (vi, vj) ∈ E is the directed edge connecting

vi and vj . A simple path in a graph is a sequence of distinct nodes

such that consecutive nodes are adjacent to each other in the graph

and each node is used once.A simple cycle in a graph is a path where

the initial and terminal nodes are the same. A graph is connected if

there exists a path between any pair of nodes; otherwise the graph

is called disconnected. We also use the convention that an isolated

vertex is a connected graph.

A graph G′ = (V′,E′) is a subgraph of G if V′ ⊆ V and E′ ⊆
E; equivalently, we write G′ ⊆ G. Subgraphs can be induced by

either a node set or an edge set. For example, the subgraph P ⊆ G
induced by the node set P ⊆ V is the graph P = (P,E′), with

E′ = {e = (vi, vj) | vi, vj ∈ P, e ∈ E}. Similarly, the subgraph

Q ⊆ G induced by the edge set Q ⊆ E is the graph Q = (V′,Q),

with V′ ⊆ V the set of all nodes incident to the edges in Q.

A disconnected graph can be expressed as the union of connected

subgraphs; each connected subgraph is referred to as a component

of G. Throughout this paper we follow the convention that bold-

faced capital letters refer to sets, as in V, and the script notation

for graphs, as in Q.

The incidence matrix E(G) ∈ R
|V|×|E| of the graph G, is

a {0,±1} matrix with the rows and columns indexed by the

vertices and edges of G such that [E(G)]ik has value ‘+1’ if

node i is the initial node of edge k, ‘-1’ if it is the terminal

node, and ‘0’ otherwise. At times we will refer to the flow space

and the cut space of the incidence matrix, defined as N (E(G))
and R(E(G)′) respectively [7]. The cycles in a graph provide an

important characterization of the flow space.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7825

Definition 2.1: A signed path vector ζ ∈ R
|E| of a connected

graph G corresponds to a path such that the i-th element of ζ takes

the value ‘+1’ if edge i is traversed positively, ‘-1’ if traversed

negatively, and ‘0’ if the edge is not used in the path.

Theorem 2.2 ([7]): Given a connected graph G with arbitrary

orientation, the flow space N (E(G)) is spanned by all the linearly

independent signed path vectors corresponding to the cycles in G.

We now provide some definitions related to graph partitioning

and clustering.

Definition 2.3: A cluster P is a connected subgraph of G induced

by a node set P ⊆ V.

Definition 2.4: A p-Partition of the graph G is a collection of

node sets P = {P1, . . . ,Pp} with Pi ⊆ V, ∪pi=1Pi = V, and

Pi ∩ Pj = ∅ for all Pi,Pj ∈ P, such that each subgraph Pi
induced by the node sets Pi is connected.

Note that each subgraph Pi induced by a p-partition is also a

cluster. At times we will also refer to the p-cluster of a graph to

mean the set of subgraphs induced by a p-partition. For a connected

graph G, the union of all clusters induced by a partition will

not reconstruct the original graph; that is, ∪pi=1Pi ⊂ G. This is

formalized by the definition of a cut-set.

Definition 2.5: A cut-set of the graph G is a set of edges

whose deletion leads to an increase in the number of connected

components in G.

Any p-partition of a graph will induce a cut-set (possibly empty,

if p = 1). In this case, the cut-set is defined as

Q={(vi, vj) ∈ E|vi ∈ Pk, vj ∈ Pl, ∀Pk,Pl ∈ P, k 6= l} .

Similarly, a cut-set can be used to create p-partitions. Figure 1(a)

is an example of a connected graph with cycles. Figure 1(b)

shows the resulting induced clusters formed by the 3-partition

P = {{v1, v2, v3, v4}, {v5, v6, v7}, {v8}}. The cut set induced by

this partition are the set of edges between each cluster, visualized

as dotted edges in the graph.

Throughout this paper we associate scalar variables with each

node and edge in a graph. For example, each component xi of the

vector x ∈ R
|V| is associated with a node vi ∈ V. Similarly, each

component zi of a vector z ∈ R
|E| is associated with an edge

ei ∈ E. This can be used to provide an additional characterization

of clusters and partitions of a graph.

Definition 2.6: A cluster P is in ǫ-agreement if

‖xk − xl‖ ≤ ǫ, for all vk, vl ∈ P.

The cluster is in an (exact) agreement with a cluster value β if it

is in ǫ-agreement for ǫ = 0.

For a vector x ∈ R
|V| defined on the nodes of G and a subgraph

P = (P,E′) ⊆ G, we write x(P) ∈ R
|P| to denote the vector

of all components xj associated with the nodes vj ∈ P; a similar

notation is adopted for vectors defined on the edges.

Using this notation, we can express the values of a cluster in

exact agreement as x(P) = β1|P|.

III. A DYNAMIC NETWORK MODEL

In the following, we consider a dynamical network defined on

a graph G = (V,E) with V = {v1, . . . , vn}. Each node vi ∈ V

is associated with a dynamic node state xi(t) ∈ R that evolves

according to the scalar dynamical system,

Σi : ẋi(t) = −∇Ji(xi(t)) + ui(t), (1)

where ui(t) ∈ R is an external input, and the nonlinear function

∇Ji(xi(t)) is the gradient of a strongly convex objective function

v1

v2

v3

v4

v5

v6

v7 v8

(a) A graph on 8 nodes.

v1

v2

v3

v4

v5

v6

v7 v8

(b) A 3-cluster of the graph.

Fig. 1. A connected graph on 8 nodes. The 3-partition
P = {{v1, v2, v3, v4}, {v5, v6, v7}, {v8}} induces 3 clusters,
shown in (b). The cut-set induced by this partition is Q =
{(v2, v5), (v4, v7), (v3, v6), (v7, v8)}.

Ji(xi(t)). Strong convexity of Ji(xi(t)) implies that there exists a

ηi > 0 such that

(∇Ji(xi) −∇Ji(x̃i))(xi − x̃i) ≥ ηi(xi − x̃i)
2, ∀xi, x̃i ∈ R.

Coupling between each agent is realized through their control input.

Each agent has access to relative state information for its control,

defined over the edges of the graph G. In this direction, we define

the network output y ∈ R
|E| of the system as,

y(t) = E(G)′x(t). (2)

Associated with each edge ek ∈ E is an edge state zk(t) ∈ R that

evolves according to the integrator dynamics driven by the network

output,

Πk :

żk(t) = yk(t)
wk(t) = αkψk(zk(t))

(3)

The normalized nonlinear functions ψk(zk(t)) vanish at the origin

(ψk(0) = 0), are monotonically increasing (zk > z̃k ⇒ ψk(zk) >
ψk(z̃k)), and are bounded,

lim
zk→∞

ψk(zk) = +1 and lim
zk→−∞

ψk(zk) = −1. (4)

The parameter αk > 0 can be interpreted as an edge capacity, and

plays an important role in the clustering behavior of this network.

The output of each edge dynamical system is used to generate the

control for each agent, distributed by the incidence matrix as

u(t) = −E(G)w(t). (5)

Note that since w(t) is bounded, the driving force u(t) will also

always be bounded.

Combining equations (1)-(5), we obtain the following closed-loop

dynamical system,

ẋ(t) = −∇J(x(t)) − E(G)Wψ(z(t)) (6a)

ż(t) = E(G)′x(t), (6b)

with ∇J(x(t)) = [∇J1(x1(t)), . . . ,∇Jn(xn(t))]′, ψ(z) =
[ψ1(z1(t)), . . . , ψm(z|E|(t))]

′ and the diagonal matrix W =
diag([α1, . . . , α|E|]) containing all the edge capacities. The con-

sidered network is depicted in Figure 2.

This model represents a broad class of coupled dynamical sys-

tems, and is in the general spirit of the class of problems studied

in, for example, [1], [2]. An important distinction for the model

used here is each agent has different dynamics and even distinct

equilibria for ui(t) = 0. Furthermore, the coupling functions ψk
are bounded. This implies that the attraction between neighboring

nodes cannot be arbitrarily large. For the heterogeneous network

(6) with unbounded coupling functions (e.g., αk = ∞), we have

7826

Σ1

. . .

Σn

Π1

. . .

Πn

E(G)′E(G)

u(t) x(t)

y(t)w(t)

Fig. 2. Structure of the network model.

shown in a previous work [8] that the nodes reach an agreement

on a common value for the node states.

As mentioned above, the edge capacities play an important role

for the behavior of the system (6). As a motivating preview, Figure

3 shows the trajectories of 100 agents, connected over a complete

graph, running the protocol (6). All agents have randomly chosen

quadratic objective functions Ji(xi) with minima at distinct points.

The coupling functions are chosen as ψk = tanh(zk). All initial

conditions are chosen randomly and the edge capacities are equal

for all edges of the graph, W = αI . The two simulations differ

only in the choice of the edge capacities α. For a sufficiently large

edge capacity α, Figure 3(a) shows all agents reaching agreement

(e.g., they form an exact 1-cluster). Reducing the edge capacity

leads to a different steady-state behavior, as shown in Figure 3(b).

In this case, we observe that the agents from an exact 4-cluster each

with different cluster values, comprised of two large clusters and

two isolated agents. Having qualitatively observed the clustering

behavior of the proposed model we aim to characterize it more

precisely.

The above example suggests that clustering behavior will depend

on three parameters of the system (6): i) the interaction graph G,

(ii) the local objective functions Ji of each agent, and (iii) the edge

capacities αk. These observations motivate the main goals of this

paper. Namely, we would like to answer the following questions:

• For which edge capacities αk will the network achieve agree-

ment (will the network form a 1-partition)?

• If the network forms a p-partition (p>1), along which edges

will the network split?

• What will the cluster value βi for each cluster be?

The main analytic machinery we use to address these questions

surprisingly come from a corresponding static saddle-point prob-

lem. In the sequel, we will discuss how a certain class of saddle-

point problems lead to a clustering behavior of the optimization

variables as a function of the constraint sets. Within the static

problem set-up we are able to characterize certain properties of

clusters. This will then lead to the main result of this work,

connecting the static problem to the dynamic system (6).

IV. SADDLE-POINT PROBLEMS AND STATIC NETWORK

CLUSTERING

The clustering phenomena in networks can be described by a

static optimization problem that is intimately connected to the

dynamical network (6). In particular, we examine the following

static max-min problem, referred to as a saddle-point problem:

max
µ∈Γ

min
x

L(x, µ) =
n

X

i=1

Ji(xi) + µ′E(G)′x, (7)

0 50 100 150
−150

−100

−50

0

50

100

150

200

250

300

x
(t

)

Time

(a) .

0 50 100 150
−100

−50

0

50

100

150

200

x
(t

)

Time

(b)

Fig. 3. Simulation of the node trajectories x(t) for a random problem
with different edge capacities: (a) trajectories converge to a 1-partition; (b)
trajectories converge to a 4-partition.

where x = [x1, . . . , xn]′ ∈ R
n are decision variables asso-

ciated with each node in the graph G = (V,E), and µ =
[µ1, . . . , µ|E|]

′ ∈ R
|E| are variables associated with the edges in

E. The objective functions Ji(xi) are the integral functions of the

gradients ∇Ji appearing in the dynamics (1). We will sometimes

abbreviate the notation writing J(x) :=
Pn
i=1 Ji(xi). Note that the

vector x here is a static vector while the state vector x(t) of the

system (6) is dynamic.

The constraint set Γ = Γ1 × · · · × Γ|E|, with Γk = [−αk, αk],
for some αk > 0, is a box constraint. Throughout this paper, except

if explicitly stated otherwise, we assume that 0 < αk < ∞ and

thus Γ is a compact and convex set. This notation is intentionally

introduced to show a correspondence with the edge capacities

defined for the dynamic network problem.

A special instance of the problem (7) occurs when the variables

µk are unconstrained, corresponding to Γ = R
|E|. In this case,

(7) corresponds to the dual problem of a corresponding network

optimization problem. The primal problem in this case can be

written as

min
x

n
X

i=1

Ji(xi) s.t. E(G)′x = 0. (8)

Denote by (x∗, µ∗) a primal and dual solution to the problem (8).

The µ∗
k variables are the dual variables of (8). The optimal solution

x∗ of (8) will always form a 1-cluster in agreement, i.e. E(G)′x∗ =
0 ⇒ x∗ = β1, for some β ∈ R. A optimal dual solution can

then be obtained by the first order optimality condition ∇J(x∗) +
E(G)µ∗ = 0. This problem falls under a broad class of network

optimization problems and consequently can be solved efficiently

using a variety of methods (see, for example, [9]).

There is a game-theoretic interpretation of the saddle point

problem. A decision maker in each node vi aims to minimize its

individual objective function Ji; simultaneously, another decision

maker, attached to an edge, penalizes any deviation between the

decision variables of its incident nodes. For the problem (8),

the dual variables associated with the constraints will force the

decision makers on the nodes to reach an exact agreement on their

values. However, the saddle-point problem formulation (7) does

not permit the edge decision makers to arbitrarily penalize the

deviation between neighboring agents, e.g. the penalty variables µ
are restricted to be contained in the set Γ. This additional constraint

has a strong impact on the structure of the primal solution x.

A. Saddle Points

We provide here some properties of the saddle-points associated

with (7).

7827

Definition 4.1: A point (x̄, µ̄) is a saddle-point of (7) if µ̄ ∈ Γ
and L(x̄, µ) ≤ L(x̄, µ̄) ≤ L(x, µ̄), for all x ∈ R

n, µ ∈ Γ.
In general there can be more than one saddle-point. We will

denote the set of all saddle-points in the following by X × M.

Lemma 4.2: The set of all saddle-points X × M for (7) is non-

empty.

Proof: The set Γ is nonempty, convex, and compact. The

function L : R
n × Γ → R is convex for each fixed µ ∈ Γ, and

concave for each x ∈ R
n. Furthermore, for some µ̄ ∈ Γ and

β ∈ R the level sets {x ∈ R
n|

Pn
i=1 Ji(xi) + µ̄′E(G)′x ≤ β}

are nonempty and compact since each Ji is a strongly convex

function. The statement follows from the Saddle Point Theorem

[10, Proposition 4.7].

Saddle-points also admit some first-order optimality conditions. Let

(x̄, µ̄) be a saddle point, then ([11])

∇J(x̄) + E(G)µ̄ = 0, and x̄′E(G)(µ− µ̄) ≤ 0, ∀µ ∈ Γ. (9)

Lemma 4.3: Let (x̄, µ̄) be a saddle point of (7), then X = {x̄}
and M = {µ ∈ Γ |µ = µ̄+ ν, ν ∈ N (E(G))}

Proof: We first show the uniqueness of the saddle-point in the

x-coordinate. Suppose (x̄, µ̄) and (x̃, µ̃) are both saddle-points with

x̄ 6= x̃. Then L(x̄, µ̄) = L(x̃, µ̃) and furthermore, J(x̄) − J(x̃) =
µ̃′E(G)′x̃ − µ̄′E(G)′x̄. The first-order optimality conditions state

that µ̃′E(G)′x̃ ≥ µ̄′E(G)′x̃ and E(G)µ̄ = −∇J(x̄), implying that

J(x̄) − J(x̃) = µ̃′E(G)′x̃ − µ̄′E(G)′x̄

≥ µ̄E(G)′x̃ − µ̄′E(G)′x̄ = −∇J(x̄)(x̃ − x̄).

On the other hand, due to the strong convexity of Ji, we have

J(x̃) − J(x̄) ≥ ∇J(x̄)′(x̃ − x̄) +
m

2
‖x̃ − x̄‖2, m > 0.

This leads to a contradiction, proving that x̄ = x̃ and thus X = {x̄}.
Let (x̄, µ̄) be a saddle-point of (7). If N (E(G)) is non-trivial,

then for any vector ν ∈ N (E(G)), one has L(x̄, µ̄) = L(x̄, µ̄+ν).

Any vector µ = µ̄+ν ∈ Γ satisfies the saddle-point and first-order

optimality conditions.

The result states that there is a unique vector x̄ at which a saddle-

point can be attained. However, the set of all saddle-points depends

on the structure of the graph, and in particular its flow space.

Lemma 4.4: For Γ = R
m, the set M contains more than one

point if and only if G contains at least one cycle.

Proof: From Theorem 2.2, the flow space of E(G) is non-

trivial if and only if G contains at least one cycle.

B. Network Clustering

Having established the existence and uniqueness properties of

the saddle-points for (7), we now show how these solutions lead to

clusters in the graph G. First, we introduce the notion of a saturated

edge in the graph.

Definition 4.5: An edge ek ∈ E is said to be saturated if for all

µ̄ ∈ M, µ̄k ∈ ∂Γk (e.g., |µ̄k| = αk).

Note, however, that µ̄k ∈ ∂Γk for a particular µ̄ does not imply

the edge is saturated. For an edge to be saturated, the constraint

associated with that edge must be active for all possible saddle-

points in the set M. The following lemma connects the definition

of saturated edges to graph properties.

Lemma 4.6: Any cycle in G contains either none or at least two

saturated edges.

Proof: The statement is proven by contradiction. Assume that

edge ek is the only saturated edge contained in a cycle with a

corresponding signed path vector ζ. Then ζk 6= 0 and from Theorem

2.2, ζ ∈ N (E(G)). From Lemma 4.3, there exists a δ ∈ R

sufficiently small such that µ̃ = µ̄ + δζ ∈ M and µ̃k ∈ intΓk.

But this is a contradiction to the definition of a saturated edge.

Therefore, ek cannot be saturated. This implies that if a cycle

contains a saturated edge, it must contain at least two saturated

edges.

We now show that if the set M contains saturated edges, then

there is a corresponding cut-set for the graph comprised of those

edges.

Lemma 4.7: The set of saturated edges in M forms a cut-set for

the graph.

Proof: First, assume that G is a spanning tree. Then M =
{µ̄}. Assume that at least one edge constraint is active, then every

µ̄k ∈ ∂Γk is saturated, and its deletion results in an increase in the

number of components, thus forming a cut-set.

Next, let G contain cycles. Assume that edge ek is saturated and

is not contained in any cycle. Then its deletion results in an increase

in the number of components in G, and is included in a cut-set for

the graph.

Now assume that a saturated edge ek is contained in one or more

cycles. Then by Lemma 4.6 any cycle contains at least one other

saturated edge. The deletion of two or more edges from a cycle

results in an increase in the number of components in the graph,

and thus each saturated edge in a cycle is included in a cut-set.

Lemma 4.7 makes a strong connection between the saddle-points

of (7), saturated edges, and cut-sets. We are now able to state the

main result of this section, relating clustering to saddle-points.

Theorem 4.8: Let X × M be the saddle-points of (7), and let

Q ⊆ E be the set of saturated edges. Then Q induces a p-partition

P = {P1, . . . ,Pp} and each cluster Pi induced by the set Pi is

in exact agreement.

Proof: Let (x̄, µ̄) ∈ X×M be a saddle-point with µ̄k ∈ intΓk
for all non-saturated edges. Note that stating that cluster Pi is in

agreement is equivalent to E(Pi)
′x̄(Pi) = 0. Assume, in order to

arrive at a contradiction, that there exists some Pi ∈ P such that

E(Pi)
′x̄(Pi) 6= 0. Denote by Q the subgraph induced by Q. The

function (7) can be written as

L(x̄, µ̄) =
n

X

i=1

Ji(x̄i) +

p
X

j=1

µ̄(Pj)
′E(Pj)

′x̄(Pj)+

µ̄(Q)′E(Q)′x̄(Q).

(10)

Since all clusters except Pi are assumed to be in agreement, the

second term of (10) can be written as
P

ei=(vk,vl)∈Pi
µ̄i(x̄k− x̄l).

Assume without loss of generality that only the edge ek = (vi, vj)
in Pi connects two nodes that are not in agreement with a positive

difference (e.g., x̄i− x̄j > 0). Then there exists an ǫ > 0 such that

µ̄k + ǫ ∈ Γk and µ̄k(x̄i − x̄j) < (µ̄k + ǫ)(x̄i − x̄j). Let µ̃ be the

edge value after adding ǫ to only edge value µ̄k as described above.

Then L(x̄, µ̄) ≤ L(x̄, µ̃), contradicting the assumption that (x̄, µ̄)
is a saddle-point. Therefore, each cluster Pi must be in agreement.

With this theorem, we already answered the second question

posed in §III. That is, the critical edges along which the network

will partition are related to the saturated edges in the static problem

(7). More precisely, the network will partition along the saturated

edges contained in the saddle points of (7).

Theorem 4.8 can be used to express any saddle-point x̄ in the

form x(Pi) = βi1, i ∈ {1, . . . , p}, for some βi ∈ R. The

clusters Pi are the connected components of the graph G after

deleting all the saturated edges.

We are now also prepared to answer the remaining two original

questions on network clustering for the static case. In the following,

7828

denote X×M as the set of saddle points for (7) and X
∗×M

∗ as the

primal and dual optimal solution sets to the network optimization

problem (8).

Lemma 4.9: The solution x̄ ∈ X of the saddle point problem (7)

forms a 1-cluster in agreement if and only if Γ ∩ M
∗ 6= ∅.

Proof: If Γ ∩ M
∗ 6= ∅, there exists a µ∗ ∈ M

∗ which is also

contained in Γ. Since µ∗ is the optimal dual solution to (8), we

know that the corresponding optimal primal solution is x∗ = β1.

This solution (x∗, µ∗) satisfies the first order optimality conditions

for (7). Thus (x∗, µ∗) is also a saddle point of (7) and therefore

x̄ = β1. Now suppose that x̄ = β1. There exists µ̄ ∈ Γ such that

∇J(β1) +E(G)µ̄ = 0. Since x̄ satisfies also the second condition

of optimality for (8), E(G)′x̄ = βE(G)′1 = 0. Thus (x̄, µ̄) is

also a saddle point of (8) and therefore µ̄ ∈ M
∗. This shows that

Γ ∩ M
∗ 6= ∅ and concludes the proof.

The importance of Lemma 4.9 is that it provides a condition

for achieving a 1-cluster for (7) in terms of the solution of an

unconstrained network optimization problem. Considering that there

are many efficient algorithms for solving (8), checking if the saddle-

point problem achieves a 1-cluster is equivalent to solving the

unconstrained problem.

We can now characterize the agreement values of the clusters.

Assume that the network forms a p-cluster (P1, . . . ,Pp). We have

already shown that x̄(Pi) = βi1. For notational simplicity, define

JPi
(βi) =

X

j∈Pi

Jj(βi) and ∇JPi
(βi) =

X

j∈Pi

∇Jj(βi).

Note that both JPi
and ∇JPi

are functions mapping R to R. The

notation ∇JPi
denotes the summation over all gradients within

one cluster. The notation is introduced to prepare an alternative

representation of the first order optimality condition (9) in terms

of the network partitions. With this in mind, we also point out that

the summation of E(G)µ̄ over one partition is 1′E(Pi)µ̄(Pi) = 0.

Recall also that each edge in the cut-set Q that induces the

p-cluster is saturated; each component of the vector µ̄(Q) is

either +αk or −αk. We define therefore the vector yPi
=

∇Pi
µ̄(Q)′E(Q)′x̄(Q) where the notation ∇Pi

means “take the

gradient with respect to only the nodes in Pi.” This vector has

a special structure. In particular, for all edges in Q that are not

incident to any nodes in Pi, the corresponding value of yPi
is 0.

Otherwise, the corresponding value of yPi
is ±αk for an edge k

that is in the cut-set and incident to nodes in Pi.

Lemma 4.10: The agreement value for the cluster Pi is given

by βi = ∇J∗
Pi

(−y′Pi
1) where J∗

Pi
is the convex conjugate of the

function JPi
.

Proof: The statement follows from the first order conditions

of optimality. We can rewrite the standard conditions of optimality

using the cluster notation as ∇JPi
(βi) + µ̄(Pi)

′E(Pi)1+ y′Pi
1 =

0, i ∈ {1, . . . , p} Note that the previous equation can be derived

by taking the sum of all first order optimality conditions, which

correspond to the nodes in the cluster Pi. Considering now that

E(Pi)
′
1 = 0 and that the gradient of the convex conjugate function

is the inverse of the gradient of the function ([12]), the statement

follows directly.

This result highlights the important property that the cluster

agreement value βi depends only on the objective functions of

the cluster nodes JPi
and the edge capacities αk of the edges

separating the cluster from neighboring clusters. It is independent

of the distribution of the dual variables within the cluster. Having

given the saturated edges and the saturation bounds, one can easily

predict the agreement value of the cluster.

x1

x2

x3

J3

J2

J1

µ1 µ2

(a) A path graph on 3
nodes.

x1

x2

x3

J3

J2

J1

µ1 µ2

µ3

(b) A cycle graph on 3
nodes.

Fig. 4. Example illustrating the role of cycle edges in saddle-point solution.

We now present a simple example illustrating the implications of

Lemma 4.7 and Theorem 4.8.

Example 4.11: We consider the two graphs, the path graph Gl
in Figure 4(a) and the cycle graph Gc in Figure 4(b). The objective

functions for each node are chosen as Ji = 1
2
(xi − ξi)

2, with

ξ1 = 10, ξ2 = 5, and ξ3 = 15.

Let us first consider the two problems for Γ = R
|E| to gain

more insight into the solution. Denote by (x∗, µ∗) the solution of

the unconstrained problem. For the path graph, one can quickly

compute x∗ = 10, µ∗
1 = 0, and µ∗

2 = −5. This solution is unique

since E(Gl) has no cycles. The cycle graph Gc has the same solution

x∗ = 10, µ∗
1 = 0, and µ∗

2 = −5 but with the additional edge value

µ∗
3 = 0. The cycle graph, however, contains one cycle. In particular,

the flow space can be expressed as N (E(Gc)) = β[1 1 1]′, β ∈ R.

Thus, the saddle points for Gc are x∗ = 10 and µ∗ ∈ M with

M =

µ ∈ Γ | µ =

"

0
−5
0

#

+ β

"

1
1
1

#

, β ∈ R

ff

.

Consider now the same problem with Γi = [−α, α] for each

edge, with α > 0 (each edge has identical box constraints). Denote

the solution to the constrained problem as (x̄, µ̄). Observe that for

α ≥ 5, the constrained solution is identical to the unconstrained

solution (for the cycle graph, the set of saddle-points is smaller).

For α < 5, edge e2 in the path graph Gl will saturate and form the

2-partition P = {{v1, v2}, {v3}}.

In contrast, consider now the cycle graph Gc and choose α =
4.5. Then there exists a µ̃ ∈ M (e.g., µ̃ = [4,−1, 4]′) for which

no variable is on the boundary of Γ. Note that since E(Gc)µ̄ =
E(Gc)µ̃, both (x̄, µ̄) and (x̄, µ̃) with x̄ = 10 [1 1 1]′ are saddle

points. If α ≤ 2.5, then for the cycle graph, M collapses to the

point [2.5 − 2.5 2.5]′ and all three edges are considered saturated.

The network will split into the 3-partition P = {{v1}, {v2}, {v3}}.

From this simple example, one can infer that the cycle graph is

somehow more “robust” to capacity reductions on the edges. That

is, the path graph will result in clustering before the cycle graph if

the edge capacities are gradually reduced.

V. DYNAMIC NETWORK CLUSTERING AND SADDLE-POINT

PROBLEMS

It remains now to connect the solution of the static problem (7)

to the behavior of the dynamic system (6). A main contribution of

this paper is the observation that the asymptotic behavior of the

dynamic network (6) is directly connected to the saddle points of

(7). The following theorem summarizes this result.

Theorem 5.1: Let X×M be the set of saddle points of problem

(7). The trajectories x(t) of (6a) and w(t) of (6b) remain bounded

and limt→∞ x(t) → X, limt→∞ w(t) → M.

Proof: The proof relies on a Lyapunov-type argument. Let

throughout the proof (x̄, µ̄) be a particular saddle point in X ×

7829

M. Without loss of generality, assume that the solution of (7)

forms a p-partition. First, consider the steady-state behavior of the

dynamics (6a) ẋ(t) = 0 = −∇J(x(t)) − E(G)w(t). Note that

this equilibrium has the same form as the first-order optimality

condition for the saddle-point problem (7). Thus we know that

(x̄, µ̄) is an equilibrium point for this dynamics in the sense

x(t) = x̄ and w(t) ∈ M. Note that such a point always exists since

wk(t) ∈ [−αk, αk]. Following the argumentation, we have for (6b)

ż(t) = 0 = E(G)′x(t).Contrary to the dynamics (6a), a saddle

point x̄ in general does not give rise to an equilibrium for these

dynamics. In particular, since x̄ corresponds to some p-partition, it

holds in general that E(G)′x̄ 6= 0.

We must therefore show that the solution (x(t), z(t)), even if z(t)
might be unbounded, converges such that (x(t), w(t)) → X × M.

We will show this by the construction of an integral Lyapunov-like

function. Define the variables z̄k = ψ−1
k (µ̄k/αk) if |µk| < αk,

z̄k = −∞ if µ̄k = −αk, and z̄k = ∞ if µ̄k = αk for k ∈
{1, . . . , |E|}. Consider the following Lyapunov function candidate,

V =
1

2
‖x(t) − x̄‖2 +

|E|
X

k=1

Z zk(t)

z̄k

(αkψk(s) − µ̄k) ds. (11)

To begin, we show that V (x, z) is positive-definite and vanishes

at x(t) = x̄ and z(t) = z̄. Positive-definiteness of the first term is

obvious and we must only verify it for the second summand.

Define hk(zk) :=
R zk(t)

z̄k

(αkψk(s) − µ̄k) ds. It is clear that

h(z̄k) = 0. Furthermore, the first derivative vanishes at z̄, i.e.
∂hk

∂zk

|zk=z̄k
= (αkψk(z̄k)− µ̄k) = 0. Finally, the second derivative

is everywhere non-negative,
∂2hk

∂z2
k

= ∂ψk

∂zk

≥ 0 due to the monotonic

property of ψk(zk). Now we can conclude that hk(zk) is a positive-

definite function attaining its minimum at zk = z̄k. The function

V (x, z) is therefore a suitable Lyapunov function candidate.

To analyze the behavior of the system, we consider the directional

derivative of V along the trajectories

V̇ = (x− x̄)′ẋ+
m

X

k=1

(αkψk(zk) − µ̄k)ż

= (x− x̄)′(−∇J(x) − E(G)Wψ(z)) + (Wψ(z) − µ̄)′E(G)′x.

We now add zero to obtain

V̇ = (x− x̄)′(−∇J(x) + ∇J(x̄) −∇J(x̄) − E(G)′Wψ(z))

+(Wψ(z) − µ̄)′E(G)′x.

Using the first order condition of optimality ∇J(x̄) = −E(G)µ̄ we

can write this as V̇ = −(x− x̄)′(∇J(x) −∇J(x̄))
+ (x− x̄)′(E(G)µ̄− E(G)Wψ(z)) + (Wψ(z) − µ̄)′E(G)′x.

Due to strong convexity of the objective functions, (x −
x̄)′(∇J(x) −∇J(x̄)) ≥ η(x− x̄)′(x− x̄) one gets

V̇ ≤ −η(x− x̄)′(x− x̄)

+(x− x̄)′E(G)(µ̄−Wψ(z)) + (Wψ(z) − µ̄)′E(G)′x,

and thus V̇ ≤ −η(x− x̄)′(x− x̄) − x̄′E(G)(µ̄−Wψ(z)).
We now note that x̄′E(G) is a vector with one entry for each

edge of G. The entry [x̄′E(G)]k of this vector is nonzero if and

only if the edge ek is saturated (|µ̄| = αk). Thus, we can write

V̇ ≤ −x̄(Q)′E(Q)(µ̄(Q) −W (Q)ψ(Q)) (12)

with all entries on the vector µ̄(Q) having the value ‘+αk’ or ‘-αk’.

We show now that the right hand side of (12) is non-positive.

Note therefore that the entries of the vector (µ̄(Q)−W (Q)ψ(Q))
have the same sign as the corresponding entries of the vector µ̄(Q).

In particular if µ̄k = +αk (µ̄k = −αk) then µ̄k − αkψk(zk) > 0
(µ̄k − αkψk(zk) < 0) for all zk.

We also note that the entries of the vector E(Q)′x̄(Q) have

the same sign as µ̄(Q). This is a condition of optimality. If

µ̄k[E(G)′x̄]k 6≥ 0 the solution µ̄ can not be optimal since a simple

change in the sign would increase the value of L(x̄, µ̄). Taking

these observations into account, one knows that each component
ˆ

x̄(Q)′E(Q)
˜

k

ˆ

(µ̄(Q) −Wψ(Q))
˜

k
≥ 0

for all z and consequently V̇ ≤ η(x− x̄)′(x− x̄).
All solutions converge to the set {x : x ≡ x̄} [13]. It has

already been shown that the saddle point x̄ is unique. By LaSalle’s

Invariance Principle [13] we can now conclude that all solutions

converge to the largest invariant set contained in {x : x ≡ x̄}.

Thus, all solutions approach the set {(x, z) : x = x̄,Wψ(z) =
µ̄+ ν, ν ∈ N (E)}. This proves the theorem.

The result establishes a direct connection between the dynamic

network (6) and the static saddle point problem (7). We have

already used the properties of the static problem to analyze the

clustering behavior. Performing the analysis in the static problem

is significantly easier. We have then directly used the properties

of the static network clustering to characterize the behavior of the

dynamic network. Naturally, all the results on the properties of the

network clustering which are presented in §IV hold in the same

way for the limiting behavior of the dynamic network.

VI. CONCLUSIONS

This work examined the phenomena of clustering within a

coupled dynamical system. We considered a network model and

showed that its trajectories converge to the solution of an associated

saddle-point problem. This result provides an explicit connection

between static optimization problems and dynamic systems in a

networked setup. This relation allows for a direct analysis of

possible clustering properties of the dynamic network.

REFERENCES

[1] D. Zelazo and M. Mesbahi, “Edge Agreement: Graph-theoretic Per-
formance Bounds and Passivity Analysis,” IEEE Transactions on

Automatic Control, vol. 56, no. 3, pp. 554–555, 2010.
[2] M. Arcak, “Passivity as a design tool for group coordination,” IEEE

Transactions on Automatic Control, vol. 52, no. 8, pp. 1380–1390,
2007.

[3] E. Biyik and M. Arcak, “Area aggregation and time scale modeling
for sparse nonlinear networks,” Systems and Control Letters, vol. 57,
no. 2, pp. 142–149, 2008.

[4] F. D. Smet and D. Aeyeles, “Clustering in a network of non-identical
and mutually interacting agents,” Proceedings of the Royal Society A,
vol. 465, pp. 745–768, 2009.

[5] ——, “Cluster transition in a multi-agent clustering model,” in Proc.

of the 48th IEEE Conf. on Dec. and Contr., 2009, pp. 4778–4784.
[6] W. Xia and M. Cao, “Cluster synchronization algorithms,” in American

Control Conference, Baltimore, USA, June 2010.
[7] C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
[8] M. Bürger, G. S. Schmidt, and F. Allgöwer, “Preference Based

Group Agreement in Cooperative Control,” in Proc. of the 8th IFAC

Symposium on Nonlinear Control Systems, 2010, pp. 149–154.
[9] R. T. Rockafellar, Network Flows and Monotropic Optimization.

Belmont, Massachusetts: Athena Scientific, 1998.
[10] D. Bertsekas, “Min common / max crossing duality: A geometric

view of conjugacy in convex optimization,” Lab. for Information and
Decision Systems, MIT, Tech. Rep. Report LIDS-P-2796, 2009.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge University Press, 2003.

[12] R. Rockafellar, Convex Analysis. Princeton University Press, 1997.
[13] H. Khalil, Nonlinear Systems. Upper Saddle River, New Jersey:

Prentice Hall, 2002.

7830

