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Abstract— Some users of a communications network may
have more information about traffic on the network than do
others – and this fact may be secret. Such information would
allow the possessor to tailor its own traffic to the traffic of
others, sending a larger amount of traffic when congestion is
low and a smaller amount of traffic when congestion is high;
this would help the possessor of secret information and (might)
harm others.

To study the impact of secret information we formulate a
flow control game with incomplete information where users
choose their flows in order to maximize their (expected)
utilities given the actions of others. In this environment, the
natural baseline notion is Bayesian Nash equilibrium (BNE);
we establish the existence of BNE in pure strategies. To capture
the effect of secret information, we assume that there is a user
who knows the congestion created by other users, but that the
presence of this user is not known by other users; thus this
user has secret information. For this environment, we define a
new equilibrium concept: the Bayesian Nash Equilibrium with
Secret Information (BNE-SI) and establish its existence. We
establish rigorous estimates for the benefit and harm that result
from secret information; both the benefit and the harm are
smaller for large networks than for small networks. Simulations
confirm the estimates of benefit and harm for networks of
different sizes and demonstrate that secret information may
in fact benefit all users. Secret information may also harm
other users in other scenarios. This analysis can be used as
a starting point for securing communications networks, both
from the network manager and the user’s perspectives.

I. INTRODUCTION

In this paper we study the interaction of self-interested

users in communication networks. Much of the previous

analysis of such networks has assumed that users are identi-

cally informed about the parameters of the network such as

capacity, links, etc. and the characteristics of other users, for

instance costs, benefits, etc.; some of the literature allows

for the possibility that users have private information (for

example, they may know their own characteristics but not the

characteristics of others). In many circumstances, however,

some users may know much more than other users – and

more interestingly, this fact may be secret. The purpose

of this paper is to explore the implications of such secret

knowledge in communications networks. In particular, we

ask how helpful such secret knowledge may be for a user

who possesses it and how harmful it may be to users who do

not possess it. We show that the answers to these questions
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depend on the characteristics of the network and especially

on the size of the network.

We set our study in the context of flow control. We

consider a network of N + 1 users, drawn at random from

a pool of potential users. Users are distinguished by their

utility functions, which we think of as their type. Each

of the users chooses a flow to send to the network and

derives a utility that depends on its own flow and on

network congestion (which we proxy by average flow). In

our baseline scenario, users know the distribution over the

pool of potential users but not the realized draw from the

distribution. For this scenario, an appropriate solution notion

is (symmetric) Bayesian Nash Equilibrium (BNE). Under

appropriate assumptions, we show that BNE exist. To explore

the impact of secret information, we depart from the baseline

scenario by assuming that some user knows, not only its

own type (utility function) and the distribution of types of

potential users, but also the realized average flow of the

users in the particular network – but that no other users

know this user has this information. Thus, this user has

secret information. Because in the considered games, only

the average flow of others is relevant, the user with secret

information is (effectively) omniscient: it knows everything.

For this scenario, an appropriate solution notion is what

we call Bayesian Nash Equilibrium with Secret Information

(BNE-SI); under the same assumptions as before, we show

that BNE-SI exist.

Information matters because a user who knows the av-

erage flow of the other users in the network can choose

to send a low flow when the network is congested and

a high flow when it is not. Secret information matters

because it prevents others from countering the effects of

this information. Secret information always confers a benefit

to a user who possesses it.1 The actions of a user with

secret information are beneficial to other users when those

actions reduce congestion and detrimental to others when

they increase congestion. However, both of these effects

are attenuated when there are many users in the network

– most obviously because the impact of any one user is

attenuated when the network is large, more subtly because

the Law of Large Numbers reduces the usefulness of secret

information, and more subtly still because the latter effect

feeds back into the behavior of a user who possesses secret

information. Paradoxically, the overall implication is that

secret information may be less important in larger networks

than in smaller networks. Our findings have implications for

1By contrast, information that a user is known to possess need not confer
a benefit on the possessor, and may be harmful.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

U.S. Government work not protected by U.S.
copyright

3110



the necessity for a network manager to provide security, and

suggest – again, paradoxically – that security may be less of

a concern in larger networks than in smaller networks.

To analyze the mentioned scenarios, we use game-

theoretic tools which have been applied to analyze the

behavior of users and their performance in communications

networks, for example see [1] and references therein. Par-

ticularly, there is by now a substantial literature that uses

Bayesian games [2] to model the interactions among selfish

users with incomplete information who compete for access

to network resources (e.g., power and bandwidth). [3], [4]

use Bayesian games to capture the effects of information

availability and asymmetry on the problem faced by a profit-

maximizing manager. Moreover, a literature that might seem

parallel to ours but is actually quite distinct considers the

problem of malicious users: users whose objective is to

damage the network and/or increase the cost incurred by

other users; see for instance [5], [6]. Our omniscient users

seek only to maximize their own utility from flow; their

behavior may harm others, but this is a side consequence of

their own selfish maximizing behavior; it is not malicious.2

II. BAYESIAN COMMUNICATION NETWORKS

We consider a network formed by the set N of N + 1
users, denoted users 0, 1, . . . , N . Potential users in this

network are distinguished by their types, which we identify

with their utility functions; for tractability we assume the

space of types is a compact subset of the nonnegative real

line: Θ ⊂ R+. Each user in the network sends a flow

to the network, and derives an utility/payoff U(xi, x, θi)
that depends on its own flow xi ∈ A, on the average

x =
1

N + 1

∑

j∈N

xj of the flows of all users, and on the

type θi ∈ Θ of the user. Throughout we assume:

(A1) Flow choices lie in some compact interval A ⊂ R+

(A2) User types are drawn independently from some distri-

bution f with full support in Θ
(A3) Utility U is bounded, measurable, continuously twice

differentiable in each of the there variables

(A4) Utility U is differentiably strictly concave in own flow

xi.
3

Most of the utility functions commonly used in the literature

have these properties; examples include:

(i) U(xi, x, θi) = θib(xi) − C(x), where b is strictly

increasing, strictly concave, and continuously differ-

entiable; C is strictly increasing, strictly convex, and

continuously differentiable

(ii) U(xi, x, θi) = θib(xi)− xic(x), where b is assumed as

in (i), and c has similar assumptions as C in (i).

2Due to space limitations, all the proofs are not presented in this version
and are included in the technical report available online on the second
author’s website.

3Keep in mind that own flow xi enters into average flow; hence
differentiable strict concavity with respect to own flow xi means

∂2U

∂x2

i

= U11 +

(

2

N + 1

)

U12 +

(

1

N + 1

)

2

U22 < 0

The above utility model has been deployed in numerous

research works, including [3], [4], [7]– [11] and references

therein. We interpret θib(xi) as the benefit derived by a user

with type θi who sends flow xi and C(x) or xic(x) as the

corresponding cost incurred on the user when the average

flow through the network is x. The literature typically as-

sumes that cost depends on the total flow through the network

[7] rather than on the average flow. We prefer using average

flow because it facilitates comparisons across networks of

different sizes, especially when we study many users regime.

Thus, using the average flow in the cost function makes

more sense when considering many users regime. It is worth

stressing that the forms (i), (ii) differ only in the cost term. In

both cases, cost depends on average flow, which we interpret

as a proxy for congestion. In case (i), it is the total cost that

depends on congestion while in case (ii) it is the per-unit

cost that depends on congestion. We should note that the

utility forms exhibit negative externalities which is typical

scenario in flow control games in communications networks

[?]. Typical benefit and cost functions used in the literature

are

• b(xi) = log(xi) (logarithmic benefit) [3], [7], [10];

b(xi) = xi − αx2
i (quadratic benefit) [9], [11]

• C(x) = γx2 (quadratic total cost) [4], [8]; c(x) = κx
(linear per-unit cost).

We assume for the moment that all of the above is

common knowledge; that is, each user knows the description

of the environment and his own type; each user knows

that all other users have the same knowledge; each user

knows that all other users know that all other users have

the same knowledge, etc. (We deviate from the common

knowledge assumption in the following Section when we

introduce secret information.) In this context a strategy is

a (measurable) function X : Θ → A that specifies, for

each potential user, the flow choice (as a function of type).

To define payoffs conditional on this strategy, write θ =
(θ0, . . . , θN ) ∈ ΘN+1 for a profile of types and (x0, . . . , xN )
for a profile of flows; write θ−i for the profile of types of

users other than user i. Write

x−i =
1

N

∑

j 6=i

xj

for the average of flows of users other than user i. Note that

the average of flows of all users is x = (xi+Nx−i)/(N+1).
To economize on notation, define

V (xi, y, θi) = U(xi, (xi + Ny)/(N + 1), θi)

If user i chooses the flow xi and others follow the strategy

X then the profile of flows of other users is X(θ−i) =
(X(θ0), . . . , X(θi−1), X(θi+1), . . . , X(θN )) and the aver-

age flow of other users is

X(θ−i) =
1

N

∑

j 6=i

X(θj)

Hence the average flow of all users is (xi+NX(θ−i))/(N +
1). Thus, if user i chooses the flow xi and others follow the
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strategy X and have realized types θ−i, then user i’s user’s

utility will be V (xi, X(θ−i), θi). Given the distribution of

types, user i’s expected utility if he chooses flow xi and

others follow the strategy X will therefore be

EU(xi, θi|X) =

∫

V (xi, X(θ−i), θi)f(θ−i)d(θ−i) (1)

where f(θ−i) = f(θ0) . . . f(θi−1)f(θi+1)f(θN ) and

d(θ−i) = dθ0 . . . dθi−1dθi+1dθN . By definition, the strategy

X is a (symmetric) Bayesian Nash Equilibrium (BNE) where

users with the same type choose the same flow if for each

type θi the flow choice X(θi) is optimal given that others

follow the strategy X :

X(θi) = arg max
xi∈A

EU(xi, θi|X) (2)

Notice that given the strategy X of other users, the optimal

flow choice X(θi) is unique due to the strict concavity of

the utility functions.

Theorem 1: Under assumptions (A1)-(A4), a (symmetric)

Bayesian Nash Equilibrium exists.

A monotone increasing strategy is a strategy such that a user

of higher type chooses a weakly higher action than a user of

lower type. We show that when the utilities are of particular

forms, the BNE is monotone.

Proposition 1: Under assumptions (A1)-(A4) and if U
is of forms (i) or (ii), then a monotone Bayesian Nash

Equilibrium exists.

We caution the reader that Theorem 1 (Proposition 1, respec-

tively) guarantees that a BNE (monotone BNE, respectively)

exists but not that it is unique. If BNE is not unique, the

assumption that users behave according to a particular BNE

requires a form of coordination; such coordination could be

obtained, for instance, by a recommendation of the network

manager. By definition, no user would have an incentive to

deviate (unilaterally) from such a recommendation.

A. Calculating BNE

To illustrate the nature of BNE and in particular the

influence of the number of users and the distribution of user

types, we offer two examples. Before presenting them, it is

useful to make a simple observation. Fix a (symmetric) BNE

X and a type θi. By definition, X(θi) solves the following

optimization problem:

X(θi) = arg max
xi∈A

∫

V (xi, X(θ−i), θi)f(θ−i)d(θ−i). (3)

Assuming that the solution to (3) is interior, due to the strict

concavity of the utility functions, the solution is determined

by the first order condition
∫

V1(X(θi), X(θ−i), θi)f(θ−i)d(θ−i) = 0. (4)

Equation (4) provides a functional equation for the BNE.

In general, this functional equation will be intractable and

impossible to solve in closed form – even if the utility

function V is relatively simple. However, this functional

equation is solvable in several representative cases.

Example 1 There are N + 1 users. Utility has the form

U(xi, x, θi) = θi log(xi) − γxix

where the cost coefficient γ > 0 is a constant. The type space

and action space are Θ = [0, 1], and A = [0, 1], respectively;

types are independently and identically distributed according

to the distribution f(θi).
Assuming that optimal flow is interior, the first order

condition that determines X(θi) reduces to

θi

X(θi)
−

2γX(θi)

N + 1
−

γN

N + 1

∫ 1

0

X(θi)f(θi)dθi = 0. (5)

Write A =
∫ 1

0
X(θi)f(θi)dθi ∈ (0, 1) and rewrite (5) as a

quadratic equation in X(θi)

2γX(θi)
2 + γNAX(θi) − (N + 1)θi = 0. (6)

The unique positive solution to this equation is

X(θi) = −
NA

4
+

1

4γ

√

(γNA)2 + 8(N + 1)γθi. (7)

By definition A must satisfy the identity:

A = −
NA

4
+

1

4γ

∫ 1

0

√

(γNA)2 + 8(N + 1)γθif(θi)dθi.

(8)

It is easy to see that (8) has a unique solution since the left

hand side is strictly increasing in A and the right hand side

is strictly decreasing in A. Moreover, it can be shown that

A ∈ (0, 1). Hence (continuing to assume that optimal flows

are interior) we can solve for the unique BNE by finding the

solution to (8) and substituting in (7). Equilibrium expected

utility for each type and ex ante expected utility are:

v(θi) = θi log X(θi) −
γ

N + 1
X(θi)

2 −
γNA

N + 1
X(θi)

v =

∫ 1

0

v(θi)f(θi)dθi.

An issue of particular interest to us is the way in which

BNE depends on the size of the network. It is important

to understand that we are not concerned with the exercise of

holding the physical network fixed and increasing the number

of users. Instead, we imagine that the physical network

(capacity, etc.) grows at the same rate as the number of users.

In particular, we might imagine that a network doubles in size

because two identical networks merge, creating a network

with twice the capacity and twice the usage. It is for this

reason that we write utility as a function of average flow

rather than total flow. As noted previously, such capacity

expansion rule when the number of users in the system grows

has been mentioned and/or considered in [3]

To give some insight into this issue, we calculate and dis-

play in Figures 1 and 2 the BNE flow X(θi) and equilibrium

expected utility v(θi), respectively for particular parameter

choices and various numbers of users. Types are uniformly

distributed in [0, 1]. We have fixed γ = 8. The optimal flows

are interior in [0, 1] and are monotone with type θi as in

Proposition 1. When there are large number of users, i.e.,
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more than 100 users, the optimal flows are less dependent

on the network size. As in the case of flows, the utility is less

dependent on the network size when the network is large.
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Fig. 1. BNE flow X(θi); U(xi, x, θi) = θi log(xi)−8xix; pdf f(θ) = 1
(uniform distribution)
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Fig. 2. BNE utility v(θi); U(xi, x, θi) = θi log(xi)−8xix; pdf f(θ) = 1
(uniform distribution)

III. SECRET INFORMATION: EQUILIBRIUM

We now depart from the formulation given above by

assuming that one user – say user 0 – has additional

information about other users.4 We focus on the starkest

scenario in which user 0 is omniscient and hence knows

everything relevant about other users; in our scenario that

means that user 0 is able to observe the average flow of other

4The advantage of information in wireless systems has been somewhat
considered in [12] where the authors showed that a user would improve its
performance if it has more information about the strategy of the competing
user.

users, and hence knows the network congestion.5 However,

the fact that user 0 possesses this information is not common

knowledge; rather users 1, . . . , N have the same beliefs as

in the previous Section, and hence use the same strategies –

and user 0 knows this. Thus, user 0 has secret information.6

In this environment, Bayesian Nash Equilibrium with Secret

Information BNE-SI consists of a strategy X : Θ → A for

users 1, . . . , N and a strategy F : A × Θ → A for the

omniscient user 0 such that:

• for each θi ∈ Θ: xi = X(θi) maximizes EU(xi, θi|X)
• for each θ0 ∈ Θ, y ∈ A: x0 = F (y, θ0) maximizes

V (x0, y, θ0)

Note that at BNE-SI, it is optimal for the omniscient user

to exploit its secret knowledge. The interpretation is that

users other than 0 behave according to the BNE X (as in

the Section 2) but the omniscient user 0 optimizes given

the realized congestion in the network. We emphasize that

at BNE-SI equilibrium, the omniscient user conditions her

behavior on her own type and on the realized congestion,

but other users believe (wrongly) that 0 conditions only on

her own type (and follows the strategy X). We can also

interpret that at BNE, users take their actions simultaneously

and the action of a user is not revealed to others when

they take actions. However, at BNE-SI, users 0, . . . , N move

first, then, omniscient user 0 moves next after observing the

congestion caused by other users.

Our approach to secret information departs from the usual

approach in the economics literature, which (almost) always

assumes that all details of the environment are common

knowledge; see [2], [13], [14] for instance. The usual ap-

proach in the economics literature would be to posit that

there are two components to the type of user 0, the first

component being user 0’s utility function (as above) and the

second component being user 0’s knowledge (ordinary or

omniscient); that this is common knowledge; and that all

users assign a common prior probability ε > 0 to user 0
being omniscient. Our approach seems more appropriate to

the problem at hand.

Our assumptions guarantee that user 0’s optimization

problem always has a unique solution, so the assumptions

of the previous Section guarantee the existence of a BNE-

SI.

Theorem 2: Bayesian Nash Equilibrium with Secret In-

formation exists. Moreover, if the Bayesian Nash Equilib-

rium is unique, so is the Bayesian Nash Equilibrium with

Secret Information.

We continue the example in Section 2 and study the

strategy of the omniscient user.

Example 2 Consider N +1 users with log benefit and linear

5It would be more than enough for user 0 to observe the types of
other users, and hence, given a particular BNE, to infer their flow choices.
However it seems much more natural to assume, as we do here, that user
0 observes congestion (average flow) directly, perhaps because it is able to
observe network information that is improperly secured.

6If that user 0 knows the realized congestion caused by other users is
common knowledge, then we would have conventional Bayesian game with
asymmetric information. However, such games, tho interesting, are out of
the scope of this paper.
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per-unit cost functions. The strategy of the omniscient user

0 can be shown as

F (y, θ0) = min

{

1,−
Ny

4
+

1

4γ

√

(γNy)2 + 8(N + 1)γθ0

}

(9)

where y is the realized average flow of other users.

IV. SECRET INFORMATION: BENEFIT AND HARM

The benefit that secret information confers on an omni-

scient user is the difference between the utility the omniscient

user obtains when all others follow a BNE but the omniscient

user conditions on its own type and on the realized conges-

tion, and the utility the omniscient user obtains when it and

all others follow a (given) BNE. We fix a particular type

of the omniscient user and focus on the expected benefit

of this type (where we take expectations over the types of

other users). This seems appropriate because the decision

to acquire secret information – which might require the

expenditure of resources – might be dependent on type.

Hence, given a type θ0 ∈ Θ of the omniscient user we define:

GN (θ0) =

∫

V
(

F (X(θ−0), θ0), X(θ−0), θ0

)

f(θ−0)d(θ−0)

−

∫

V
(

X(θ0), X(θ−0), θ0

)

f(θ−0)d(θ−0)

We retain the subscript N to emphasize that the size of the

network matters.

The harm inflicted on any user – say user N – when

user 0 has secret information is the difference between the

(expected) utility of user N when all users follow a BNE

and the (expected) utility of user N when user 0 has secret

information and conditions on the realization of types. To

define the latter utility, fix a type profile (θ0, . . . , θN ) and

write

Y (θ−N ) =

(

1

N

)

[

NX(θ−N ) − X(θ0) + F (X(θ−0), θ0)
]

This is the average flow of users other than N provided

that user 0 has secret information and chooses the flow

F (X(θ−0), θ0) but users i = 1, . . . , N follow X . Hence

the expected harm to user N when when user 0 has secret

information is

HN =

∫

V (X(θN), X(θ−N ), θN )f(θ)d(θ)

−

∫

V (X(θN ), Y (θ−N ), θN )f(θ)d(θ) (10)

Because user 0 could always disregard his secret informa-

tion and others do not know he has it, user 0 must (for each

of his types θ0 ∈ θ0) do at least as well in a BNE-SI as in the

corresponding BNE, and he will do strictly better except in

degenerate scenarios. That is, secret information always has

positive value to the user who possesses it: GN (θ0) > 0.

The magnitude of this value will of course depend on the

particular environment; we return to this point below.

However, the impact of user 0’s secret information on

other users is not obvious. To see why, suppose that the BNE

X is monotone. When users 1, . . . , N have high types, they

will send high flows; user 0, observing a highly congested

network, will choose to send a lower flow than he would

if he followed the BNE strategy X . However, a lower flow

from user 0 means that users 1, . . .N in turn experience less

congestion than they would if user 0 followed X – and hence

users 1, . . .N obtain higher utility than they would if user 0
followed X . The presence of a user with secret information

will benefit other users for at least some type realizations

which can be shown to be in the following set

ΘN+1

B =
{

θ ∈ ΘN+1 | F (X(θ−0), θ0) < X(θ0)
}

. (11)

Moreover, whether the presence of a user with secret infor-

mation will benefit other users on average depends on the

parameters of the environment and in particular on the dis-

tribution of types. Although one might guess that situations

in which the presence of a user with secret information will

benefit the other users would be unusual, our simulations

(discussed below) suggest that they may be quite robust. As

an example, let us examine the case of linear per-unit cost

function with BNE X . The harm inflicted on user N is

HN =
1

N + 1

∫

X(θN)
(

F (X(θ−0), θ0) − X(θ0)
)

f(θ)dθ

=
1

N + 1

[

∫

X(θN )F (X(θ−0), θ0)f(θ)dθ − A2
]

(12)

Since X(θN ) and F (X(θ−0), θ0) are increasing and decreas-

ing, respectively with θN , we have

HN ≤
1

N + 1

[

A

∫

F (X(θ−0), θ0)f(θ)dθ − A2

]

(13)

An immediate result is that HN is negative if
∫

F (X(θ−0), θ0)f(θ)dθ < A. In other words, secret

information benefits user N if the expected flow of

omniscient user 0 at BNE-SI is less than its expected flow

at BNE. On the other hands, the effect of secret information

to user N remains unclear even when user 0 sends larger

flow at BNE-SI than at BNE on average.

A. Secret Information in Large Networks

We first establish rigorous (although probably coarse)

estimates of the benefit that secret information confers on

a user who possesses it and the harm inflicted on others by

the actions of that user. Intuition suggests that, in a large

network, secret information will be of little benefit because

(by the Law of Large Numbers) the realized distribution of

types ‘usually’ mimics the known underlying distribution of

types, so knowledge of the realized flow of others will not

tell a user much it cannot already infer from knowledge

of the distribution and the BNE. Intuition also suggests

that, in a large network, the actions of a user with secret

information will inflict little harm on other users because the

flow choice of any single user has little impact on average

congestion. We show that both of these intuitions are correct
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and quantify them, and also that there is an additional effect

(stemming from the optimization behavior of the user with

secret information) that further dampens the harm caused to

other users.

To simply demonstrate the above intuition, we look at

the above example of log benefit and linear per-unit cost

functions where the BNE and BNE-SI strategies are given

by (7) and (9), respectively. Due to Law of Large Numbers,

since users 1, . . . , N follow the BNE strategy, their realized

average flow y approaches, i.e., becomes close to, the average

flow of each of them A with high probability. Hence, the flow

F (y, θ0) in (9) approaches the flow X(θ0) in (7). Since the

interim expected utility is continuous in own flow, the utility

which user 0 playing BNE-SI obtains approaches the utility

which user 0 playing BNE obtains, i.e., the gain becomes

small. Similarly, the effect of secret information on other

users becomes small.

We are now trying to quantify the gain and harm with

respect to the size of the network. As noted earlier, it is

appropriate to focus on the benefit to a user of a particular

type but on the expected harm to others (taking expectations

over types). Because the benefit is always non-negative but

the harm to other users may be either positive or negative,

we bound the benefit and the absolute value of the harm.

Theorem 3: There is a constant C1 that depends only on

derivatives of U such that

GN (θ0) ≤ C1N
−1/3 for all θ0 ∈ Θ (14)

Theorem 4: There is a constant C2 that depends only on

derivatives of U such that

|HN | ≤ C2N
−4/3 (15)

Notice that the expected total harm to other users is NHN

and that |NHN | ≤ C2N
−1/3; in particular, the expected

total harm to other users tends to 0 as the network becomes

large. We should emphasize that the results in Theorem 4

and 5 hold in general for both cases of multiple and unique

equilibria.

B. Simulations

To illustrate Theorems 3 and 4, we present simulations

in Figure 3 that show the maximum gain available to a user

with secret information and the average harm inflicted on

others. In Figure 3 utility is U(xi, x, θi) = θi log(xi)−8xix;

we consider three distributions. In all cases, we present the

average of 10,000 draws from the given distribution. These

simulations suggest that the bounds presented in Theorems 3,

4 are crude: at least, convergence of gain and harm appear to

be much faster than N−1/3 and N−4/3. The gain is smallest

and largest when types are distributed with increasing, and

decreasing distributions f , respectively. Importantly, Figure

3 illustrates the possibility that a user with secret information

may benefit others.

We have considered here a scenario in which a single

user, otherwise no different from other users, has secret

information, which is complete. We have studied the gain
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f(θ)=1: Gain
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Fig. 3. U(xi, x, θi) = θi log(xi) − 8xix; Gain and Harm

and harm to user who possesses secret information and to

users who do not, respectively.
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