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Abstract— This paper studies the loading coordinations for
large-population autonomous individual (plug-in) electric vehi-
cles (EVs) and a few controllable bulk loads, e.g. EV fleets,
pumped storage hydro units, and so on. Due to the compu-
tational infeasibility of the centralized coordination methods
to the underlying large-population systems, in this paper we
develop a novel game-based decentralized coordination strategy.
Following the proposed decentralized strategy update mecha-
nism and under some mild conditions, the system may quickly
converge to a nearly valley-fill Nash equilibrium. The results
are illustrated with numerical examples.

Key words: (Plug-in) electric vehicles, Loading coordina-
tion, Nash equilibrium (NE), Valley-fill.

I. INTRODUCTION

A number of recent studies have explored the potential im-
pacts of high penetrations of (Plug-in) electric vehicles (EVs)
on the power grid [1], [2], [3], [4]. In general, these studies
assume that EV charging patterns “fill the valley” of night-
time demand. However, these studies do not address the issue
of how to coordinate EV charging patterns. In [5], [6], [7],
Ma, Duncan and Hiskens developed a strategy to coordinate
the charging of large populations of autonomous EVs using
concepts from non-cooperative games. The foundation of the
work is a model that assumes EVs are cost-minimizing and
weakly coupled via a common electricity price signal which
is directly correlated with the grid network state, the number
of EVs demanding resources and the urgency with which
they demand it [8], and is different from grid system energy
prices. At a Nash equilibrium, each EV reacts optimally
with respect to a commonly observed charging trajectory
that is the average of all EV strategies. This average is
given by the solution of a fixed point problem in the limit
of infinite population size. Accompanied by a decentralized
computational algorithm the system converges to the nearly
”valley-fill” Nash equilibrium in the infinite EV population
limit.

This paper studies the loading coordinations for large-
population autonomous individual EVs and a few control-
lable bulk loads, e.g. EV fleets, pumped storage hydros,
and so on. Due to the computational infeasibility of the
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centralized coordination methods to the underlying large-
population systems, in this paper we generalize the game-
based decentralized coordination strategy originally devel-
oped in [5], [6], [7]. We consider a model that all of
the individual EV and bulk load agents, or called major
agent, are cost-minimizing and coupled with each other via a
common electricity price signal which is same as that applied
in [5], [6], [7], and at any instance is determined by the total
load in the grid at that instance.

As the number of the individual EVs grows substantially,
the influence of each of the individual EVs on that aggre-
gated load becomes negligible. Accordingly, in the infinite
population limit, all EVs will observe the same average
strategy of EV populations and the same total load as they
calculate their local optimal charging strategy. Different from
the individual EV demanding, in this paper we consider that
the loading behavior of each of single major agents has
significant influence on the grid with large populations of
EVs.

In this situation, a collection of coordination strategies is
a Nash equilibrium, if (i) each of the EVs reacts optimally
with respect to a commonly observed charging trajectory that
is the aggregation of all EV strategies and the strategies of
all major agents [5]; and (ii) each of the major agents reacts
optimally with respect to the EV aggregation strategy and
the strategies of the rest of major agents. This aggregation
strategy is an approximation of the solution to a fixed point
problem in the limit of infinite EV populations.

Substantial work has been presented in the literature on
the computation of Nash equilibria, or ε-Nash equilibria, for
potential games which the loading coordination games stud-
ied in the paper belongs to, especially in relation to network
games. Research on centralized mechanisms includes Chris-
toudoulou et al. [9], who consider two classes of potential
games, selfish routing games and cut games, and Even-Dar
et al. [10] who study the number of steps required to reach
a Nash equilibrium in load balancing games. Research on
decentralized or distributed mechanisms includes Berenbrink
[11], who propose a strongly distributed setting for load
balancing games such that all agents update their strategy
simultaneously. Also, Even-Dar et al. [12] present conver-
gence results for an approximate ε-Nash equilibrium under
a non-centralized setting in routing games, and Fischer et al.
[13], [14] propose a distributed and concurrent process for
convergence to Wardrop equilibria [15] in adaptive routing
problems.

This paper presents a novel mixed computation procedure
to implement the underlying NE. All of the individual EV
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agents simultaneously update their best individual strategy
with respect to the strategies of all major agents and an
average, or normalized aggregated, charging strategy of the
whole EV population. This procedure continues until they do
not update their best strategies any more. After the iterative
procedure of EV populations, major agents successively
updates his/her best strategy respectively with respect to the
proposed aggregated strategy of EV populations, and loading
behaviors of the rest of the major agent populations. The
above procedure continues until neither individual EV and
major agents update their best strategies any more. It is
proposed that this procedure would be undertaken prior to the
actual loading coordination interval. The computation time
of this algorithm is unrelated to the number of EVs, since
they simultaneously and independently update their charging
strategy. Under certain mild conditions, the proposed best
strategy update procedure drives the system asymptotically
to a unique Nash equilibrium. In particular in the case of
convex load supply curve and homogeneous EV populations,
where all vehicles have identical parameters, a perfect valley-
fill loading strategy is the Nash equilibrium. Several numer-
ical examples are used to illustrate the performance of the
solution strategy.

The paper is organized as follows. In Section II, we
formulate loading coordination control problems for large
populations of EVs and a few of major agents and design
a mixed best strategy update mechanism and show that by
applying this update mechanism and under some conditions,
the system converges to a valley-fill Nash equilibrium. The
results developed in Section II are explored with illustrative
examples in Section III. In Section IV, we provide conclu-
sions and suggest a few of possible extensions.

II. LOADING COORDINATION PROBLEMS FOR
LARGE-POPULATION EVS AND A FEW CONTROLLABLE

BULK LOADS

We consider the loading control problems of N EVs and
M controllable bulk loads over a finite interval T . We denote
M and N as the set of bulk loads and the population
of EVs respectively. We denote uEV

nt as the charging rate
of individual EV n ∈ N at instant t, and uN,BL

mt as the
charging rate of mth bulk load unit, with m ∈ M, at
instant t respectively. Moreover we call a charging strategy
of individual EV n, with n ∈ N , denoted uEV

n ≡ (uEV
nt ; t ∈

T ), is admissible, if

uEV
nt ≥ 0, and |uEV

n |1 ,
∑

t∈T
uEV

nt = ΓEV
n , (1)

where ΓEV
n denotes the maximum total loading capacity of

EV n. Similarly we call a load strategy of individual bulk
load m, with m ∈M, denoted uN,BL

m ≡ (uN,BL
mt ; t ∈ T ), is

admissible, if

uN,BL
mt ≥ 0, and |uN,BL

m |1 ,
∑

t∈T
uN,BL

mt = ΓN,BL
m , (2)

where ΓN,BL
m denotes the maximum total loading capacity

of bulk load m.

We consider the following cost function subject to a
collection of strategies u ≡ (uEV

n ,uN,BL
m ;n ∈ N ,m ∈M):

J(u) =
T∑

t=1

p(t)(DN
t +

∑

n∈N
uEV

nt +
∑

m∈M
uN,BL

mt ) (3)

where p(t) represents the electricity price at instant t, and
DN

t denotes the inelastic base demand in the grid unrelated
to the loading coordinations.

In this paper we suppose that p is determined by the
loading strategy u, such that

pt ≡ p(rN
t ), (4)

with rN
t , 1

CN (Dt +
∑

n∈N uEV
nt +

∑
m∈M uN,BL

mt ) where
CN denotes the generation capacity of the grid.

Due to the computational complexity of optimal coordina-
tion strategy for large-population systems, in the remaining
of the paper we develop a game based decentralized coordi-
nation methodology for the underlying coordination systems.

A. Decentralized coordination controls for infinite EV pop-
ulations

As mentioned earlier, centralized coordination strategies
for large-population systems require significant networking
and centralized computing resources, and may have difficulty
gaining public acceptance. Therefore, in the rest of the
paper we will study an alternative decentralized game-based
charging strategy for large EV populations. This subsection
develops the mathematical framework for this analysis, and
establishes the conditions required for a Nash equilibrium.

Consider the local cost function Jk for an individual agent
k, with k ∈ N ∪M, subject to a collection of strategies u,

Jk(u) ,
∑

t∈T
pt ukt. (5)

where the price p is specified in (3).
The locally optimal charging control problem with respect

to a fixed collection of controls u−k is given by the mini-
mization,

Vk(u−k) , inf
uk

Jk(uk;u−k), (6)

where u−k , {ul; l ∈ N ∪ M, l 6= k}. In other words
u−k denotes the collection of control strategies of all agents
except the strategy of the agent k. If a minimizing function
exists, it will be referred to as an optimal control law for the
local charging control problem.

A collection of strategies {u∗k; k ∈ N ∪ M} is a Nash
equilibrium if each agent k cannot benefit by unilaterally
deviating from its individual strategy u∗k, i.e.,

Jk(u∗k;u∗−k) ≤ Jk(uk;u∗−k),

for all uk and all k ∈ N ∪M.
In this paper we will study the properties of systems where

(i) the number of EV agents is sufficiently large such that
the behavior of an individual EV agent on the system is
negligible but the behavior of the aggregation of agents can
be significant; (ii) the number of bulk load agents (or called
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major agent) is small but the behavior of each of the bulk
loads is significant on the grid. To obtain theoretical results,
we will examine the asymptotic properties of game systems
in the EV population limit.

In particular we consider the following asymptotic as-
sumptions as the population size of EVs N goes to infinity:

CN

N
−−−−→
N→∞

c,
DN

t

N
−−−−→
N→∞

dt,
ΓN,BL

m

N
−−−−→
N→∞

ΓBL
m .

(7)
Under the asymptotic assumption (7), we observe that any
admissible loading strategy uN,BL

m of major agent m, spec-
ified in (2), satisfies the following:

1
N

∑

t∈T
uN,BL

mt −−−−→
N→∞

ΓBL
m ;

then we may define a normalized (admissible) loading strat-
egy for major agent m, denoted uN,BL

m , for the population
limit problems, such that

uBL
mt , lim

N→∞
uN,BL

mt

N
.

It is direct to verify that uBL
m , in the population limit systems,

satisfies the following:

uBL
mt ≥ 0, and

∑

t∈T
uBL

mt = ΓBL
m .

which is a normalized version of admissible loading strategy
given in (2).

Moreover following the above population limit asymptotic
assumptions (7), we obtain that, in the infinite population
limit of EVs,

lim
N→∞

rN
t =

1
c
(dt +

∑

m∈M
uBL

mt + uEV
t ) (8)

where uEV
t , 1

N

∑
n∈N uEV

nt , i.e. uEV
t denotes the average

charging rate of individual EVs.

B. Distributed mechanism to compute NE with large-
population agents

In this paper we propose a mixed best strategy update
mechanism to compute the NE. Essentially all of the indi-
vidual EV agents simultaneously update their best individual
best response (or greedy response) with respect to the
strategies of all major agents and an average, or normalized
aggregated, charging strategy of the whole EV population.
This procedure continues until they do not update their
best strategies any more. After the iterative procedure of
EV populations, each of major agents sequentially updates
his/her best strategy respectively with respect to the proposed
aggregated strategy of EV populations, and loading behaviors
of the rest of the major agent populations.

Since all of the EV agents simultaneously update their
best strategy, the cheap and expensive resources during the
charging interval may become expensive and cheap ones
respectively. This resulting oscillating behavior implies that
the system does not converge to any equilibrium. To mitigate
this oscillation behavior of the EV agents we add to the EV

agent cost function a quadratic term for the deviation of the
individual control strategy from the population average. In
this case in the rest of the paper we consider the following
revised local cost function:

Jn(u) ,
∑

t∈T

(
p(rt)uEV

nt + δ(uEV
nt − uEV

t )2
)
, (9)

for all n ∈ N , with rt = 1
c (dt+uEV

t +
∑

m∈M uBL
mt ), where

δ determines the magnitude of the penalty for deviating from
the mass average of the whole populations of EVs. It will
be shown that the presence of the squared deviation term
ensures convergence to a unique collection of locally optimal
charging strategies. Furthermore, we will see that the cost
added due to this term can be quite small compared with the
electricity price p.

In this paper we will study the properties of systems where
the number of EVs is sufficiently large that the action of an
individual EV on the system is negligible but the action of the
aggregation of EVs can be significant. Given the definition
of a Nash equilibrium, and the tracking cost function (9) for
each EV, we can now establish the conditions governing a
Nash equilibrium for an infinite population of EVs.

Theorem 2.1: A collection of charging strategies u ≡
(uEV ;uBL) for an infinite population of EVs is a Nash
equilibrium, if
(i) For all n ∈ N , uEV

n minimizes the following cost
function,

Jn(uEV
n ; z,uBL) =

∑

t∈T

(
p(rt)uEV

nt + δ(uEV
nt − zt)2

)

(10)
with rt = 1

c (dt + zt +
∑

m∈M uBL
mt ), with respect

to a fixed z, and zt = uEV
t , for all t ∈ T , i.e., z

can be reproduced by averaging the individual optimal
charging trajectories of all EVs.

(ii) For all m ∈M, uBL
m minimizes the cost function,

Jm(uBL
m ; z,uBL

−m) =
∑

t∈T
p(rt)uBL

mt .

¥
Note: Theorem 2.1 can be shown following the same

technique applied in Theorem 3.1, [5].
Interpretation of Theorem 2.1: A collection of coordina-

tion strategies, for game system with limit EV population
limit, is a Nash equilibrium, if (i) each of the EVs reacts
optimally with respect to a commonly observed charging
trajectory that is the aggregation of all EV strategies and
the strategies of all major agents; and (ii) each of the major
agents reacts optimally with respect to the EV aggregation
strategy and the strategies of the rest of major agents. This
aggregation strategy is the solution to a fixed point problem
in the limit of infinite EV populations.

The loading coordination games studied in the paper are
consistent with the mean-field games with major agents stud-
ied in [16]. The key similarity is that individual minor EV
agents do not consider the behavior of other EV individuals
and EV individuals are influenced by the so-called ‘mass
effect’ of the whole population of EVs and major agents,
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while the strategy of each of the major agents is significant.
In particular in the case of loading coordination problems,
the effect felt by all EV individuals and major load agents is
the electricity price, which we specify as a function of the
mass average charging trajectory uEV

t of whole populations
of EVs and loading behavior uBL of major agents.

C. Properties of equilibrium of infinite-population systems

We denote T̂ (u) as a subset of T subject to a strategy u,
such that

T̂ (u) ,
{
t ∈ T , s.t. uEV

t > 0
}
.

Also for notational simplicity, we consider Σ(u) denotes the
total demand subject to strategy u, i.e.

Σ(ut) ≡ uEV
t +

∑

m∈M
uBL

mt , for all t ∈ T .

Theorem 2.2: Consider that the electricity price p(r) is
convex and strictly increasing on r; then the Nash equilib-
rium u∗ satisfies the following nearly valley-fill property:

dt + Σ(u∗t ) = D, u∗,BL
mt = am, for all t ∈ T̂ (11)

dt + Σ(u∗t ) ≤ ds + Σ(u∗s), uEV
t ≥ uEV

s , uBL
mt ≥ uBL

ms ,
(12)

in case dt ≤ ds, for all m ∈M.
¥

The proof of Theorem 2.2 is given in [17] and follows
the similar technique applied in the proof of Theorem 6.1 in
[5] where the valley-fill property of Nash equilibrium of the
charging games with large populations of minor EV agents
is proved.

Note: The 2nd and 3rd part of (12) imply that, at any
equilibrium u∗, Σ(u∗t ) ≥ Σ(u∗s) in case dt ≤ ds.

D. Computation mechanism of equilibrium of infinite-
population systems

We now specify an algorithm as below to iteratively
compute the NE for the resource allocation games with
infinite population limit, such that all of the individual EV
(minor) agents simultaneously update their own best strategy
with respect to the mass behavior of whole EV population
and demanding strategies of major major agents; and each
of major agents update his own best strategy with respect to
the mass behavior of EV population and individual behaviors
of the rest of major agents successively. We formalize the
algorithm as follows:

Algorithm 2.1: We design a mixed iterative computation
mechanism for infinite-population games with individual
tracking cost function (9) for EV populations and cost
function (5) for major agents:

(S0) Consider an initial collection of average mass demand-
ing strategies of infinite EV populations uEV and load-
ing strategies of major agents uBL ≡ (uBL

1 , · · · ,uBL
M );

(S1) Update the best strategies of individual EV agents as
follows:

(S1.1) All of the individual EV agents simultaneously imple-
ment their own best strategies (uEV,∗

n ;n ∈ N ) each of

which respectively minimizes the tracking cost function
(13) specified below, with respect to (uEV ;uBL),

Jn(uEV
n ;uEV ;uBL)

=
∑

t∈T

(
p(rt)uEV

nt + δ(uEV
nt − uEV )2

)
; (13)

(S1.2) Update uEV with the average value of collection of best
strategies (uEV,∗

n ;n ∈ N ) implemented in (S1.1);
(S1.3) Repeat (S1.1) and (S1.2) until uEV can not be updated

any more.
(S2) Update the best strategies of each of the major agents

successively as below:
(S2.1) Implement the best strategy uBL,∗

m of major agent m,
with m ∈M, which minimizes the cost function

Jm(uBL
m ;uEV ;uBL

−m) =
∑

t∈T
p(rt)uBL

mt ,

where uBL
−m ≡ (uBL

k ; k 6= m, k ∈M);
(S2.2) Update uBL

m in (uBL
1 , · · · ,uBL

m , · · · ,uBL
M ) with uBL,∗

m

specified in (S2.1);
(S2.3) Implement (S2.1) and (S2.2) successively for all m ∈

M.
(S3) Repeat (S1) and (S2) until (uEV ;uBL) can not be

updated.
¥

Notes: (i) By applying Theorem 4.2 in [5] a sufficient
condition under which the update algorithm (S1) converges
is that the tracking parameter δ in (9) satisfies the following
inequality constraint:

1
2c

sup
r∈[rmin,rmax]

dp

dr
≤ δ ≤ a

c
inf

r∈[rmin,rmax]

dp

dr
. (14)

(ii) In case that the update procedure specified in Al-
gorithm 2.1 converges, the proposed collection of agent
best strategies (uEV,∗;uBL,∗) is an NE for the underlying
infinite-population game systems. As demonstrated in the
next section, considering some proper specifications, the
game system converges to the Nash equilibrium following
Algorithm 2.1.

III. NUMERICAL EXAMPLES

A few of examples will be used in this section to illustrate
the main results developed in Section II. The examples
use the base demand profile of Figure 1, which shows a
normalized base demand in a typical summer day, from noon
on one day to noon on the next. It is assumed that the
normalized total generation capacity c is 12kW.

We consider identical battery size ΓEV
n = 10kWh for all

EVs, and suppose that there exist two bulk load units and
each of the normalized energy demands for these bulk loads
ΓBL

1 and ΓBL
2 is equal to 2kWh and 3kWh respectively.

The common charging interval for all EVs and bulk load
units, T , covers the 12-hour period from 8:00pm on one day
to 8:00am on the next. The continuously differentiable and
strictly increasing price function

p(r) = 0.15r1.1 $/kWh (15)
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Fig. 1. A normalized base demand in a typical summer day.

is used in all cases.
We also consider that the tracking cost parameter δ equals

0.01. As analyzed in the below, the δ satisfies the inequality
constraint (14).

It may be verified from Figure 1 that

rmin = min
t∈T

{dt}/c ≈ 0.5.

To determine rmax, we assume the entire energy requirement
from EVs and bulk load units is delivered over a single time
step, so

rmax =
1
c
(max

t∈T
{dt}+ ΓEV + ΓBL

1 + ΓBL
2 ) ≈ 2.

where ΓEV represents the common value of ΓEV
n for all

n ∈ N and is equal to 10kWh.
Referring to (15), this gives

1
2c

max
dp(r)
dr

= 0.0074 ≤ a

c
min

dp(r)
dr

= 0.0128a, (16)

with some a in the range 1
2 < a < 1, which verifies the

inequality constraint (14) with the tracking parameter δ of
0.01.

Figures 2—4 below provide simulation results for the
decentralized computation algorithm (S1)-(S3) specified in
last section.

First, Figure 2 displays the best strategy update procedure
for EV populations following mechanism (S1.1)-(S1.3) with
respect to the non-EV demand composed of the base demand
and zero initial demands of major agents. It can be observed
that, in a few of update iterations, the EV populations
converge to the valley-fill charging strategy, the line marked
with dots in Figure 2.

Next, by applying the mixed update mechanism, the first
major agent need to update his best strategy with respect
to the updated EV charging strategy, given in Figure 2,
and the given initial demanding from 2nd major agent.
Figure 3 demonstrates this best demanding update of first
major agent. which is a nearly valley fill strategy and fits
with Theorem 2.2.

Following the major agent 1, the major agent 2 needs to
updates his strategy. Figure 4 displays the best demanding
update from major agent 2 with respect to the updated
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Fig. 2. Best strategy update iterations of EV populations by applying
Algorithm (S1.1)-(S1.3) with respect to zero initial demands of all agents.
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EV agent
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Fig. 3. Best strategy updates of 1st major agent with respect to initial
demands of 2nd major agent and mass charging strategies of EV populations
illustrated in Figure 2.

demanding strategy of 1st major agent, the updated mass
charging strategy of EV populations illustrated in Figure 3
and Figure 2 respectively.

For this specific example, the system reaches the Nash
equilibrium as displayed in Figure 4 after a single update
step.

Besides the example with initial agent demand given
above where the system converges to a Nash equilibrium in
single iterative step, next we demonstrate the implementation
of Nash equilibrium with non-zero initial agent demand
illustrated in Figure 5.

Figure 6 displays the aggregate demand of the best strategy
updates of all agents in each of the update iterations with the
initial demand displayed in Figure 5. It can be observed that
the system converges to the same nearly valley-fill strategy
as that with zero initial agent demands, while the iterative
steps may vary with respect to the initial demand of agents.

IV. CONCLUSIONS AND FUTURE RESEARCH

This paper specifies a class of loading coordination prob-
lems for large populations of EVs and a few of bulk load
units. These problems are formulated as large-population
dynamic games on a finite interval. We studied the valley-
fill property of the Nash equilibrium for the underlying
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Fig. 4. Best strategy updates of 2nd major agent with respect to the updated
loading strategies of 1st major agent given in Figure 3 and mass charging
strategies of EV populations illustrated in Figure 2.

12:00 16:00 20:00 0:00 4:00 8:00 12:00
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Charging interval [20:00−10:00]

N
or

m
al

iz
ed

 e
le

ct
ric

ity
 d

em
an

d 
(k

W
)

 

 

major agent 1
major agent 2
base demand

Fig. 5. A specific non-zero initial major agent demand.

problems. In particular, as demonstrated in numerical exam-
ples, following a computational algorithm and under certain
conditions, the system converges to a nearly valley-fill Nash
equilibrium.

For the sake of analytical simplicity, at the current stage,
we consider that all of the EVs share the same specifications,
each loading unit will be fully charged at the terminal
instant, and base demand as well as electricity supply are
deterministic and predictable. Future work should release
these assumptions to facilitate the method applicable in real
large population loading coordination problems.
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