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Abstract— In this paper, the problem of optimizing the
rigidity of multi-agent formations is formulated and solved
using convex optimization methods. Two rigidity indices, the
worst-case rigidity index (WRI) and the mean rigidity index
(MRI), are proposed to measure the rigidity of formations of
multiple agents connected by links with adjustable strengths.
Under the assumption of limited total link resources, we develop
efficient algorithms that can find the optimal allocation of link
resources for maximizing the rigidity indices. Furthermore,
through a sensitivity analysis of the optimization problems,
the significance (priorities) of the different links are also
characterized. Some simulations results are presented.

Index Terms— optimization, resource allocation, formation
control, wireless sensor network,

I. INTRODUCTION

Tasks arising in applications such as environmental mon-

itoring, aerospace, hazard detection, etc., often necessitates

the deployment of a large number of agents (sensors, robots,

vehicles) in an uncertain environment. These agents coordi-

nate with one another through communication links whose

strengths depend on distances, transmission powers, and

ambient noise level. The geographical locations of the agents

together with their communication links define a multi-agent

formation. Some previous studies of multi-agent formations

can be found for applications such as unmanned air vehicle

(UAV) [1], sensor networks [2], underwater vehicles [3], and

other cooperative multi-vehicle systems [4], [5].

A fundamental problem in the study of multi-agent sys-

tems is to decide how their underlying formations affect

the performance of distributed algorithms carrying out co-

ordination tasks. Instances of such tasks include, e.g., the

localization of all the sensor nodes in a sensor network using

local, relative distance measurements; or maintaining the

formation shape of a group of UAVs under persistent external

perturbations by decentralized controllers. To answer quali-

tative questions on whether these coordination tasks can be

accomplished at all, the concept of rigid graphs from graph

theory has been shown to be relevant [4], [6]. To answer

quantitative questions on how efficient these tasks can be

completed, we proposed the numerical measures called the

rigidity indices in [7]. These indices enable us to compare

the rigidity of various formations and identify the most

suitable one for a certain coordination task. Two specific

application examples are given in this paper to demonstrate

the usefulness of these indices.
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With the proposed rigidity indices, a natural question

is how to design or adjust multi-agent formations so that

the performance of distributed coordination algorithms as

measured by the rigidity indices can be optimized. Since

rigidity indices depend on both the agent positions and

their interconnections, classical procedures for constructing

rigid graphs without considering node locations (such as

the Henneberg construction [8] and Laman’s Theorem [9])

are not sufficient. In [10], an optimization method that

alternatively adjust the positions and the connections of the

agents is proposed.

This paper is an extension of our previous work in [10]

on optimizing formation rigidity. We assume that, rather

than being either on and off, the strength of each link

between a pair of agent could vary continuously depending

on the amount of resources allocated to it. The resources to

be allocated could include, e.g., node transmission power,

communication bandwidth, agent separation, and accuracy

of distance-measuring sensors. Given a fixed amount of

total resources, we study how to allocate them to individual

links so that the two rigidity indices proposed in [7], [10],

namely, the Worst-case Rigidity Index (WRI) and the Mean

Rigidity Index (MRI), are optimized. Using properties of the

indices, we will formulate the rigidity optimization problems

as convex optimization problems, and solve them efficiently.

Furthermore, we will also use perturbational analysis to

reveal how sensitive the overall formation rigidity is with

respect to variations in the allocated resources. Such in-

formation can be used to prioritize the agents and links

for guiding the allocation of additional resources; to save

energy/resources by tuning down less significant ones; and to

find balanced, robust formations whose performances are not

vulnerable to a sudden drop of available resources anywhere

in the system.

This paper is organized as follows. In Section II, we

review the defitions of the stiffness matrix and the two

rigidity indices as well as some of their notatble properties.

Two application instances of the rigidity indices are illus-

trated in Section III. In Section IV, the optimal resource

allocation problem for maximizing the rigidity of multi-

agent formations is formulated as a convex optimization

problem, and numerical results are presented. In Section V,

sensitivity analysis of the overall performance with respect to

individually allocated resources is carried out. Finally, some

concluding remarks are given in Section VI.

A. Notations

We briefly outline the notations used in this paper.
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The notations R,R+,R
n,Rn×m denote the sets of real

scalars, positive scalars, n-dimensional column vectors, and

n-by-m matrices, respectively. Italic lowercase letters such

as k, pij represent scalar variables or constants. Bold letters

represent column vectors. In particular, a multi-quantity is a

vector obtained by stacking multiple vectors. For example,

p = [p⊤
1 p⊤

2 · · · p⊤
n ]

⊤ with each pi ∈ R
2 is a

multi-quantity. Italic uppercase letters, such as R,K, Sij , are

matrices. For a matrix A, its transpose and trace are denoted

by A⊤ and tr(A), respectively, while A† denotes its Moore-

Penrose pseudo inverse. For symmetric matrices A,B, we

write A � 0 if A is nonnegative definite and A � B if

A−B � 0. Sets are denoted by calligraphic letters, e.g., I,

whose cardinality are denoted by #I. In this paper, ‖ · ‖ by

default is the Euclidean norm of vectors and matrices.

II. RIGIDITY OF MULTI-AGENT FORMATIONS

We study an n-agent system in the plane R
2. The positions

of the agents are denoted by pi ∈ R
2, i ∈ I = {1, . . . , n}.

Between each pair of agents i and j there may exist a

communication link whose strength is modeled by a scalar

constant kij ≥ 0, with the assumptions that (i) kii = 0;

(ii) kij = kji; and (iii) kij = 0 if agents i and j do not

communicate directly. In this formulation, the n agents form

a weighted graph with a connectivity matrix K = [kij ]. The

set of all valid connectivity matrices for the n-agent system

is denoted by Kn. The formation (I,p,K) of the n-agent

system is determined by both the connectivity matrix K and

the agent positions p = [p⊤
1 · · · p⊤

n ]
⊤, and thus is called a

KP -formation in this paper.

A. Stiffness Matrix

To measure the rigidity of a KP -formation (I,p,K), we

invoke a spring-mass analogy to study its robustness under

perturbations. Each agent is modeled by a unit mass, and

the link between agents i and j is modeled by a spring with

spring constant kij and natural length ‖pi − pj‖. When

the agents are in their given positions p, all the springs

are relaxed. Now assume that the position of each agent i
is perturbed by an infinitesimal displacement ∆pi ∈ R

2,

so that the new agent positions become p + ∆p, where

∆p ,
[

∆p⊤
1 · · · ∆p⊤

n

]⊤
. Then, due to length changes

of all the springs connecting to it, each agent i is subject to

a net force fi. The total force applied on the n-agent system,

f ,
[

f⊤1 · · · f⊤n
]⊤

, can be shown to be [7]

f = −S∆p+ o (‖∆p‖) , (1)

where S = [Sij ]1≤i,j≤n ∈ R
2n×2n, with each 2-by-2 block

Sij defined by

Sij =

{

∑

j∈I kijPij if i = j

−kijPij if i 6= j.
(2)

Here, Pij ∈ R
2 is the projection matrix defined by

Pij , eije
⊤
ij , eij ,

pj − pi

‖pj − pi‖
. (3)

The relation (1) can be viewed as a generalization of the

Hooke’s Law in elastic mechanics. The matrix S is called

the stiffness matrix of the given KP -formation (I,p,K).
Intuitively, S establishes the first-order linear relation be-

tween the infinitesimal displacement ∆p and the resulting

resistance force f . In the following, we may write S(K,p)
to show its dependence on both the agents configuration p

and the connectivity matrix K.

In the particular case where all entries in K are zero

except kij and kji for some i, j, we can see from (2) that the

stiffness matrix S has exactly four nonzero 2-by-2 blocks,

namely, Sii = Sjj = kijPij , Sij = Sji = −kijPij . Such an

S is of rank one and can be factorized as S = kijqijq
⊤
ij ,

where qij ,

[

q
(1)⊤
ij · · · q

(n)⊤
ij

]⊤

∈ R
2n is defined by

q
(k)
ij =











eij , k = i

−eij , k = j

0, otherwise.

Proposition 1: (Nonnegative Definiteness) The stiffness

matrix S of a KP -formation is nonnegative definite.

Proof: Each connectivity matrix K ∈ Kn can be

decomposed as K =
∑

i,j∈I,i<j K
(ij), where K(ij) is the

connectivity matrix obtained by setting all entries in K to

zero except kij and kji. As we have shown, each S(K(ij),p)
can be factorized as S(K(ij),p) = kijqijq

⊤
ij � 0. Thus, by

linearity [7], S(K,p) =
∑

i,j∈I,i<j S(K
(ij),p) � 0.

More specifically, for v ∈ R
2n, v⊤S(K,p)v can be

expanded as follows,

v⊤S(K,p)v =
∑

i,j∈I

i<j

kijv
⊤q⊤

ijqijv

=
∑

i,j∈I

i<j

kij
∣

∣(vi − vj)
⊤eij

∣

∣

2
≥ 0. (4)

In (4), let v = ∆p be the perturbation in the configuration

p and define the energy function J as below,

J(∆p) =
1

2
∆p⊤S(K,p)∆p. (5)

From the right hand side of (4), we can see that J(∆p)
is the infinitesimal total potential energy stored in all the

springs due to the perturbation. Hence, the stiffness matrix

is exactly the Hessian matrix of the energy function J at its

global minimum, namely, the unperturbed configuration.

Since eij = (pj−pi)/‖pj−pi‖, it can also be seen from

(4) that v ∈ null(S(K,p)) if and only if (vi − vj)
⊤(pj −

pi) = 0 for all i, j such that kij 6= 0, or equivalently, if and

only if v⊤R = 0 for some matrix R ∈ R
2n×m where m is

the number of nonzero kij (i < j). The coefficient matrix

R is called the rigidity matrix [11]. The KP -formation

(I,p,K) is called (infinitesimally) rigid if rank(R) = 2n−3
(see [12]). Since v⊤R = 0 implies v ∈ null(S(K,p)) and

vice versa, we conclude that the KP -formation is rigid if and

only if rank(S) = 2n − 3. It is shown in [13] that the null

space of S always contains a three-dimensional subspace,

denoted by ison (p), which consists of all the infinitesimal
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displacements ∆p resulted from simultaneous translations

and rotations of all the agents that do not change the shape

of the formation.

B. Rigidity Indices

A rigidity index r(K,p) is a scalar derived from the

stiffness matrix S(K,p) which measures the rigidity of a

KP-formation. In this paper, we will use the two rigidity

indices proposed in [10], namely, the worst-case rigidity

index (WRI) rw and the mean rigidity index (MRI) rm,

defined as follows,

rw(K,p) , λ4(S(K,p)) = min
u∈ison(p)

⊥

u⊤S(K,p)u

u⊤u
(6)

rm(K,p) ,











0 if rank(S) < 2n− 3

2n− 3

tr(S(K,p)†)
if rank(S) = 2n− 3

(7)

where λk(S) denotes the k-th smallest eigenvalue of the

matrix S and S† the Moore-Penrose pseudo inverse of S.

When we study the common properties shared by rw and

rm, we will use r(K,p) to denote both rigidity indices and

their dependence on the connectivity matrix K and the agents

configuration p.

Proposition 2 ([10]): Both rigidity indices r(K,p) pos-

sess the following properties:

1) (Nonnegativeness) r(K,p) ≥ 0; and r(K,p) = 0 if

and only if the KP -formation (I,p,K) is not rigid.

2) (Homogeneity) r(αK,p) = αr(K,p), ∀ α ∈ R+.

3) (Monotonicity) r(K,p) is monotonically nondecreas-

ing with respect to each entry kij of K, i 6= j.

Lemma 1 ([14]): For any symmetric positive definite ma-

trices A,B ∈ R
m×m, the following inequality holds,

(

tr
(

(A+B)−1
))−1

≥
(

tr
(

A−1
))−1

+
(

tr
(

B−1
))−1

.

Proposition 3: (Superadditivity) For any p ∈ R
2n and

K1,K2 ∈ Kn, r(K1 +K2,p) ≥ r(K1,p) + r(K2,p).
Proof: For simplicity, we drop the variable p and

use the notation S(K) for the stiffness matrix of the KP -

formation (I,p,K) in the following proof.

For WRI, since S(K1 +K2) = S(K1)+S(K2), we have

rw(K1 +K2) = min
u∈ison(p)

⊥

(

u⊤S(K1)u

u⊤u
+

u⊤S(K2)u

u⊤u

)

≥ rw(K1) + rw(K2).

For MRI, if the MRI corresponding to either of K1

and K2, say, rm(K1), is zero, then the desired conclu-

sion becomes rm(K1 + K2) ≥ rm(K2), which imme-

diately follows from the monotonicity property of rm.

Now assume rm(K1) > 0 and rm(K2) > 0. This im-

plies that rank(S(K1)) = rank(S(K2)) = 2n − 3. Let

{v1,v2, . . . ,v2n−3} be an orthonormal basis of ison (p)
⊥

.

Define Ŝ(K) = (2n − 3)V ⊤S(K)V for K ∈ Kn,

where V = [v1 · · · v2n−3]. Then rm(K) = (2n −

3)
(

tr(S(K)†)
)−1

=
(

tr(Ŝ(K)−1)
)−1

for all K such that

rank (S(K)) = 2n − 3, or equivalently rm(K) > 0. Note

that Ŝ(K) is linear with respect to K, by Lemma 1,

rm(K1 +K2) =
(

tr(Ŝ(K1 +K2)
−1)

)−1

≥
(

tr(Ŝ(K1)
−1)

)−1

+
(

tr(Ŝ(K2)
−1)

)−1

= rm(K1) + rm(K2).

This concludes the proof.

As a result of the superadditivity and the homogeneity of

r(K,p) with respect to K, we obtain the following property.

Corollary 1: (Concavity) ∀ K1,K2 ∈ Kn, α ∈ [0, 1],
r(αK1 + (1− α)K2,p) ≥ αr(K1,p) + (1− α)r(K2,p).

Concavity is a vital property that makes the link resource

allocation problem for maximizing the rigidity indices a

convex optimization problem that is easy to solve.

III. APPLICATIONS OF RIGIDITY INDICES

In this section, we will demonstrate how the concept of

rigidity indices can be applied to assess the robustness and/or

efficiency of various types of multi-agent systems.

A. Performance Evaluation of Formation Control

Consider an n-agent system with the connectivity matrix

K. Let p and p̂ be the current and the desired agent

configurations. Recall that the distance between agents i and

j is constrained only when kij > 0. Inspired by [15], we

design the following controller,

ṗ = −∇F (p), (8)

where

F (p) =
∑

i,j∈I

i>j

kij (‖pj − pi‖ − ‖p̂j − p̂i‖)
2
.

The above function F (·), called the formation constraint

function in [15], is exactly the total elastic energy J(·)
defined in (5) in the spring-mass analogy of the KP -

formation. The controller in (8) tries to reduce the value of

F (·), and will only stop when the distance between agents i
and j whenever kij > 0 is exactly at its desired value. Now

if we let q = p− p̂ and assume that the agents are perturbed

very slightly, (8) can be approximated using (5) as

q̇ = ṗ = −∇F (p) ≈ −∇J(q) ⇒ q̇ ≈ −Sq, (9)

where S is the stiffness matrix of the KP -formation

(I, p̂,K) and the Hessian of F (p) at p = p̂. Let t0 denote

the initial time. Although the matrix S is only marginally

stable because rank(S) ≤ 2n− 3, we can decompose q(t0)
into q1(t0) + q2(t0) such that q1(t0) ∈ ison (p) ,q2(t0) ∈
ison (p)

⊥
. Denote by q1(t) the state dynamics q(t) from

intial state q(t0) = q1(t0) and q2(t) from q(t0) = q2(t0).
It can be seen that q1(t) ∈ ison (p) ,q2(t) ∈ ison (p)

⊥
for

all t ≥ t0 because ison (p) and ison (p)
⊥

are both invariant

spaces of S. We can disregard q1(t) because the rigid body

motions do not lead to shape deformation. Consequently,

‖q2(t)‖ ≤ ce−(t−t0)rw‖q2(t0)‖ where rw = λ4(S) is the

WRI of the KP -formation and c is some constant.
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The above result shows that the shape of the formation can

be recovered exponentially fast if and only if rw > 0, and

the larger rw the faster the recovering process. Therefore,

WRI can be effectively used as a quantitative measure of

the degree of stabilizability of a formation in the context of

formation control.

B. Bound of Estimation Errors in Network Localization

For a given KP -formation (I,p,K) that is rigid, suppose

the measured distance between two connected agents i and

j (i.e., with kij > 0) is d̂ij , which is not necessarily equal

to their true distance dij , ‖pj −pi‖ due to a measurement

error ∆dij , d̂ij − dij . Based on all such measurements

d̂ij , an estimate of the actual configuration can be obtained

through the following minimization,

P = argmin
p̂

∑

i,j∈I

kij(‖p̂j − p̂i‖ − d̂ij)
2. (10)

Again in the spring-mass analogy, the objective function

is the total elastic energy stored in the springs. Note that

the result P is a collection of configurations rather than a

singleton due to the freedom given by the rigid body motions.

Therefore, to assess the performance of the localization

algorithm (10), the error between the estimation P and the

true configuration p is measured as follows,

e(P) = inf
p̂∈P

‖p̂− p‖2.

It is reasonable to assume1 that if ∆dij is infinitesimal,

the best-fitting configuration p̂ can be expresses as p̂ = p+
∆p where ‖∆p‖ is also infinitesimal. By the principle of

minimum energy, such p̂ is an equilibrium configuration of

the spring-mass system deduced from (10), which implies

that the resultant force on each agent should be zero,
∑

j∈I\{i}

kijeij(‖p̂j − p̂i‖ − d̂ij) = 0, ∀ i ∈ I. (11)

Using the following approximation,

‖p̂j − p̂i‖ − d̂ij = ‖p̂j − p̂i‖ − ‖pj − pi‖+ dij − d̂ij

= e⊤ij (∆pj −∆pi) + o (‖∆pj −∆pi‖)

−∆dij , (12)

we can rewrite equation (11) as below,
∑

j∈I\{i}

kijeije
⊤
ij (∆pj −∆pi) =

∑

j∈I\{i}

kijeij∆dij , ∀ i ∈ I.

(13)

Let ∆d be a vector with ∆dij as components for all i > j
whose dimension is denoted by m. Then equation (13) for

all i can be arranged in a matrix form as

S ∆p = HD ∆d,

where D is an m × m diagonal matrix with the diagonal

entries
√

kij and H is a 2n × m matrix with columns

1Strictly speaking, the validity of this assumption requires that the
formation be globally rigid [2]. Since we are studying the performance of a
presumed localization algorithm rather than the localizability of formations,
the concept of global rigidity is not emphasized here.

hij ∈ R
2n for some ordering of the connected agent pairs

(i, j). More specifically, hij is a stacked vector of n two-

dimensional subvectors with
√

kij eij as the ith subvector,
√

kji eji as the jth subvector and zero elsewhere. It can be

verified that HH⊤ = S.

From the above derivation, the best-fitting infinitesimal

solution is ∆p = S†HD ∆d. Suppose that the mea-

surement error ∆d is a random vector with covariance

E
[

∆d ∆d⊤
]

= Σ = diag(σ2
ij). Then,

E [e(P)] = E
[

‖∆p‖2
]

= E
[

∆d⊤DH⊤S†S†HD ∆d
]

= tr
(

H⊤S†S†HDΣD
)

If we choose kij = σ−2
ij in the KP -formation model,

DΣD becomes an identity matrix. Consequently,

E [e(P)] = tr
(

S†
(

HH⊤
)

S†
)

= tr(S†) =
1

rm(S)
.

That is, the mean square error is equal to the reciprocol of

the MRI rm. In fact, the same value has been shown to

be the Cramér-Rao lower bound (CRLB) of the localization

estimator in [16]. As a result, a formation with a larger

MRI leads to a smaller mean square error in its localization

outcome under random measurement noises. This example

demonstrates the relevance of the MRI in the context of

network localization problems.

IV. OPTIMAL LINK RESOURCE ALLOCATION

In this section, we will use the proposed rigidity indices

to optimize link resource allocation for problems arising in

formation control and localization applications.

A. Problem Formulation

Given a KP -formation with fixed agent positions p,

finding the optimal link resource allocation in the sense of the

largest formation rigidity as measured by the rigidity indices

can be formulated as the following optimization problem,

max
K∈Kn

r(K,p) (14)

subject to kij = 0 if {i, j} 6∈ L (15)
∑

i<j

kij ≤ c (16)

where r is the rigidity index rw or rm.

In the constraint (15), L denotes the set of active links,

where each link is denoted by an unordered pair {i, j} (i, j ∈
I). This constraint specifies that K should lie within a

convex cone in Kn. For instance, L could be chosen so

that {i, j} ∈ L if and only if agent i is within a disc of

radius R (called an R-disc) of agent j, where R > 0 is the

communication range. See Fig. 1 for an example.

In the constraint (16), c > 0 is the maximum amount of

resources to be allocated over all active links. This quantity

could represent the total power available to maintain or

localize the formation. For instance, wireless localization

systems using Time of Arrival (TOA) estimation [17] can

be modeled by KP -formations with kij being the inverse

of the Cramer-Rao lower bound (CRB) of distance sensing
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Fig. 1. R-discs of agents (R = 5) and the generated formation
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Fig. 2. Optimal link resource allocation schemes

errors, which is inversely proportional to the energy of the

sensing signals [16]. As a result, c may be interpreted as the

total power of pulse signals used for distance measurements,

and kij indicates the portion of the power used to measure

the distance between agents i and j within certain accuracy.

Therefore, solving the optimization problem (14) with the

constraints (15) and (16) will actually reveal how the signal

power for distance sensing should be allocated over all active

links so that the agents will be most efficiently localized.

Since both rigidity indices rw(K,p) and rm(K,p) are

concave functions of K and the constraints define a compact

convex feasible set, this problem is a convex optimization

problem whose optimal solution is guaranteed to exist and

can be effectively solved by existing numerical methods.

B. Examples

We optimize the link resources for the formation depicted

in Fig. 1 with respect to both the WRI rw and the MRI

rm, where the resource limit c is set to #L, that is, each

link can be allocated unit amount of resources on average.

The convex optimization problem (14) is then solved using

the CVX toolbox in MATLAB [18]. The obtained optimal

resource allocations with respect to rw and rm are displayed

in Fig. 2(a) and Fig. 2(b), respectively. A thicker line

segment indicates that a larger portion of resources should

be allocated to that link; whereas a dashed line indicates

that the link has been eliminated (kij drops to zero) by the

optimization process.

Several observations can be made by comparing Fig. 2(a)

and Fig. 2(b). Both results show that the “bridge” links

connecting the two clusters of agents need significantly

more resources than links that are close to the fringe of

the formation. However, the optimal allocation scheme in

Fig. 2(a) is further polarized than that in Fig. 2(b), with

several links in the original formation eliminated (as shown

by the dashed lines) after the optimization, thus leaving the

peripheral agents connected very weakly. In general, the

allocations obtained by optimizing the MRI rm tend to be

more smoothly distributed and thus preferable in practice.

On the other hand, by tracking the links eliminated in the

optimization process using the WRI rw, dispensable links

that contribute little to the overall formation rigidity can

be identified. This is especially useful when the number of

active links needs to be reduced.

V. SENSITIVITY OF RIGIDITY INDICES

In this section, we will investigate how sensitive the

rigidity indices are to changes in link connectivity. To this

purpose, we compute the partial derivatives of both rw and

rm with respect to kij for all links {i, j} ∈ L. Throughout

the section, the agents configuration p is assumed to be fixed

and hence can be dropped in the notations for simplicity.

A. Worst-Case Rigidity Index Sensitivity

By definition, rw is the fourth smallest eigenvalue λ4 of S.

If λ4 is a distinct eigenvalue of S(K), the partial derivative

of rw with respect to kij is given by [19] as

∂rw
∂kij

= v⊤
4

(

∂S

∂kij

)

v4,

where v4 is the unit eigenvector corresponding to the eigen-

value λ4(S). Noting that ∂S
∂kij

= qijq
⊤
ij where qij is defined

in Section II, the WRI sensitivity with respect to link {i, j}
at K can be expressed as

∂rw
∂kij

=
∣

∣v⊤
4 qij

∣

∣

2
, (17)

where v4 depends on K. The fact that ∂rw
∂kij

≥ 0 for all kij
conforms with the monotonicity property of the WRI rw.

B. Mean Rigidity Index Sensitivity

Suppose the KP -formation (I,p,K) is rigid. Then the

MRI rm is given by (2n− 3)
(

tr(S(K)†)
)−1

. Since both S
and S† are symmetric, we have

∂rm(K)

∂kij
=

∂

∂kij

(

2n− 3

tr(S†)

)

= −
2n− 3

(tr(S†))
2 · tr

(

∂S†

∂kij

)

=
2n− 3

(tr(S†))
2 · tr

(

S† ∂S

∂kij
S†

)

.

By noting again that ∂S
∂kij

= qijq
⊤
ij , the MRI sensitivity with

respect to link {i, j} at K can be expressed as

∂rm
∂kij

=
2n− 3

(tr(S†))
2 ·

∥

∥S†qij

∥

∥

2
, (18)

where S, hence S†, depends on K. As in the WRI case,

it also holds that ∂rm
∂kij

≥ 0 for all kij , which verifies the

monotonicity property of the MRI rm.
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Fig. 3. Sensitivity distributions at optimal allocation schemes K
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Fig. 4. Sensitivity distributions at equal allocation scheme

C. Examples

We compute both the WRI and the MRI sensitivities for

all links {i, j} ∈ L to obtain the sensitivity distributions at

different allocation schemes K. The numerical results are

plotted in Fig. 3 and Fig. 4. The thickness of the links

represent the sensitivity values, which are normalized so that

the mean sensitivity value is equal to 1.

Fig. 3 illustrates the sensitivity distributions of both the

WRI rw and the MRI rm at their respective optimal alloca-

tion schemes (as plotted in Fig. 2(a) and Fig. 2(b)). In both

figures, it can be seen that the sensitivity values are mostly

uniform across the whole formation except for only a few

links in Fig. 3(a) whose allocated resources have already

been reduced to zero in optimizing the WRI (as depicted

by dashed lines in Fig. 2(a)). This is consistent with the

optimality of both schemes, as the rigidity indices cannot

be further increased by shifting resources from one link to

another.

Next, we compute the sensitivity distributions of both

rigidity indices at the equal allocation scheme, i.e., each link

is allocated the same unit amount of resources. The computed

sensitivity distributions are shown in Fig. 4. The thicker

line segments indicate the more “sensitive” links. Shifting

resources from other links to these more sensitive ones will

result in an increase of the rigidity indices. As a result, it

can be expected that these links will demand more resources

in the optimal allocation schemes, as is verified by the plots

in Fig. 2.

VI. CONCLUSION

In this paper, the definitions and properties of the stiffness

matrix and the two rigidity indices, namely the WRI and

the MRI, are presented. These concepts are then used in

formulating the link resource allocation problem for maxi-

mizing the rigidity of multi-agent formations. This resource

allocation problem is shown to be a convex optimization

problem, and can be solved by well known solution algo-

rithms. Perturbational analysis is also applied to study the

sensitivity of rigidity to resources allocated to individual

links. Numerical examples suggest that the proposed model

and problem formulation lead to consistent results.
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