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Abstract— The stability of uncertain feedback interconnec-
tions of causal time-varying linear systems is studied in terms
of a recently established generalisation of the ν-gap metric.
In particular, a number of robustness results from the well-
known linear time-invariant theory are extended. The time-
varying generalisations include: sufficient conditions for robust
stability; a bound on robust performance; and two-sided bounds
on the induced norm of the variation in a closed-loop mapping
as an open-loop component of the feedback interconnection
is perturbed. Underlying assumptions are verified for causal
systems that exhibit linear periodically time-varying behaviour.
This includes a class of sampled-data systems as a special case.
Within the periodic context considered, it can be shown that a
robust stability condition is also necessary.

Index Terms— Feedback, robust stability, ν-gap metric, time-
varying systems, periodic systems

I. INTRODUCTION

In [1], [2], a ν-gap metric and integral quadratic constraint
(IQC) based robust stability framework, established for linear
time-invariant (LTI) systems in [3], [4], is generalised to ac-
commodate causal linear systems that are time-varying with
unbounded gain over the space of finite-energy signals. In
particular, a generalised ν-gap distance is defined, assuming
the existence of certain normalised coprime representations
of the system graphs, which is the case for various classes
of linear systems. The main results in [1], [2] establish
that the generalised ν-gap metric enjoys homotopy-type
robustness properties when combined with IQC conditions.
It remained unclear whether the metric could be used to
quantify feedback robustness non-conservatively, as is the
case for LTI systems [5], [6]. In this paper, aspects of
this issue are addressed. The following are established:
sufficient conditions for robust stability; properties of the
topology induced by the ν-gap metric; and, for a class of
linear periodically time-varying (LPTV) systems, the so-
called strong necessity robustness condition.

By contrast with [1], [2], the definition of the generalised
ν-gap metric is motivated here via a necessary and sufficient
Fredholm index condition for the stability of an uncertain
feedback interconnection, contingent on the robust stability
margin of the nominal closed-loop being sufficiently large.
Using this condition, we derive a lower bound on the
robust stability margin of the perturbed feedback systems.
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We also consider the variation of a closed-loop mapping,
used to gauge performance and robustness, as an open-
loop component of the feedback interconnection is perturbed.
Uniform upper and lower bounds on the induced norm of
the difference are established in terms of the ν-gap distance
between the perturbed and nominal open-loop systems. From
these bounds it follows that the ν-gap metric induces the
weakest topology with respect to which closed-loop stabil-
ity is maintained in small neighbourhoods and closed-loop
performance varies continuously.

Towards addressing the issue of conservatism, a class of
causal LPTV systems, assumed to have transfer function
representations with finite-dimensional realisations, is con-
sidered via the the well-known time-lifting and discrete-time
Fourier transform isomorphisms. All underlying assumptions
made in the preceding development are verified for this
class of systems. A necessary condition for robust stability,
analogous to the LTI results in [5], is then derived. This
leads to a quantitative measure of the maximal ν-gap ball
of causal LPTV perturbations a given feedback system can
tolerate in terms of retaining the property of internal stability.
Along with the results described above, it affirms that the
generalised ν-gap metric is a natural dual of the robust
performance/stability margin.

The paper is organised as follows. In Section II we specify
the notation and some basic material, including the notions of
Fredholm, Wiener-Hopf and Hankel operators. In Section III
a definition of feedback stability is introduced and then
characterised in terms of system graph symbols. Section IV
contains the definition of the ν-gap metric, sufficient con-
ditions for robust stability, and bilateral bounds on closed-
loop errors. Finally, we consider the aforementioned class
of LPTV systems and derive a necessary robust stability
condition in Section V.

II. BASIC NOTATION AND OPERATOR THEORY

The real numbers are denoted R. The transpose of a
matrix M ∈ Rp×m is denoted MT . For a linear oper-
ator X : dom(X) ⊂ H1 → H2, we define its kernel
ker(X) := {x ∈ dom(X) |Xx = 0} and its image
img(X) := {y ∈ H2 | y = Xx for some x ∈ dom(X)}.
We denote by L (H1,H2) the Banach space of all bounded
linear operators mapping between the Hilbert spaces H1 and
H2. An operator X ∈ L (H1,H2) is said to be compact
if for any bounded sequence {xk} in H1, {Xxk} has a
convergent subsequence in H2. The unique Hilbert adjoint of
X ∈ L (H1,H2) is denoted X∗ ∈ L (H2,H1), and satisfies
〈Xw, v〉H2

= 〈w,X∗v〉H2
∀w ∈ H1, v ∈ H2. We define

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2028



respectively the upper and lower gains of X as γ̄(X) :=
sup‖w‖H1

=1 ‖Xw‖H2
and γ(X) := inf‖w‖H1

=1 ‖Xw‖H2
.

Definition 2.1: An X ∈ L (H1,H2) is said to be of
Fredholm type if both dim ker(X) and dim ker(X∗) are
finite, where dim denotes the dimension of a subspace.
The Fredholm index of X is defined to be ind(X) :=
dim ker X− dim ker(X∗).

This paper is concerned with systems mapping between
finite-energy time-domain signals. Define the Hilbert space

Lm2 (R) :=
{
φ : R→ Rm

∣∣∣ ‖φ‖2 := 〈φ, φ〉
1
2
2 <∞

}
,

where 〈u, v〉2 :=
∫∞
−∞ u(t)T v(t) dt. In the sequel, we will

suppress the spatial dimension m for notational simplicity
but note that m is allowed to vary whenever L2(R) is
invoked and compatibility between the dimensions of the
input-output spaces of operator mappings is always assumed
for compositions. Define the following two subsets of L2(R):

L2(I) := {φ ∈ L2(R) | φ(t) = 0∀t /∈ I ⊂ R} ;

L2+ :=
⋃
τ∈R L2[τ,∞).

For a linear operator X : dom(X) ⊂ L2(R) → L2(R), we
define its graph as

GX := {[ yu ] : u ∈ dom(X) and y = Xu} ;

G τ
X := GX ∩ L2[τ,∞),

and its inverse graph as

G ′X := {[ yu ] : y ∈ dom(X) and u = Xy} ;

G ′ τX := G ′X ∩ L2[τ,∞).

Let the truncation operator at time τ ∈ R be

Πτ : L2(R)→ L2(−∞, τ); Πτx(t) :=

{
x(t) t < τ
0 t ≥ τ.

Definition 2.2: Given a linear operator X : dom(X) ⊂
L2(R) → L2(R), we say that it is causal if for all τ ∈ R,
ΠτGX is the graph of a linear operator, i.e.,

∀τ ∈ R,∀ [ yτuτ ] ∈ ΠτGX, uτ = 0 =⇒ yτ = 0.

Similar definition holds if the inverse graph is used.
Finally we recall the following definitions of generalised

Wiener-Hopf and Hankel operators from [1], [2].
Definition 2.3: Given X ∈ L (L2(R),L2(R)), we define
1) the Wiener-Hopf operator, relative to the ‘initial’ time

τ ∈ R, by TX,τ := (I−Πτ )X|L2[τ,∞);
2) the forward Hankel operator, relative to ‘initial’ time

τ ∈ R, by H+−
X,τ := (I−Πτ )X|L2(−∞,τ),

where |X denotes the domain restriction to X . Note that
(TX,τ )∗ = TX∗,τ .

III. STABILITY CRITERIA FOR FEEDBACK SYSTEMS

A. Feedback interconnection

The main object of study here is the feedback intercon-
nection illustrated in Fig. 1, denoted [P,C], where

dy = yc + yp, du = up + uc, yp = Pup, uc = Cyc, (1)

?dyb
?yc

C
uc-−b

6du
6up
P

yp
�
−

Fig. 1. Standard feedback configuration

and P : dom(P) ⊂ L2(R) → L2(R) and C : dom(C) ⊂
L2(R) → L2(R) are two causal linear operators. Note
that by causality, img(P|dom(P)∩L2[τ,∞)) ⊂ L2[τ,∞) and
img(C|dom(C)∩L2[τ,∞)) ⊂ L2[τ,∞).

Definition 3.1: The feedback interconnection [P,C] is
said to be internally stable if for all τ ∈ R the operator

Fτ :=

[
I P
C I

]∣∣∣∣
(dom(C)×dom(P))∩L2[τ,∞)

has an inverse on L2[τ,∞), with supτ∈R γ̄(F−1
τ ) <∞.

Remark 3.2: In the above definition, invertibility is re-
quired on a singly infinite space L2[τ,∞), for all possible
initial times τ ∈ R. This imposes a positive arrow of time [7];
see Remark 3.3 and Lemma 3.4 below. For bounded invert-
ibility G τ

P and G ′ τC must be closed subspaces of L2[τ,∞) [8],
which is the case for various classes of LTV systems of
interest. Invertibility over the doubly infinite L2(R) is not
considered since the graphs of P and C may not be closed
subspaces of L2(R) in cases of interest [9].

Remark 3.3: Definition 3.1 is adapted from [1, Def. 4]. It
differs from the latter in two aspects:

1) a uniform bound on γ̄(F−1
τ ) is required here;

2) in [1, Def. 4], causality of F−1
τ is explicitly required for

each τ ∈ R, which is not necessary since this property
is a direct consequence of Definition 3.1.

Lemma 3.4: If [P,C] is stable in the sense of Defini-
tion 3.1, then F−1

τ is necessarily causal for every τ ∈ R.
Proof: According to the definition of feedback stability,

Fτ : dom(Fτ )→ L2[τ,∞), where dom(Fτ ) := (dom(C)×
dom(P))∩L2[τ,∞), is bijective for each τ ∈ R. Note that,
for real τ2 ≥ τ1,

Fτ2 = Fτ1 |dom(Fτ2 ), (2)

since dom(Fτ2) ⊂ dom(Fτ1). Moreover, dom(F−1
τ2 ) =

L2[τ2,∞) ⊂ dom(F−1
τ1 ) = L2[τ1,∞).

For a fixed τ1 ∈ R, suppose to the contrapositive that there
exist x ∈ L2[τ1,∞) and τ2 > τ1 for which Πτ2x = 0 (i.e.
x ∈ L2[τ2,∞)) and Πτ2F

−1
τ1 x 6= 0; in other words, suppose

that F−1
τ1 is not causal. Let z := F−1

τ1 x and z := F−1
τ2 x. Then

Fτ1z = x = Fτ2z = Fτ1z,

where (2) has been used. As such, Fτ1(z − z) = 0, which
implies z = z ∈ L2[τ2,∞) since ker(Fτ1) = {0}. This
contradicts the hypothesis that Πτ2z 6= 0. Thus, F−1

τ1 must
be causal as claimed.
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For causal linear operators P and C such that the feedback
interconnection [P,C] is stable, for all τ ∈ R let

ΠG τP‖G
′ τ
C

:=
[
dy
du

]
∈ L2[τ,∞) 7→

[ yp
up

]
∈ G τ

P

=
[−I 0

0 I

]
F−1
τ + [ I 0

0 0 ] and

ΠG ′ τC ‖G
τ
P

:=
[
dy
du

]
∈ L2[τ,∞) 7→ [ ycuc ] ∈ G ′ τC

=
[

I 0
0 −I

]
F−1
τ + [ 0 0

0 I ] .

(3)

The notation reflects that these are parallel projection op-
erators onto and along the restricted graphs G τ

P and G ′ τC ,
which are of importance in robust stability and performance
analysis [8], [10], [11]. Note ΠG τP‖G

′ τ
C

+ ΠG ′ τC ‖G
τ
P

= I.
Define bP,C to be (supτ∈R γ̄(ΠG τP‖G

′ τ
C

))−1 if [P,C] is
stable, and 0 otherwise. As seen later, this is a measure of
robust stability, as well as nominal performance; bP,C ≤ 1.

B. Characterising feedback stability via graph symbols
The stability of the feedback interconnection [P,C] can

be conveniently characterised in terms of right and left graph
symbols for P and C. As in [1], [2], we make use of the
following three assumptions in our development.

Assumption 3.5: Given a causal operator P :
dom(P) ⊂ L2(R) → L2(R), there exist causal operators
N,M, Ñ, M̃,X,Y, X̃, Ỹ ∈ L (L2(R),L2(R)) satisfying
the following properties:

1) the double Bezout identity[
Y X
M̃ −Ñ

] [
N X̃
M −Ỹ

]
= I;

2) img(G) = ker(G̃) and G τ
P = img(TG,τ ) =

ker(TG̃,τ ) for all τ ∈ R, where

G := [ N
M ] and G̃ := [−M̃ Ñ ]

are respectively called right and left graph symbols for
the operator P.

Note that right (resp. left) graph symbols are only unique
up to right (resp. left) composition with a bounded causal
operator which has a bounded and causal inverse. Further-
more, since for all τ ∈ R, TG,τ has a left causal inverse,
whereby γ(TG,τ ) > 0, it follows by [12, Thm. 5.2] that the
subspace G τ

P := GP ∩ L2[τ,∞) = img(TG,τ ) is closed, as
is consistent with Remark 3.2.

Assumption 3.6: G∗G = I and G̃G̃
∗

= I, i.e. the right
and left graph symbols can be taken to be normalised.

Assumption 3.7: H+−
G,τ and H+−

G̃,τ
are compact ∀τ ∈ R.

Througout, the notation G and G̃ is used for normalised
right and left graph symbols of P. For C, the notation
K := [ V

U ] and K̃ := [−Ũ Ṽ ], is adopted for the right
and left (inverse) graph symbols; i.e. G ′ τC = img(TK,τ ) =
ker(TK̃,τ ) for every τ ∈ R.

Lemma 3.8: Given causal operators P and C, suppose
that Assumption 3.5 holds, then the following are equivalent:

1) [P,C] is stable;
2) γ(K̃G) > 0 and ind(TK̃G,τ ) = 0∀τ ∈ R;1

1That the Wiener-Hopf operator must be Fredholm here is taken to be
implicitly part of in the index condition.

3) K̃G has a bounded causal inverse.
Moreover, when [P,C] is stable, we have for all τ ∈ R,

ΠG τP‖G
′ τ
C

= TG,τT
−1

K̃G,τ
TK̃,τ .

Suppose further that Assumption 3.6 holds, then the robust
performance margin

bP,C = γ(K̃G) = γ(G̃K) > 0.
Proof: This lemma is a time-varying generalisation

of [6, Prop. 1.9 and 3.5]. Indeed, the equivalence of 1) and
2) and the expression for ΠG τP‖G

′ τ
C

can be obtained using
the tools developed in establishing the main results of [1,
Section III]. The remainder of the proof can be established
by exploiting the properties of graph symbols. For complete
details, see [13].

Remark 3.9: In [1], [2], an explicit hypothesis that K̃G
have non-singular instantaneous gain is made to ensure that
ΠG τP‖G

′ τ
C

is a causal. This is a redundant requirement; see
Remark 3.3. The hypothesis is not needed here since if
[P,C] is stable as per Definition 3.1, ΠG τP‖G

′ τ
C

is necessarily
causal by Lemma 3.4 and (3).

Remark 3.10: Lemma 3.8 can also be established in terms
of the following equivalent statements:

1) [P,C] is stable;
2) γ(G̃K) > 0 and ind(TG̃K,τ ) = 0∀τ ∈ R;
3) G̃K has a bounded causal inverse.

Moreover, when [P,C] is stable, we have for all τ ∈ R,

ΠG ′ τC ‖G
τ
P

= TK,τT
−1

G̃K,τ
TG̃,τ .

IV. ROBUST STABILITY ANALYSIS VIA THE ν-GAP

We present in this section sufficient conditions for robust
feedback stability and topological properties of the ν-gap
metric. Because all these results have their roots in the well-
known time-invariant theory [5], [6], we only provide the
ideas/directions of proofs and refer to [13] for full details.
Throughout, the set of causal operators which satisfy all of
Assumptions 3.5, 3.6, and 3.7 is denoted by S.

Theorem 4.1: Given P1,P2,C ∈ S, suppose that
γ̄(G̃2G1) < bP1,C = γ(G̃1K). Then TG∗2G1,τ is Fredholm
for all τ ∈ R, and

[P2,C] is stable ⇔ ind(TG∗2G1,τ ) = 0∀τ ∈ R.
Proof: This result is a generalisation of [5, Prop. 4.1].

It can be established using the arguments in the second half
of the proof for [1, Thm. 1], in conjunction with [1, Lem. 9
and Prop. 1]. In particular, Assumption 3.7 and Lemma 3.8
are required.

Motivated by Theorem 4.1, the following is in order.
Definition 4.2: The ν-gap metric is defined on S as

δν(P1,P2) :=


γ̄(G̃2G1) if for all τ ∈ R,

TG∗2G1,τ is Fredholm
and ind(TG∗2G1,τ ) = 0

1 otherwise.
Note, TG̃2G̃

∗
1 ,τ

and TG∗2G1,τ are Fredholm for all τ ∈ R
if γ(G̃2G̃

∗
1) = γ(G∗2G1) > 0 [1, Lem. 10]. That δν(·, ·) is
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a metric on S is established in [13]. We call the topology
generated by the ν-gap metric the graph topology.

The following corollary of Theorem 4.1 provides a bound
on robust performance; it encompasses the robust stability
result δν(P1,P2) < bP1,C =⇒ [P2,C] is stable.

Corollary 4.3: For any P1,P2,C ∈ S,

arcsin bP2,C ≥ arcsin bP1,C − arcsin δν(P1,P2).
Proof: The result can be proved as in [5, Thm. 4.2] by

making use of Proposition 4.1.
Proposition 4.4: For any P1,P2,C ∈ S such that [P1,C]

and [P2,C] are stable,

δν(P1,P2) ≤ sup
τ∈R

γ̄ (∆τ ) ≤ δν(P1,P2)

bP1,CbP2,C
, (4)

where ∆τ := ΠG τP2
‖G ′ τC

−ΠG τP1
‖G ′ τC

.
Proof: It can be established as in the proof for [11,

Thm. III.2] that ∆τ = ΠG ′ τC ‖G
τ
P1

ΠG τP2
‖G ′ τC

∀τ ∈ R. The
rest of the proof then follows by applying Lemma 3.8 and
Remark 3.10 to the expressions for ∆τ and the arguments
employed in [5, Cor. 6.5].

As mentioned in the Section I, the bounds in Proposi-
tion 4.4 facilitate simple and direct proofs that the graph
topology is the weakest topology with respect to which both
feedback stability and performance are robust properties;
see [6, Cor. 7.9] and [11, Prop. V.2].

V. QUANTITATIVE ROBUSTNESS ANALYSIS FOR
PERIODIC SYSTEMS

The previous section presented sufficient conditions for
robust feedback stability in terms of the ν-gap metric. Here
we derive the so-called strong necessity condition which
is analogous to the first part of [6, Thm. 3.10]. Since
the proof of this result relies on explicit construction of
systems having certain properties, we depart from the purely
abstract setting and focus in this section on a class of linear
periodically time-varying (LPTV) systems having ’rational’
transfer function realisations with causal feedthrough terms.

A. Preliminaries on periodic systems

We denote respectively by C, Z, T and D the complex
numbers, the integers, the unit circle and the open unit
disc in the complex plane. Two normed spaces V1 and V2

are said to be isometrically isomorphic if there exists a
bijective bounded linear operator Φ : V1 → V2 such that
‖Φv1‖V2 = ‖v1‖V1 ,∀v1 ∈ V1. When this is the case, we
denote the isomorphic relationship between V1 and V2 via
the isomorphism Φ by V1

Φ∼ V2.
The following signal spaces, with h > 0 as a parameter,

play a central role in our study of periodic systems:

`2
Z :=

{
f : Z→ L2[0, h)

∣∣∣ ‖f‖2`2Z :=
∑∞
i=−∞ ‖fi‖22 <∞

}
`2+
Z :=

{
f ∈ `2

Z | fi = 0,∀i < 0
}
.

We define L2
T (resp. H2

D) to comprise of the discrete-time
Fourier transform Z of the signals in `2

Z (resp. `2+
Z ) so that

`2
Z

Z∼ L2
T and `2+

Z
Z∼ H2

D, where the isomorphism (Zf)(z) :=∑
i∈Z z

ifi; see [14, Chapter 5]. The norm on L2
T is given by

‖f‖2
L2

T
:=
∫
z∈T ‖f(z)‖22 dz. Note also L2(R) Wh∼ `2

Z, where
Wh denotes the time-lifting isomorphism [15], and is defined
by (Whf)i(t) = f(hi+ t), t ∈ [0, h). Together, it holds that
L2(R) ZWh∼ L2

T and L2[0,∞) ZWh∼ H2
D.

In line with the input-output approach adopted in this
paper, we study the relationships between operators by way
of the graphs.

Definition 5.1: Two linear operators X : dom(X) ⊂
X1 → X2 and Y : dom(Y) ⊂ Y1 → Y2 are said
to be equivalent if there exists an isometric isomorphism
Φ :

[X2

X1

]
→
[ Y2

Y1

]
such that GX

Φ∼ GY. When this is the
case, we denote it by X Φ∼ Y. We will also use the notation
X Φ

" Y to denote X is defined by Y via the isomorphism
Φ such that X Φ∼ Y.

Now define L to be the set of rational transfer functions

P := z ∈ C 7→ zC(I−zA)−1B+D∈L (L2[0, h),L2[0, h)),

for which A ∈ Rn×n; B ∈ L (L2[0, h),Rn); C ∈
L (Rn,L2[0, h)); ΠτD(I − Πτ ) = 0 ∀τ ∈ [0, h), i.e. D
is causal on [0, h); and D∗D, DD∗, B∗XB, and CY C∗

are all Hilbert-Schmidt operators [16, Chapter VIII], where
X = XT and Y = Y T are arbitrary positive semidefinite
matrices in Rn×n. Henceforth, we write P = (A,B,C,D)
for simplicity. Both finite-dimensional LTI systems and
sampled-data systems can be equivalently represented by
a transfer function in L [17]; the Hilbert-Schmidt condi-
tion stated above is satisfied as the required terms can be
written as integral operators with square integrable kernel
functions [16, Pg. 142]. Define the stable subclass of L as
LH∞D := {P = (A,B,C,D) ∈ L | spec(A) ⊂ D}, where
spec(·) denotes the spectrum of a matrix. Note that any
P ∈ LH∞D is analytic in D and has finite norm ‖P‖∞ :=
supz∈D γ̄(P (z)). Also, a P = (A,B,C,D) ∈ L is invertible
in L, i.e. P−1 ∈ L, if, and only if, its feedthrough term
D has a bounded causal inverse. Given P (z) = zC(I −
zA)−1B +D ∈ L, the conjugate transfer function, denoted
P ∗ ∈ L, is given by P ∗(z) = B∗(zI −AT )−1C∗ +D∗.

Proposition 5.2: Given any P = (A,B,C,D) ∈ L, there
exist N,M, Ñ, M̃ ,X, Y, X̃, Ỹ ∈ LH∞D such that[

Y X
M̃ −Ñ

] [
N X̃
M −Ỹ

]
= I NM−1 = M̃−1Ñ = P

M∗M +N∗N = I M̃M̃∗ + ÑÑ∗ = I.

Proof: In [18, Lem. 5.4], it is shown that normalised
coprime factors with all of the properties claimed, ex-
cept ‘causality’ of the corresponding direct feedthrough
‘D’-terms, can be constructed from a minimal realisation
(A,B,C,D) of P . That the ‘D’-terms of the factors can be
taken to be causal here, as required to reside in L, follows by
the so-called triangular spectral factorisation results in [19].
Consider, for instance, the ‘D’-term of the factor N as
constructed in [18, Lem. 5.4]. This takes the form DV , where
V := (I + D∗D + BX∗B)−1/2 and 0 ≤ X = XT ∈
Rn×n is a stabilising solution to a certain discrete-time
finite-dimensional algebraic Riccati equation that depends on
(A,B,C,D). By exploiting the Hilbert-Schmidt conditions
assumed above, it follows that the square-root factor V exists
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as a causal mapping and that this is unique within the class
of operators in L (L2[0, h),L2[0, h)) with ‘diagonal’ equal
to the identity [19]. As such, DV can be taken to be causal,
since D is causal; i.e. N ∈ L. The arguments for the
other factors M , M̃ and Ñ follow in a similar fashion. For
complete details, see [13].

With each P ∈ L, we associate a multiplication operator
denoted by MP : dom(MP ) ⊂ L2

T → L2
T and defined by

(MPu)(z) := P (z)u(z) for

u ∈ dom(MP ) :=
{
MMu

∣∣ u ∈ zkH2
D; k ∈ Z

}
,

where M ∈ LH∞D is as defined in Proposition 5.2. Note that
P ∈ LH∞D if, and only if, MPH2

D ⊂ H2
D and

γ̄(MP ) = sup
u∈dom(MP ):‖u‖=1

‖MPu‖L2
T

= ‖P‖∞ <∞,

in which case we say P is a stable transfer function [14,
Chapter 5]. Using the properties of coprime factors for P
in Proposition 5.2, it can be shown via a standard argument
(see [6, Prop. 1.33], for instance) that

GMP
∩ zkH2

D = img(MG|zkH2
D
) = ker(MG̃|zkH2

D
)∀k ∈ Z,

where G := [ NM ] ∈ LH∞D and G̃ := [−M̃ Ñ ] ∈ LH∞D .
Consider now the discrete-time operator Pd

Z
" MP . Pd is a

shift-invariant operator in the sense that DkGPd ⊂ GPd ∀k ∈
Z, where the discrete-time shift operator Di : `2

Z → `2
Z is

defined as Diu(k) := u(k− i) for any i ∈ Z; see [17, Lem.
II.11] for a proof which exploits the properties of the graph
symbol G. By the fact that W−1

h Dk = SkhW
−1
h ∀k ∈ Z,

where Sτ : L2(R) → L2(R) is the continuous-time shift
operator defined by Sτu(t) := u(t − τ) for any τ ∈ R, it
follows that with P Wh

" Pd, we have

SkhGP ⊂ GP ∀k ∈ Z.

That is, P ZWh
" MP is a continuous-time LPTV operator

with period h. With N ZWh
" MN , M ZWh

" MM , Ñ ZWh
"

MÑ , and M̃ ZWh
" MM̃ it follows that G := [ N

M ] and G̃ :=
[−M̃ Ñ ] satisfy

GP ∩ L2[τ,∞) = img(G|L2[τ,∞)) = ker(G̃|L2[kh,∞))

for all τ = kh with k ∈ Z. That this continues to hold

We shall see below that all of Assumptions 3.5, 3.6,
and 3.7 are satisfied by the class of operators P := {P ZWh

"

MP : P ∈ L}, i.e. P ⊂ S.

Suppose we are given a (stable) Φ = (A,B,C,D) ∈
LH∞D , then any [ yu ] ∈ GΦd

, where Φd
Z
" MΦ, can be

described by the convolution operation [20, Thm. 2.6.1]:

yk =
∑k−1
i=−∞ CAk−i−1Bui +Duk,∀k ∈ Z.

Since D is causal by definition, it follows immediately that
Φ Wh

" Φd is a bounded causal operator on L2(R). Indeed,
Φ is a bounded causal operator on L2(R) if, and only if,
the corresponding Φ ∈ LH∞D . Moreover, for any τ ∈ R,
the Hankel factorisation H+−

Φ,τ = LO,τLC,τ holds, where
the observability operator LO,τ ∈ L (Rn,L2[τ,∞)) and the

controllability operator LC,τ ∈ L (L2(−∞, τ),Rn) are

(LO,τx)(t) :=
(
CAj(t)x

) (
t−
(
k + j(t)

)
h
)
, t ≥ τ and

LC,τu :=
∑k−1
i=−∞Ak−i−1B(Whu)i,

in which k := bτ/hc, j(t) := b(t− kh)/hc, and b·c denotes
the floor function. Since LC,τ has finite-dimensional image
and LO,τ has finite-dimensional domain, both operators are
compact [21, Thm. 8.1-4]. Hence, H+−

Φ,τ is compact.
Given a P ∈ L normalised coprime factors for the

LPTV operator P ZWh
" MP are given by N ZWh

" MN ,
M ZWh

" MM , Ñ ZWh
" MÑ , and M̃ ZWh

" MM̃ , where
N,M, M̃, Ñ ∈ LH∞D are as defined in Proposition 5.2.
Since M and M̃ are invertible in L, both M and M̃ have
non-singular instantaneous gains, whereby P is causal [1,
Rem. 3]. Using the properties of coprime factors in Proposi-
tion 5.2 and the preceding development, it is straightforward
to verify that all of Assumptions 3.5, 3.6 and 3.7 hold; i.e.

P := {P ZWh
" MP : P ∈ L} ⊂ S.

B. A necessary condition for robust stability

The main result in this section characterises the maximal
ν-gap metric ball of systems in P a nominal system, which
stabilises in feedback the centre of the ball, is guaranteed
to stabilise. It is analogous to the time-invariant case of [6,
Rem 3.11(i)], whose proof relies on frequency-domain in-
terpolation methods that do not generalise to the class of
systems considered here. Our development borrows the ideas
from [22, Thm 4.2], in which the standard gap metric is
studied within a setting largely different to ours.

Theorem 5.3: Given P1,C ∈ P for which [P1,C] is
stable, then [P2,C] is stable for all P2 ∈ P satisfying
δν(P1,P2) < β if, and only if, bP1,C ≥ β.

Proof: Sufficiency is immediate from Definition 4.2 and
Theorem 4.1. For the necessity proof, suppose bP1,C < β,
we establish below that it is possible to construct a system
P2 ∈ P such that δν(P1,P2) < β and [P2,C] is unstable.

First note that the stability of [P1,C] is equivalent to K̃G1

having a bounded causal inverse by Lemma 3.8, which in
turn is equivalent to (K̃G1)−1 ∈ LH∞D . In addition,

b−1
P1,C

= γ̄((K̃G1)−1) = ‖(K̃G1)−1‖∞ = ‖(K̃G1)−1K̃‖∞,

where the last equality holds since K̃ is normalised, i.e.
K̃K̃∗ = I. Let

Γ := (K̃G1)−1K̃ ∈ LH∞D .

Since Γ is analytic in D, for any ε0 > 0 and ε1 > 0, there
exists by the maximum modulus principle a complex number
z0 ∈ {z : (1− ε0) ≤ |z| < 1} such that

(bP1,C + ε1)−1 < γ̄(Γ(z0)) ≤ b−1
P1,C

.

It follows by the definition of the induced norm that there
exists a normalised signal u ∈ L2[0, h) such that

γ̄(Γ(z0)) ≥ ‖Γ(z0)u‖2 ≥ (bP1,C + ε1)−1.
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We define ∆0 : L2[0, h) → L2[0, h) to map αΓ(z0)u to
−αu for all α ∈ C and every element in {x ∈ L2[0, h) :
〈x, αΓ(z0)u〉2 = 0;α ∈ C} to 0, so that

γ̄(∆0) ≤ (bP1,C + ε1) and Γ(z0)u ∈ ker(I + Γ(z0)∆0).

As such, I + Γ(z0)∆0 is not invertible. Define

∆(z) :=
z

z0
∆0 ∈ LH∞D ,

so that ∆(z0) = ∆0, whereby it is clear that I + Γ∆ is
not invertible in LH∞D . We set ε1 := (β − bP1,C)/2 and
ε0 := ε1/2β, so that

‖∆‖∞ =
1

|z0|
γ̄(∆0) ≤ bP1,C + ε1

1− ε0
< β.

Now define Ĝ2 := G1 + ∆ ∈ LH∞D . As G1 is nor-
malised, i.e. G∗1G1 = I, and ‖∆‖∞ < β < 1, we have
γ(MĜ2

) > 0, by which ker(MĜ2
) = {0}. We partition

conformably G1 =
[
N1

M1

]
and Ĝ2 =

[
N̂2

M̂2

]
. Given that

∆ does not have a feedthrough ‘D’ term in its realisation,
M2 has the same feedthrough term as that of M1. Conse-
quently, M2 is invertible in L as M1 is. This implies that⋃
k∈Z img(MĜ2

|zkH2
D
) is the graph of a multiplication oper-

ator with symbol in L, which we shall call P2. By Proposi-
tion 5.2, there exists a normalised right graph symbol G2 for
P2. Since img(MĜ2

|H2
D
) = img(MG2 |H2

D
) = GMP2

∩H2
D

and ker(MĜ2
) = {0}, there exists by the Beurling-Lax-

Halmos theorem [23, Cor. IX.2.2] a Q̂, Q̂−1 ∈ LH∞D such
that G2 = Ĝ2Q̂. Now observe that

(K̃G1)−1K̃G2 = (K̃G1)−1K̃Ĝ2Q̂ = (I + Γ∆)Q̂,

from which it follows that K̃G2 is not invertible in LH∞D . By
Lemma 3.8, this implies that [P2,C], where P2

ZWh
" MP2

,
is not a stable feedback interconnection. To complete the
proof, we establish below that δν(P1,P2) < β.

First we see that G∗1G2 = G∗1(G1 + ∆)Q̂ = (I +G∗1∆)Q̂.
Define G1

ZWh
" MG1 , G2

ZWh
" MG2 , ∆ ZWh

" M∆, and
Q̂ ZWh

" MQ̂. Noting that G1 is normalised, we have

γ̄(G∗1∆) = ‖G∗1∆‖∞ ≤ ‖∆‖∞ < β < 1.

Now by [1, Lem. 1(i)–(iii)] in the order they are stated,

−ind(TG∗2G1,τ ) = ind(TG∗1G2,τ )

= ind(TI+G∗1∆,τ ) + ind(TQ̂,τ )

= ind(TQ̂,τ ) = 0 ∀τ ∈ R,

where the last equality holds because Q̂−1 ∈ LH∞D . Finally,
since G2G

∗
2 + G̃

∗
2G̃2 = I (see the end of [1, Section III]),

by defining Q := {Q ZWh
" MQ : Q ∈ LH∞D }, we have that

δν(P1,P2) = γ̄(G̃2G1) ≤ inf
Q∈Q

γ̄
([

G∗2G1−Q

G̃2G1

])
= inf

Q∈Q
γ̄
([

G∗2
G̃2

]
(G1 −G2Q)

)
= inf
Q∈LH∞D

‖G1 −G2Q‖∞

= inf
Q∈LH∞D

‖G1 − (G1 + ∆)Q̂Q‖∞

≤ ‖∆‖∞ < β.

This concludes the proof.
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